CONNEXION PRESERVING SPRAY MAPS!

BY
N. J. Hicks

This study is concerned primarily with finding necessary and sufficient con-
ditions for a spray map to be connexion preserving. We now define these
terms. Let M and 'M be connected C* manifolds with connexions® D and ’D,
respectively (see references [4] or [7] for undefined terms). Let f be a C”
map of M into ‘M with Jacobian fx . If X is an element of the tangent space
M, and Y is an arbitrary C* vector field on a neighborhood of m, then f is

connexion preserving in the direction X, or connexion preserving with respect to X,
if

(1) f«(DxY) = "Dy x(f+ Y),

where the right side is computed as in [7, p. 142]. If f is connexion preserv-
ing with respect to all vectors X at all points of M, then we say f is a connexion
preserving map. It is easy to show that f is connexion preserving if and only
if fx commutes with parallel translation along C” curves. To obtain a spray
map, we choose points m in M and ‘m in ‘M, let U be a normal neighborhood
of m, let F be a linear map of M,, into ‘M., , and define

(2) f = 'expmoF o (expn)”

on U. Thus in (2), f maps geodesics in U emanating from m into geodesics
in ‘M emanating from ‘m via the association of initial tangent vectors pro-
vided by F. Any map of form (2) is called a spray map, and sometimes we
may call it a spray map from m.

The local theorems which provide conditions implying a spray map is con-
nexion preserving are found in Section 2. In Section 3, we use the method of
Ambrose in [1] to obtain a global theorem. Among the applications in Sec-
tion 4, we obtain a differential geometric proof of a classical theorem concerning
homomorphisms of Lie groups. Finally in Section 5, we generalize a local
result of E. Cartan in [2], and then follow a suggestion of R. Hermann to
obtain an existence theorem for geodesic submanifolds of an affine connexion.

This work is a generalization of [6] where a similar study was made under
the restriction that M and 'M have the same dimension. Besides extending
the previous results, we believe the methods used in Sections 1 and 2 illustrate
more clearly the connection between hypotheses and conclusions of the
analytical parts of the theorems involved. In particular, we exhibit clearly
the inference chain from hypotheses about curvature and torsion to Jacobi
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fields to the Jacobian of the exponential to conclusions about parallel transla-
tion.

1. Jacobi fields for affine connexions

In this section let M be a C* manifold with connexion D, curvature R, and
torsion Tor. Recall, for C* vector fields X, Y, and Z, on M,

(3) Tor (X,Y) =DxY — Dy X — [X, Y]

(4) R(X,Y)Z = DxDyZ — Dy DxZ — Dix,v) Z.

Let ¢ be a geodesic in M with tangent field T. Following [8], we define a
Jacobi field W along o to be a C” field W on ¢ such that

(5) D*W = R(T, W)T -+ Dy Tor (T, W).

To motivate this definition suppose a(t, w) is a l-parameter family of
geodesics in M with ay = o, i.e. a(t) = a(f, 0) = o(t), (see [7, p. 144]).
Let T = ax(8/dt) and W = ax(9/dw). Then from Section 10.1 of [7],
DT =0,[T, W] =0, and Tor (T, W) = Dy W — Dy T. Thus

R(T,W)T = DDy T = Do(Dz W — Tor (T, W)),

and W satisfies (5).

Let e1, -+, € be a set of linearly independent parallel fields along ¢ with
T = e,. Any C” field W on o can be represented uniquely in the form
W = D% fie; where f; are C” real-valued functions on the domain of o.
The torsion and curvature tensors induce C® real-valued functions 7
and Rijrs on the domain of ¢ by letting

(6) Tor (e:, ¢) = D ney Tist €&
(7 R(e:, e;)er = Z?-l Rijis es .

Using this notation we prove the following proposition which is exactly
analogous to the Riemannian case.

ProposiTION 1. A C” field W = D1 fe: is Jacobi along o if and only if
(8) Ji = 225 Tusifi = 225 (Bajni + Tse)fy = 0

fori =1, .-+, n, where the summation index j goes from 1 to n, and the prime
superscript indicates differentiation. A Jacob field W is uniquely determined
by the vectors W, and (Dg W) at one point m ono.  The set of all Jacob: fields
along o is a real vector space of dimension 2n. The set of Jacobs fields along o
that vanish at one particular point is a real vector space of dimension n.

