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1. Introduction
The invariant subspaces of L 1

_
p < oo of the unit circle are those closed

subspaces (weak*-closed when p oo for which ef is in ! for each f in
!. If! is invariant and also e-Xf is in for every f in , ! is called doubly
invariant; ! is called simply invariant if it is invariant but not doubly in-
variant. The structure of these subspaces is known. In their fundamental
paper [4], Helson and Lowdenslager used an elegant Hilbert space argument
to characterize the simply invariant subspaces of L. Forelli [2] extended
their result to L by a factoring process that depended on the L case. In the
remaining cases [3, p. 26], the structure of the simply invariant subspace
results from an analysis of n L 1 < p < 2) and of the annihilator of !gt in
(L)* (2 p

_
oo ). Thus the structure of the simply invariant subspaces

of L unfolds only after initial success in the L setting. Much the same situa-
tion holds for doubly invariant subspaces, and for invariant subspaces defined
in certain abstract spaces [8], [9], [10].
The primary purpose of this paper is to obtain these invariant subspace

structure theorems by methods that are free of special Hilbert space tech-
niques. We are successful in all cases except one--the simply invariant
subspaces in L1. In 2 we characterize the simply invariant subspaces of
L’(dm) 1

_
p oo of a Dirichlet algebra by a method that depends on the

reflexivity of the overlying function space (1 p oo and on a double
extremal technique developed by Rogosinski and Shapiro [7]. The same
method is implicit in an abstract of E. Bishop [Notices, vol. 12 (1965), p. 123].
In 3 we use a Zorn’s lemma argument to characterize the doubly invariant
subspaces in L(dtt) (1

_
p

_
oo of a certain measure space. Finally, in

4, we give new proofs and expand on some results of Srinivasan and Hasumi
[10] concerning weak*-density of subalgebras of L(d#). Although most of
the paper is devoted to new proofs of known results, we believe that Theorem 1
(1 p 2,2 p oo) is new.
As one would expect, the technique described in 2 does not apply to the

simply invariant subspaces on the line; neither does it seems to offer great
promise in the study of invariant subspaces in the spaces of functions from the
unit circle into a Hilbert space [3, Lectures V, VI].

2. Simply invariant subspaces
Let X be a compact Hausdorff space, A a uniformly closed algebra of com-

plex, continuous functions on X that contains the constant functions, separates
the points of X and satisfies the additional condition that Re A is uniformly
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dense in CR(X), the space of real continuous functions on X. Such an algebra
is called a Dirichlet algebra on X. In this section A will be a fixed Dirichlet
Dirichlet algebra on X, ra will be a nonnegative finite Borel measure on X
such that

](0) f f dm (f eA)

defines a multiplicative linear functional on A. (All integrals extend over X.)
Define A0 to be the set

A0 [fA’](0) 0}.
For 1 <_ p < H’(dm) will be the closure of A inL(dm), and H (din)

will be the essentially bounded functions in Hl(dm). The norm off in L’(din)
will be written f I1. For p >_ 1, H’(dm) may be characterized as the collec-
tion of those functions f in L’(dm) such that f gf dm 0 for all g in A0.
This follows for 1 < p < from the fact that there is a version of the M.
Riesz conjugate function theorem valid in the context of Dirichlet algebras
[1, Theorem 9]. Presumably the same characterization of H(dm) holds in
the more general setting of logmodular algebras, lthough only the cases p 1
und p 2 are explicitly mentioned in [5]. For results concerning Dirichlet
algebras used in this section, the reader is referred to [5], [11].
A subspace !gt of LP(dm) (1

_
p < is simply invariant if and only if

is closed and the closure of A0 J in L’(dm) is a proper subset of

THEOREM 1. Every simply invariant subsace of L(dm) (1

_
p < ) is

of the form.
(1) U dm

where is a measurable function such that i almost everywhere.

