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1. Introduction

In this paper we show (4) that if Ut} is a strongly continuous one-prm-
eter group of scalar type operators on wekly complete Banach space X with
spectr contained in the unit circumference and such that their resolutions of
the identity are uniformly bounded in norm, then there is a spectral measure E
of class X* on the fumily of Borel sets of the real line such that

x*U x fe dx*E(X)x, x X, x* e X*, real.

By special consideration of the case where U,} is group of unitary operators
on a Hilbert space, our work yields (and so generalizes) a well-known theorem
of 1V[. H. Stone ([11; pages 173, 174] and [12]). Our work is related in spirit
to [8; 5], although we assume weak completeness of X rather than reflexivity,
and we obtain as result rather than assume that the resolutions of the
identity for the U, generate a bounded Boolean algebra of projections.
The author would like to express his appreciation to Professor W. G. Bade

for helpful conversations and suggestions.
In what follows, all spaces are over the complex field, and an operator T in a

Banach space X will be linear transformation (not necessarily continuous)
with domain and range contained in X. We shall denote the domain, spec-
trum, resolvent set, and resolvent (evaluated at k) of T by D(T), a(T), p(T),
and R(A; T), respectively. We shall use the symbol I for the identity oper-
ator, and the symbol [X] for the algebra of continuous operators on the Banach
space X. The set of real numbers will be designased by R0, and the set of
pure-imaginury numbers, {it e R0}, by J. Our terminology concerning semi-
groups and groups of operators will be that of [5; Ch. VIII]. Unless other-
wise stated, all semi-groups and groups occurring below will be understood to
be strongly continuous.

Frequent use will be made of the operational calculus for unbounded scalar
type operators introduced in [1; 3]. This operational calculus is further con-
sidered in [6], where, for example, it is shown that a Borel function of an un-
bounded scalar type operator is of scalar type.
We shall employ the following result [6; XVII. 2.5], which strengthens [4;

Theorem 18, conclusion (iv)], and which we list here for ease of reference:
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(1.1) TEOEM. Let ( be an algebra of bounded operators on a weakly
complete Banach space X, ( being the image under a continuous homomorphism
S of the algebra C(9) of all continuous complex-valued functions on the compact
Hausdorff space 9. Then there is a spectral measure E of class X* on the Borel
sets of such that

S(f) ff(h) dE(h), f C().

2. On a theorem of Bade
In this section we obtain a version of [2; Theorem 2.3] covering the case of a

possibly unbounded limit operator.

(2.1) LEMMA. Let T be an operator in the Banach space X, and let tte p( T)
Then T is a scalar type operator if and only if R(t; T) is of scalar type.

Proof. Suppose T is of scalar type (in particular, T is closed). Consider
the functions f(k) t k and g(k) ( )-1. Applying the operational
calculus of T, one finds that g(T) is a bounded scalar type operator on X,
f(T) uI T, D(g(T)f(T)) D(T), and g(T)(I T)x x, for
x e D(T). Thus the scalar type operator g(T) coincides with R(; T).
Conversely, suppose R(; T) is of scalar type. In particular, R(; T) is
densely defined, continuous, and closed. So R(; T) e [X]. Let E denote the
resolution of the identity for R(t; T). Since R(; T) is one-to-one,
E({0} 0. Consider the function h(k) . Since the set of zeros of h has
spectral measure 0, h(R(t; T)) R(t; T) has an inverse given by
(l/h) (R(t; T) ). This inverse is therefore a scalar type operator, and clearly
must be I T. It follows that T is of scalar type.
Throughout the remainder of this section our terminology is that of [2; 2].

Before taking up the theorem of this section, however, it is necessary to discuss
the fact that [2; Theorem 2.3] is incorrect as it stands. This fact has been
communicated to Bade by C. Foias and A. Lebow. Lebow’s counter-example
is as follows. On the Hilbert space 2, define the operators T and
T(n= 1, 2, ...) by

Tn x Xn Xl Xn--1 Xn-bl Xn+2

Tx (0, x, x_, x, x+, ...),
for x- (xl,x2, ,xn, "").