Proof. Since the e; are parallel, we have Dy W = Y. fie; and
DIW = Y fie.. Since T = e,, equation (5) becomes
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Zifgei = R(en P Zifi e.)e, + Dy Tor (e, , Zzﬁ e:)
= Zi,sfi Rnins €s + DT( Zi,efz‘ an's es)
= D255 RBuui + FiTuji + fi Tusides .
Equating coefficients of e; yields (8).

The existence and uniqueness theorems concerning solutions to second order
linear ordinary differential equations when applied to (8) will prove the
remaining sentences in the proposition.

In order to connect Jacobi fields with the exponential map in the usual way,

we fix some notation. For m in M and A in M,,, let A denote the unique
“constant” vector field induced on M,, by 4 (see (7, p. 132 and p. 145}).

ProposiTion 2. Let T and A be any vectors in M,,. Let
Q = [(t,w) in R* : expy, is defined on t(T + wA)],
which is an open set in R*. Let o : Q — M by
a(t,w) = expn (T + wA).

Then o is a one-parameter family of geodesics and W = (expn)«(td) is a
Jacobi field along each geodesic such that W(0, w) = 0 and Dr W(t, 0) =
expx Ay = A.

Proof. The definition of the exponential map implies « is a one-parameter
family of geodesics which in turn implies W is Jacobi. Finally,

DT W(t, 0) = Dr(t eXPx An') = eXPx A_.”' + tDT(exp*fi),

and evaluating at ¢ = 0 shows D W (¢, 0) = 4.

We remark that conjugate points may be defined as singularities of the
exponential map or in terms of Jacobi fields, as in the Riemannian case.
Indeed, Theorems 3, 4, and 5, in [7, p. 145], are true for general affine con-
nexions and their proofs are identical to the Riemannian proofs given in [7].

2. Connexion preserving local maps

As in the introduction, we let M and ‘M be C* manifolds with connexions
D and 'D, respectively. In general, the prime superscript before a letter
will denote an object associated with ‘M. This notation is fixed throughout
this section.

DeriNiTION. Let o be a geodesic in M and let f be a C* map from a neigh-
borhood of the image of ¢ into “M. The map fis curvature and torsion parallel
invariant along o if the following condition is satisfied: Choose any real num-
ber b in the domain of ¢ and any base e, -+, e, of M,, where m = a(b).
Let P,e:; denote the parallel translate of e; along o from m to (). Let
‘e; = (f+)m € and let 'P/e; denote the parallel translate of ‘e; along ‘c = fos
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from ‘m = ‘o(b) to ‘e(t), for¢ = 1, ---, n. Define C* functions T:y and
R;j1s on the domain of ¢ by letting

(9) Tor (P:e:, P;e;) = Zl?=l Tiiw(t) (P:ex)

(10) R(Pie:, Pie))Pren = D um1 Rijis(t) (P es).

The condition we impose is that the following equations hold on the domain of
o (and ‘o)

(11) "Tor ("P/e; , ,:Pt,ej) = Z;?=1 Tijk(t)(lptlek)
(12) 'R(‘"P/e;, 'P/e;)'P/ey = Z;;l Rijns(t)("Pies).

Some remarks are in order. Notice ’e;, - - - , ‘e, need not be independent.
The following lemma shows that the definition is independent of the base
er, -+ , e, at m, and Theorem 1 will show the definition is independent of the
point m when f is geodesic preserving.

LemMa. The above definition is independent of the base er, -+ - , e, at m.