It is clear that every subspace of L(dm) (1

_
p < of the form given

in (1) is simply invariant. In order to show that every simply invariant
subspace of L(dm) has this form, we first treat the case p 1. One would
like to have a proof divorced from H2(dm), but we have not been able to find
one. We do have a proof that depends on a geometrical property of H (dm)
that D. J. Newman [6] has called pseudo-uniform convexity" if f., f are in H
of the unit circle, f f dO -- Ifl dO and f(z) - f(z) uniformly on compact
subsets of zl < 1, then f ]f f ldO -- O. We need the analogue of this
result in H (din) only for f 1. The question of whether H (dm) is pseudo-
uniformly convex is open.

LEMMA. If f,, is a sequence in H(dm such that

(2) A II - 1 and JA dm -+ l,

then

f 1 --f,I dm ---->0.
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tion
We may assume that f f, dm is never 0. Each f has a factoriza-

(3) f F.g,

where F, is an inner function and g is an outer function in Hi(din). Since the
multiplicative property of m on the algebra A extends to each product in (3),
and since F 1 almost everywhere, we obtain the inequality

f fndm
<-- f Ig,l dm f If,l dm <_ 1,

which, by (2), implies that f g, dm[ --+ 1.
outer function,

Thus, by the definition of an

f g, dm --->0 as n-- .
Let Gn be the projection of the constant function 1 onto the closure of A0 in
L2(If,ldm). According to the generalized Szeg5 theorem,

(5) fix--G,.2lf,[ dm kn exp If log ,f.[ dml,
and from (4), k. 1. Now the general theory of Dirichlet algebras tells us
that

(6) 1- Gn Ilf, ]c, (1- Gn)-eH(dm), (1 G)f eH(dm),
and that

(7) f (1 G)-1[(1 Gn)fn]

is a factorization off into the product of two functions in H(dm). Since G
is a member ot the closure of A0 in L(]f, din), it follows that f G, f, dm 0
and

f (1- Gn)f,dm .fAdm 1.

The information from (5) and (6) combines to yield the following limits:

f ll 111 . o f Ifnl n 1,

f (1- G,)-’dm ff. (1- G,)f, dm 1,
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Hence f 1 (1 G,)-I i dm ---. O, f 1 1 G,)f, dm 0 and from
(7),

f i1 --f ldm-+O.

Prooffor p 1. If is a simply invariant subspace of Ll(dm), then, since
the closure of A0 is proper in , there is a function in L(dm) such that

and

(9) sup J gh dm 1,

the supremum being taken over all g in such that g I]1 _< 1.
Since the functions g$ (g e ) are orthogonal to A0, h c H1(din).

Choose a sequence g in such that

(10) ]]g[11 1 and jg, TC, dm-+l.

It follows from (8) and (10) that

(11) f Ig,[h[ dm <_ 1,

and therefore, by the lemma,

(12) f 1 g[kldm--O.

Thus the constant function 1 belongs to the closure of$ in Ll(dm). From
the definition of Hl(dm) and the simple invariance of , we conclude that the
closure of $ in L (din) is H (din). If we show that 1 almost every-
where, the proof will be complete, for then $ will be closed, hence

H1(rim) and H dm as required.
The limit in (12) implies that

12’ f lg,,$1 dm -- m(E)
for every Borel subset E of X. But if I(x) -< 1 c(c > 0) on a set E of
positive m-measure, (8), (10) and (11) combine to yield

or

cflgldm<l--flg.gldm.
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Since the right member of this inequality tends to 0 as n --* ,

contrary to (12’). Hence [ 1 lmost everywhere.

Proof for 1 < p < . Let be a simply invariant subspace of L(dm).
Since the closure of A0 is a proper subset of , there exists u function h in
Lq(dm) (lip + 1/q 1) such thut

(13) h q 1, f fgh dm 0 (f Ao, g ),

and

(14) sup fghdm 1,

the supremum being taken over all g in such that ]]g ] 1.
According to (14) there exists a sequence g in such that

(15) [[g [] 1 and f gh dm 1.