Then T} is a sequence of unitary operators converging strongly to T. Since
each z(T) is contained in the unit circumference (an R-set), and z(T) is the
unit disc, [2; Lemma 2.4] fails. Moreover, the adjoint T* is given by
T*x (x2, x3,...) and this operator is not spectral (see the example of
Kakutani in [4; page 326]). Hence T is not a scalar type operator, and so
[2; Theorem 2.3] fails. It is straightforward to see that the proof of Bade’s
theorem is valid if one assumes at the outset that (in the notation of [2])
z(T)

_
V, or some condition sufficient to insure this inclusion. One such
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condition, due to Foias, is that the complement of V have no bounded compo-
nent. The demonstration that this condition insures z(T)

_
V is incorpo-

rated in the proof of the following theorem.

(2.2) THEOREM. Let X be a weatcly complete Banach space, and let {T,},
a e A, be a net of bounded scalar type operators on X with spectra contained in
some fixed R-set V. We assume that the resolutions of the identity E, for T are
uniformly bounded in norm (i.e., there is a number M such that E() - Mfor a A, and in the class B of Borel Sets of the complex plane). Let T be a
closed operator in X such that lim Tx Tx for x eD(T), and letz(T)

_
V.

Then T is a scalar type operator. If E denotes the resolution of the identity for T,
then for t V, x X, x* X*,

(2.3) x*R(t; T)x <, .)-1 dx*E X x.

In order for ( T) to be a subset of V it is necessary and sufficient that each compo-
nent of the complement of V intersect p( T). If X is a Hilbert space, and each
T, is normal, then T is normal.

Proof. Our proof that T is of scalar type is patterned after the demonstra-
tion of [6; Theorem XVII. 4.1] for the case of T bounded on X. The proof of
[2; Lemma 2.4] shows that for ), V, x e D(T),

II(hI T)x >- x II(4M)-1 d(h, Y),

and, just as in that proof, one has for V, a e A, and x e X, that

R(),; T,)]I, R(k; T)II _< 4M[d(k, V)]-1

and
lim, R(),; T,)x R(),; T)x.

The standard operational calculus for an arbitrary closed operator with non-
void resolvent set (see, e.g., [5; VII. 9]) will now be used for the operator T.
In the notation of this operational calculus, one sees from the foregoing that
if f belongs to the subalgebra A of Ca(V) generated by the class

v},

then lira, f(T,)x f(T)x, for x e X. Moreover, since

it follows that

f(T,) f. f(X) dE.(X),

I]f(T)[I

_
4M(supxv [f(X)l).

Since V is an R-set, A is dense in Ca(V), and so the homomorphism f-- f(T)
of the algebra A into [X] extends to a continuous homomorphism of Ca(V).
This latter homomorphism, in turn, can be extended to a continuous homo-



morphism into [X] of C(V), where V denotes the one-point compactification
of V. By (1.1) and [4; Lemmu 6], we conclude that for
scalar type operator. By (2.1), T is of scalar type. (2.3) follows from the
necessity proof of (2.1).
Next we show that if each component of V’, the complement of V, inter-

sects p(T), then a(T)

_
V. The argument we shall use is essentially due to

Foias. Denote by p0(T) the set of all complex ), such that for some x > 0

!1 (xx T)x l[ >-. s [[ x II, x e D(T).

Denote the complement of po(T) by a0(T). Then by [13; Theorem 5.1-D],
the boundary of a(T) is contained in a0(T). The proof of [2; Lemma 2.4]
shows that V’ po(T). If a point of a(T) should lie in a component of V,
then we could connect ), to a point of p(T) by an arc contained in W. This
arc would contain a boundary point of a(T), which must be in a0(T), and yet,
being in V, must belong to p0(T). This contradiction establishes a(T)

_
V.