Proof. Letwv:, --- , v, be any base at m and let (a.;) be the non-singular n
by n matrix of real numbers such that v; = D tyai;es. Hence

v = fa(v) = 2imaie:.
Letting Tor (Pyv:, Prv;) = 2im1 Sin(t) (Pyvy), we find
dek(t) = Z:},s,u-—-l Qpi Qs a;; Trsu(t))

where aiy denotes the k, ™ entry in the inverse matrix of the matrix (a.;).
We now check the condition (11) for the base vy, «++ , vn,

"Tor ("P/v, , "Piv;) = 2 s i s/ Tor "P/e, , P/es)
= D s i Gj Treu(t)' Plley,
= 2wk Sin(t)aw('Pley)
= 2k Sia() ('Plwr).
The computation needed to check (12) for vy, - - - , v, is similar.

TuroreM 1. If f is geodesic preserving and also curvature and torsion parallel
inwvariant along a geodesic o, then f is connexion preserving in the direction of o
and fx commutes with parallel translation along o.

Proof. In a normal neighborhood U of any point m on ¢ we can write
(13) f = "expmo (fa)mo (expn) ™

since f is geodesic preserving. We restrict the domain of ¢'so ¢ lies in U and
show fx commutes with parallel translation along o through this domain. A
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simple finite repetition of the argument will show fx commutes with parallel
translation along ¢ between any two points.

By Proposition 2, the fields W, = (expm)«(t€:;) and the fields 'W; = f W, =
("exprm) (t'€;) are Jacobi along o and 'e = f o ¢, respectively, for: = 1, --- , n.
Define C* real-valued functions g:;(¢) on the domain of ¢ by

(14) Wi(t) = 2iwig:(1)(Pres).

Since there are no points o(¢) conjugate to m in the normal neighborhood U,
the matrix (g:;(¢)) is non-singular for ¢ = b(s(b) = m). Assuming e, is the

tangent to o at m, the Jacobi equations (8) imply for rand s = 1, - - - , n that
(15) gs = 225 Tuir gis — 225 (Rujnr + Tir)gie = 0,
where
(16) gr(0) = 0 and gis(b) = 4.
Consider the fields Y;(t) = i=1gi;(t)'P{e; along ‘g for j = 1, ---, m.

We show each Y is Jacobi along ‘o for
‘D2 Y, r=1grs(t) ("P/er)
= 2 i [Tnir gis + (Rujur + Tosr)gi (Pler)
= 'R('T, Y,)'T + 'D.7/'Tor ('T, Y,)

by (15), (11), and (12). But Y;(b) = 0 and ('D.z Y;)(b) = ’e;, hence
Y; = 'W; for each j by the uniqueness of Jacobi fields (Proposition 1). Thus

(17) Fe(Xi1g(t)Pres) = Y = 2 ia1gi(t)('Ple:)
and since f4 is linear and ¢.;(¢) is non-singular for ¢ # b,
(18) f*(Pt e;) = ’P/e,: = ,P;(f* ei).

This proves the theorem.

CoroLLARY 1. Let M and 'M be C* manifolds with connexions D and 'D,
respectively. A C° map f of M into 'M 1is connexion preserving if and only if it
18 geodesic preserving and curvature and torsion parallel invariant along all
geodesics.

In the proof of Theorem 1 we only used the fact that f was geodesic pre-
serving to obtain (13). Hence we can sharpen the result by making the as-
sumption that (13) holds, i.e. that f is a spray map.

CoROLLARY 2. Let f be a spray map from a normal neighborhood U of m in M
into’M. Let o be a geodesic through m such that f is curvature and torsion parallel
invariant along o.  Then fy commutes with parallel translation along o.

We now investigate conditions under which a spray map is connexion
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preserving. The case in which (f«). is onto is treated in Theorem 2 while
Theorem 3 covers the general case.

First some notation. If Z is a vector in M, , let Z be the C* field induced on
each normal neighborhood of m by parallel translating Z along geodesics
emanating from m. If A is a subspace of M,, , let A be the distribution (in
the sense of Chevalley [3]) on each normal neighborhood of m generated by
all fields Z for Z in A. If A and B are C” distributions with a common domain
let D4 B be the set of all fields D, X for Z in A and X in B, and define sets
R(A, B)B and Tor (A, B) analogously.