Now u closed subspuce of Banch space is weakly closed, and in a reflexive
Bunach spce the closed unit sphere is weakly compact. Hence the g have a
wek limit point in which, by (13) and (15), satisfies

(16) ][[1 1, f Ch dm 1 nd f fCh dm 0 (f e Ao).

From the inequalities

we conclude that

The second equality implies that Ch [h; hence

(17) Ch 1,

because a real function in L(dm) orthogonal to A0 (see (16)) is constant.
The third equality is precisely an assertion of equality in H61der’s inequality,
which holds only in case real numbers a and exist such that

(is) -[ " 1 h .
Combining (17) and (18), we obtain

1 Ch [h[ (/a)i/[ h q



INVARIANT SUBSPACES 513

which implies that hl is constant lmost everywhere. Now, by (17),
h I-/ is in ffY nd, by (13), the functions g (g e ffYt) re orthogonl

to A0, nd therefore belong to H(dm). Hence ffJ is simply invrint sub-
spce of H(dm) that contains the constants. Consequently H’(dm)
nd ff) H dm s required.

In the next section we tret doubly invrint subspces in more general
context nd by nother procedure. We think it worth-while to point out here
that the bove procedure for the cse 1 < p < pplies equMly well to doubly
invrint subspces of L’(dm) (1 < p < ), where by doubly inwrint
subspce of L(dm) we mean closed subspce ffJ such that gf is in fff for 11 f
in ff) nd ll g in A . The only dditionl piece of information required is
that A is wek*-dense in L(rim).

3. Doubly invariant subspaces

Let X be locally compact Husdorff spce that is -compct, nonneg-
rive Rdon mesure on X, nd/ sublgebr of L(
L(dt).
We sy that subspce fff of L(d#) is doubly invariant (I-invrint)

provided that [10, p. 525]
(i) 9Y is closed in L(d#) (1 _< p <
(ii) the product Cf is in for every

On the unit circle, I is the lgebm generated by e nd e-, nd in the cse of
Dirichlet Mgebm A, I is the smallest sublgebr of L(dm) that contains

A0 0. The genesis of /is obliterated in the setting of this section.

THEOREM 2. The doubly invariant subspaces of L(dt) (1

_
p < o are of

the form
(19) CL(d#),

where C is the characteristic function of a measurable set E.

Proor. It is clear that any subspace of L(d) of the form (19) is doubly
invariant.

If 3 is doubly invariant, then the product Cf ( e L (d#), f e ), is always in
Y. Otherwise, for some and f, there would exist an h in

Lq(d) (lip + 1/q 1)
such that

(20) f gh dt, 0 g e g) nd f fh dt O.

Since ) is doubly invariant and /is weak*-dense in L*(dz), it follows that

fh 0 almost everywhere. Hence the second integral in (20) must also be 0.
Due to the z-compactness of X, we can construct a nonnegative function u in

LP(dz) n L(dz) n L*(dz) that does not vnish on a set of positive z-measure.
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(In case X is compact, let u be identically 1.) For each f in 9J define

L(x) 1/f(x) i f()l > 1/n

0 if f(x)l < 1In
E(f) lx eX" f(x) 0},

C(f) C.
The products fn u are bounded; hence f, uf is a sequence in 9) that converges
pointwise to C(f)u, and C(f)u !ff in consequence of the bounded convergence
theorem. The result follows quite easily once we show there is a maximal set
among the sets E(f) (f

Define a partial ordering on the family 9l [E(f)" f e !gt} by E(]) < E(g)
if and only if E(f) c E(g) and f C(f)u d < f C(g)u d. Suppose that T
is a totally ordered subset of 9 and set

I sup f C(f)u d,

the supremum being over E(f) in T. Choose E(f,) in T such that

f C(f, )u d#---, tc. The function CD u (D U>I E(f,)) is the limit in L’(d)
of C(f,)u (n 1, 2, 3, ). Thus CD u e !ff, and the set D in 9 is clearly an
upper bound for T. By Zorn’s lemma, 9t has a maximal element E. If
C g e !l for some g in L(d), there would exist an h in Lq(d) such that

f fh d 0 (f e !I) and f Cgh d O.