To complete the proof of the theorem, we assume that X is a Hilbert space,
and each T, is normal. The proof of [2; Lemma 2.5] shows that for each
x e X, there is a regular measure p, on the Borel sets of V such that for V,

(2.4) (R(; T)x, x)

Moreover, p is a cluster point of the net (E,( )x, x) in the weak*-topology
of the dual space of C(V). Since E,() is Hermitian for a e A, e B it follows
that p is positive. By (2.3), (2.4), and the fact that V is an R-set, we have
that p() (E(,)x, x) for x e X, i e B. So the resolution of the identityfor
T assumes only Hermitian values, and T is normal.

3. Semi-groups with generators of scalar type
(3.1) THEOREM. Let {T}, >_ 0, be a semi-group of bounded operators

on a Banach space X, with infinitesimal generator T. If T is a scalar type oper-
ator, then each T is of scalar type, and

x*T x f e dx*E(X)x, x e X, x* e X*, >_. O,

where E denotes the resolution of the identity for T.

Proof. For each >_ 0, let the function f be defined on the complex plane
by f(),) ex. By [5; Theorem VIII.I.ll] there is a real number w such that
a(T) is contained in the set W {lre <_ w}. Since E(a(T)) I (by
[1; Lemma 3.1]), eachf is E-essentially bounded. It follows that, in terms of
the operational calculus of the scalar type operator T, each f(T) is a bounded

The referee has informed the author that a proof of Theorem (3.1) was given by Lyle
It. Lanier, Jr., in his unpublished dissertation submitted to the University of Illinois in
January, 1964.
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scalar type operator, and

(3.2) x*fi (T)x f et dx*E()x, x e X, x* e X*, >_0.

To complete the proof we show that fs(T) Tt for _> 0. It is easy to see
that {fs(T)}, _> 0, is a weakly continuous semi-group, and hence, by [7;
page 306], is strongly continuous. Clearly lift(T)lie-ws is bounded for
>_ 0. Application of (3.2) and interchange of the order of integration give,

forxeX, x*eX*,re> w,

e ’fl(T)x dt (X )-1 dx*E(#)x x*R(k; T)x.

By [5; Corollary VIII.I.16], T is the infinitesimal generator of
Hence fs(T) Ts, for _> 0.

4. A generalization of Stone’s theorem
Throughout this section we assume that {Ut}, e R0, is a group of scalar

type operators on a Banach space X such that"

(i) Each Us has its spectrum contained in the unit circumference

{1 Ixl 1/.
(ii) The resolutions of the identity Ft for Ut are uniformly bounded in

norm by a constant M.

(4.1) LEMMA. The generator T of {Us} has purely imaginary spectrum,
and for x e X, x* e X*,

x*R(h; T)x fo e-Xtx*Ut x dt, if re > 0,

fo exsx* U-t x dr, if re < 0.

Proof. Clearly the commutative group {Us} is bounded in norm by 4M.
By [9; proof of Theorem 6] X can be renormed with an equivalent norm which
makes each Us an isometry. We shall assume for purposes of this lemma that
this has been done. T generates {Us}, >_ 0, and -T generates {U-s},

>_ 0. Clearly

lim,_., -1 log V I! lim,_., -’ log U_, O.

Application of [5; Theorem VIII.1.11] completes the proof of this lemma.
We now express the generator T of the group {Us} in the form T iA,

where A is likewise a closed operator with domain D(T). By (4.1), a(A)
is real. For each we can also write Us fo e*’ dGt(), where G is a
spectral measure of class X* on the family B0 of Borel sets of R0, satisfying
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Gt() <- M for ti B0, and Gt([0, 2r]) I. We have Ut ei’, where At
is the scalar type operator given by R0 k dGt(k).

(4.2) THEOREM. Suppose X is weakly complete. Then the generator T of
{Ut}, e Ro, is of scalar type. There is a spectral measure E of class X* on
the family Bo of Borel sets of Ro such that

(4.3) x* Ut x fR eitk dx*E(h)x, x X, x* X*, Ro.

The spectral measure E is uniquely determined and is the restriction to Bo of
the resolution of the identity for the scalar type operator -iT. If X is a Hilbert
space, and each Ut is unitary, then the values of E are all Hermitian.