THEOREM 2. Let f be.a C* map from a normal neighborhood U of m in M into
'M such that f(U) s contained in a normal neighborhood of 'm = f(m), and let
K denote the kernel of f« at m. Then f is connexion preserving onto a normal
neighborhood of 'm if and only if the following three conditions hold:

(a) f1s a spray map from m,

(b) f s curvature and torsion parallel invariant along all geodesics emanating
from m and contained in U,

(¢) there exists a complement N to K (i.e. N is a subspace of M, with
M, = N + K and N n K = @) such that (fx)m maps N onto "M, with
Dy(K)c K,R(K,N)N c K, Tor (K,N) c K,and Dx Y in Kif Y in N and
X in K, at all points of U.

Proof. 1If f is connexion preserving then (a) and (b) follow from Corollary
1. Since f4 commutes with parallel translation, the kernel of (f«), is K, for
any pin U. If X in K and Y in N, where N is any complement to K, then
f«(Dy, X) = 'Dy,v,(f+ X) = Osince fx X = 0. Hence Dy X isin K.

If Yisin N, let 'Y = (fs«)m Y and by Theorem 1, 'Y,y = (f«)p ¥p since
parallel translation commutes with fx . Thus if X in K, then fx(Dx ¥) =
'D; x'Y = Osince fx X = 0and f« ¥ is imbedded in the field 'Y. (To facilitate
understanding, we include the following example. Let f: R’ — R’ by
fla,b,¢) = (a,b). Let Y = 2(9/0x) and X = 9/92. Then Dy Y = 9/0x
(with the standard connexion on each R"), and f«(Dx Y) = 3/0x. The map
f is connexion preserving since fy clearly commutes with parallel translation.
Indeed, by equation (1), p. 142, in [7],

Dy x(f+Y) = [(8/02)2](8/0x) + 2Dy, x(0)dx) = 9/ox

since f« X = 0. Thus Dx Y is not in the kernel of f« even though X is; how-
ever, Y is not of the type ¥ and fx ¥ depends on z.)
TFurthermore, if f is connexion preserving then
FW(R(X, Y)Z) = R+ X, s Vfs 2
and fyxTor (X,Y) = "Tor (f«+ X, f+« ).
Hence if X in K then f4+ X = 0, and thus R(X, Y)Z and Tor (X, Y) are in K

forall Y and Z. Since fis a spray map onto a neighborhood of 'm, (f«)» maps
any complement N to K onto "M, .
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Assume now f satisfies (a), (b), and (¢). Since (fx)m maps onto "M, it is
clear that f maps onto a normal neighborhood of “m.

Let e1, -+, e, be a base for N, where 'n is the dimension of ‘M, and let
€ni1, " -, € be a base for K. We write e; for the fields & on U for
i=1,---,n LetT = X ryaie beaC” “radial” fieldon V = U — [m]
such that T is a tangent field on V to geodesics emanating from m. To be
more explicit, letz;, - - - , 2, be the dual base of linear functionalstoe; , - - - , €y,
then let

R = (21" (221 % 6/0e:)
on M, — [0]and T = (expn)s Ron V. By definition then we have D» T = 0,
Dre; = 0, Ta; = 0, and e, a; are known C” functions on V.

Let T’ denote the connexion functions on U associated with the base field
€1, ", €y ;S0

(19) Dyei = 2 iuTiie.

We now develop a system of first order ordinary differential equations, (22),
that determine the functions I'}; along a geodesic ¢ emanating from m. Define
C* functions Rijs and T on U by equations (6) and (7). Then by (3), on
V we have

[T, e] = Dre; — D,;, T — Tor (T, e:)

(20) = —Do(narer) — 2on;a Thije;
= —2u(aa)a — 2 Thie — 2jua Tju ex

where sums go from 1 to n. By (4) and (20),

R(T, e;)e; = Dy D, e — D,, Dre; — Dz, €
(21) = D ks Gk Ruijs €

= 2 (TT3)es + D pws(eiar + arThi + ar Trir) T s .

Thus on o,

d

(22) 7 T = O ulor Rusjs — (ei o + Dor alTh + Toa] )Tl

where r and k go from 1 to n, ax(a(¢)) is constant, and the functions Ry.j o o,
(e; az) o o, and Ty o o, are known. Furthermore, since (D, ¢;)m = 0, at ¢(0),

(23) I;:(0) = 0.