Since C u e !fit, it follows from the double invariance of and the first integral
that C uh 0 almost everywhere. However, u does not vanish on a set of
positive -measure, hence C h 0 almost everywhere and the second integral
is 0. This shows that C. L’(d) !ff. On the other hand, if f !gt, the
function

is a function in J whose non-zero set is E(f) u E. From the maximality
of E, we conclude that f CE f. Thus CE L(d) and the proof is com-
plete.
We note that the obvious result for doubly invariant subspaces of L(d)

follows from the observation that the set of all f e Ll(d) such that

f fg d

is a doubly invariant subspace of L (d#) whose annihilator in L (d) is pre-
cisely
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4. Weak*-density of certain subalgebras of L(dm)

In [10], Sriniwsn nd Hsumi proved doubly invrint subspce theorem
for p 1, 2 under the ssumption is dense in LS(dm), then through the in-
vrint subspce theory concluded that is wek*-dense in L(dm). In this
section we establish their result without recourse to invrint subspce theory.
In fct our technique enables us to show that if is wek*-dense subMgebm
of L(dm) of finite mesure spce (X, m), then every bounded function on X
is the pointwise limit of uniformly bounded sequence from .I. This generM-
izes the situation for the unit circle, where the standard theorem sserts that
every bounded and measurable function is the pointwise limit of subse-
quence of the Cesro means of its Fourier series.

THEOREM 3. Let (X, m) be a finite measure space. If is a conjugate closed
subalgebra of L (din) and 1 <_ p < oo, the following are equivalent:

(i) is dense in L dm
(ii) I is weatc*-dense in L (din).

Proof. That (ii) implies (i) is obvious. To see that (i) implies (ii), we
start with in L(dm) such that -1 _< _< 1 nd define u rcsin .
Since u L’(dm), there exists sequence v in such that

f lv--uldm---.O.

Because is conjugate closed, we may take the functions v to be real. By
passing to a subsequence if necessary, we have v(x) u(x) almost every-
where. The functions sin v belong to the weak -closure of ?I, sin v - 1
and

sin v(x) sin u(x) 4)(x)

almost everywhere. If we apply this argument to the real and imaginary
parts of an arbitrary in L(dm), there emerges a sequence w in, such that

(21) lim sup _< v’2 nd w(x) -- (x)lmost everywhere. In prticulr, belongs to the wek*-closure of .
ColoLAlV. Let X, m) be afinite measure space. If is a conjugate closed

and weatc*-dense subalgebra of L (din), then, for each in L (din), there exists
a sequence w in for which (21) holds.

THEOREM 4. Let X be a locally compact Hausdorff space, t* a nonnegative
Radon measure on X, and suppose that the Banach conjugate of L(dt,) is (iso-
metric to) L(tits). If 1 <_ p < oo and is a conjugate closed subalgebra of
L(d) such that I K is dense in L(d# K) for every compact subset K of X,
then is weatc*-dense in L d#
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Proof. Let be in L(d) and K a compact subset of X. Since ]K is
dense in LP(d#IK), we may apply Theorem 3 to establish the existence of a
sequence g in ?I such that lim sup g I1(R) -< /2 11 and g,(x) -- (x)onK. Since every uniformly bounded sequence in L(d) has a weak*-cluster
point, there exists a function uK in the weak*-closure of ?I such that

lluKIl-< x/211ll and u on K.

Now suppose that f Ll(d) is such that f gf d 0 for 11 g e ?I. For ech
compact set K in X there exists a function u in the wek*-closure of ?I such
that u ]/I f on g nd u I1(R) -< v/2. Consequently,

or
f lf d + f, uf d 0

Since Ill d is a regular measure, and this last inequality holds for every com-
pact set, we conclude that

j If[d O.

Hence f 0 almost everywhere, proving that ?I is weak*-dense in L*(d).
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