Proof. We have for all x e D (T),

Tx limt_0+ t-l(e’t- I)x, --Tx limt_0+ t-l(e-i’t- I)x.

Subtraction of the second of these equations from the first and division by
2 give:

Tx limt_,0+ (it-1 sin A t) x.

Let B it- sin At for > 0. Clearly each B is a scalar type operator
whose resolution of the identity is bounded by M. Also, a(Bt) J. By
(4.1) a(T) J, and so we have from (2.2) that T is a scalar type operator.
Denote by H the resolution of the identity for T. Application of (3.1)
to the semi-groups Utl and U-t}, >_ O, gives

* f etx Ut x dx*H(.)x, x X, x* X*, Ro.

It is now clear that (4.3) holds, with E denoting the restriction to B0 of the
resolution of the identity for A -iT.
Suppose E0 is also a spectral measure satisfying (4.3). Application of

(4.1) gives the result:

x*R(X; T)x [ dt e-X*e"t dx*Eo()x, x X, x* e X*, re X > 0.
vO

After interchanging the order of integration, we obtain"

(4.4) x*R(; T) x fro (X i) -1 dx*Eo()x.

A similar calculation with re ), < 0 shows that (4.4) is valid if J. From
the fact that E is the restriction to B0 of the resolution of the identity for
-iT, it is easy to see that"

(4.5) x*R(k; T)x fro (x i, - dx*E x,
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From (4.4), (4.5), and the fact that the real line is an R-set, we see that
the measures x*Eo( )x and x’E( )x coincide for arbitrary x and x*. Hence
E0 E.
To conclude the proof we observe that if X is a Hilbert space, and each Us

is unitary, then each B is normal, and so by (2.2) T is normal. Thus the
resolution of the identity for A is Hermitian-valued.

(4.6) COROLLARY. An operator C e [X] commutes with each U if and
only if C commutes with each value of E.
The straightforward proof of (4.6) will be omitted.

(4.7) COROLLARY. The range of each F is contained in the range of E,
and so the resolutions of the identity for the operators U generate a bounded
Boolean algebra of projections in IX].

Proof. By (4.3) and [4; Lemma 6].
For the sufficiency proof of the next corollary we shall use the notions of

bounded generalized Hermitian operator on a Banach space, of semi-inner-
product, and of dissipative operator. We shall not take up space here for a
discussion of these notions, but we refer the reader to [3; pages 365, 366]
and to [10] for such a discussion. We shall also use the fact that, as pointed
out in [10; page 681], a scalar type operator T has the property that

{x eD(T)[ T’x [[1/n
is dense in the underlying Banach space.

(4.8) COROLLARY. An operator T in a weakly complete Banach space X
generates a strongly continuous one-parameter group of scalar type operators with
spectra contained in the unit circumference and resolutions of the identity uni-
formly bounded in norm if and only if T is a scalar type operator with (r( T)

_
J.

Proof. If T generates such a group, then by (4.1) and (4.2) T has the
desired properties. Conversely, if T is a scalar type operator with z(T) J,
Then the resolution of the identity for T can be made into a Hermitian family
(in the generalized sense) by equivalent renorming of X (see Lemmas 2.2
and 2.3 of [3], which apply to any bounded Ioolean algebra of projections).
Thus, after introduction of an appropriate semi-inner-product for X, the
operators T and -T will be dissipative. It now follows by [10; Theorem 3.2]
that the scalar type operators T and -T are generators of semi-groups.
Hence by the Hille-Yosida-Phillips Theorem and [5; Corollary VIII.I.17],
T generates a group Vt}, Ro, of bounded operators on X. By (3.1) each
V is of scalar type, and there is a spectral measure E of class X* on B0 such
that (4.3) holds with {Vt} in place of {Us}. It is clear that each (V) is
contained in the unit circumference. Finally, by [4; Lemma 6], the range of
the resolution of the identity for each V is contained in the range of E.
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