Turning our attention to ‘M, let fye; = ‘e; and fo T = 'T. Thus’e; = 0
for 4 > 'n while ‘e;, - - - , ‘e, is & C” base field on a normal neighborhood of
'm. Writing 'T = > _;2/a/e; , since fx(e:), = ("€:)s , We have

Ty = fx Tp = 2. a:(p)(e:) s
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for 7 summed from 1 to 'n, so
(24) a; ="a;of

’

fors =1, .-+ ,’n. Furthermore,ifl <j<mnandl <r < 'n,

(e))par = (€))p('arof) = (fx(€)p)'ar = ('&;) s atr

S0

(25) (eja:) = (‘efar) o f.

For each s, 7,7 = 1, --- |, 'n, we apply the analysis of the previous paragraph

to ‘M and use equations (11) and (12) to obtain, along the geodesic ‘c = fo g,
d s s

(26) 7 it = 2oilar Riijs — (eian + e al'Th: + Toal)'Ti],

where 7 and k are summed from 1 to ‘n only, and 'T';;(0) = 0.

If either ¢ > 'nor j > ’n, then Dy, fx ¢; = 0 on ¢ since either e; or ¢; is in
K, but by (¢), D., e; is also in K and f«(D,, ¢;) = 0. Thus to show f is con-
nexion preserving at any point on ¢ it is sufficient to show f«(D., €;) = 'D-,, 'e;
when ¢ < 'nand j < 'n. In this case,

f*(Dei 6,') = f*(Zle I‘chz ek) = 2;21 I"}i’ek

. ’ ! . .
while 'D..,/e; = D 1% 'T%’e; , hence we show ;00 = T} 0’ for 4, , and

s < 'n. Since K, the kernel of f4 , is spanned by e/n41, - -+ , €, , the condition
(¢) of the hypothesis implies,

(27) Riijs =0 for k>'n and 4,j,s < 'n,

(28) Tww=0 for r>'n and 4,k < 'n,

(29) Tj =0 for k> 'n and s,j5 < 'n,

(30) %, =0 for r>'n and k¢ < 'n.

For example, to prove (29), De, ¢; = D a '} e, which implies I'j; = 0 for
s < 'nif D,, ¢; in K.

Finally, the conditions (27) to (30) imply that the differential equations
(22) for I'}; are valid when 7 and k are summed from 1 to 'n, provided 7, 7, and
s, are <’n, and thus (22) becomes identical with (26). Thus I';:(¢(?)) =
T5:('a(t)) for all 7, 7, and s, that are <’n, which concludes the proof that f is
connexion preserving.

TuaroreEM 3. Let f be a C° map from a normal neighborhood U of m in M
into 'M such that f(U) s contained in a normal neighborhood of 'm = f(m), let
K denote the kernel of f« at m, and let Q = (fx)m(Mn). Then f is connexion
preserving if and only if the following four conditions are satisfied:

(a) f1is a spray map from m,

(b) f s curvature and torsion parallel invariant along all geodesics emanating
from m and contained in U,
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(¢) there exists a complement N to K such that (fx)n(N) = Q with
DyKc K,R(K,N)N c K, Tor (K,N) c K, and Dx Y in Kif Y in N and
X in K, at dll points of U,

(d) 'Dg(@) < Q on f(U).

Proof. If fis connexion preserving then (a), (b), and (¢) follow as in the

proof of Theorem 2. To prove (d), we fix some notation. Lete;, --- , e, be
base of N and e/,q1, - - -, €, be a base of K as above. Thus @ has dimension
'n with base ey, -+, 'ern. Letw; = ‘e;forj = 1, -+, 'n and extend these
independent vectors to a base v1, - - -, vq of ‘M, where d is the dimension of

'M. Foriandj < 'n,
f*(Dei ei) = f*( leb':l F’]co 6k) = Zl/cil I‘I;l Vg

while Dj‘ e frej = S Thiv. If f is connexion preserving then 'T% = 0
for k > 'n which implies D%(v]) in § for  and j < 'n. Thus’DgQ < @ on
).

Assume now (a), (b), (¢), and (d) hold. As before, if either ¢ > ’'n or
J > 'n, then fx(D.; ¢;) = 0 = "Dy .,(fxe;). Thus our only concern is with ¢
and j < 'n. The condition (d) implies 'T% o fog = 0 for k > ’n, so we must
show I, 00 = T o foo for 4,7, and k < 'n along each geodesic o emanating
from m and contained in U. This will follow by showing equations (22) and
(35) define the same set of differential equations. The condition (c¢) again
implies that the indices of summation r and % in (22) actually go only from 1
to 'n.

Let'T = >_%"a; v: be the C* field defined on U — ['m], where ’U is a normal
neighborhood of ‘m with f(U) < 'U, such that 'T;y) = f«(T,) for p in U.
Thus

(30) UT, 0] = — D i l(v/a) + 2 ima'a;('Thi + "Tia)low
as in (20). Condition (d) implies

(31) "My, =0 for k>'m and r,7<’'n, and
(32) 'Ryip = 0 for k>'n and rdj < n.

To prove (31) notice that "Tor (v, , v;) = D 1 ’Tea vx is in @ only if (31)
holds, and "Tor (v,, v:) = 'D,, v; — 'D,; v, — [v,, v isin @ for r, ¢ < 'n by
(d) and Theorem 1 (which shows @ is integrable). Similarly, (32) follows by
(d) and Theorem 1. Finally, since ‘s = f o ¢ has its tangent ‘T in @ (and fx T
is alwaysin Q), we have ‘ax oo = 0 and (v/ai) o e = Ofor k > 'n and 7 < 'n.
Thus on ‘e, equation (30) holds for k£ and j summing from 1 to 'n.

By (32) 'R('T, v:)v; in @ for i, 7 < 'n, so on ’s,

(33) 'R('T, vi)v; = er=1 ' Ryijs vs = Z;gr—l ar Rrijo v

by (b) and (12). Also on o, (v/ay) o ’c = (e;ax) oo for 4, k < 'n by (25),
thus
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IR('T, ’I);)Dj = IDIT,D” v; — /D[fT,,,i] Vj
= Zs (’T’I‘;;)Us + Zk,r,e(ei Qg + ar,l-‘]:‘i + a, Trik),ras'k Vs
where k, r, and s go from 1 to 'n and 7,7 < 'n. Thus

(35) gt’l‘;i = > % [ Ruijs — (e + 2 r al'Thi + Tral)'Ti]

(34)

on ‘o, where k and r go from 1 to ‘n for ¢, j, and s < 'n, and 'T'j;(0) = 0.
The differential equations (22) and (35) imply I'j; oo = 'T'j; o ‘o for all 4, j,
and s < 'n. Hence f is connexion preserving and Theorem 3 is proved.

3. A global theorem

In this section we use the method of Ambrose (see [1]) to extend the results
in [6]. We will try to keep the notation as much like [6] as possible.

Again let M (dimensionn) and ’M (dimension d) be C* connected manifolds
with connexions D and ‘D, respectively, and assume both connexions are
complete.

We now set up the necessary notation in order to relate broken geodesics in
M to broken geodesics in ‘M. Let k be any integer >0. Let Y} be the set of
finite sequences (ry, :--, r;)—with j variable—where the r; are arbitrary
variable points of R*. Let I,, be a linear map of R* into M,, for a fixed point m
in M. Corresponding to I,, we now define for each y in Y the following four
objects:

(a) a C” broken geodesic ¢, emanating from m,
(b) a point my = m(y) in M,

(¢) amap P, of R*into M),

(d) a C® map exp, : R* — M.

We proceed by inductiononj. Ifj = 1and y = r, then
ory () = expm [tLn(r1)]

fortin [0, | 71 |I, mr, = o7,(| 711]), Ps, is the composite of I,, followed by parallel
translation along o, of M,, into M. , and

eXpy; = €XPmtp © Py, -

Ifj>1landy = (1, ---,r;)isapointof Yiylety = (ry, -+, 7j1). Let
oy be the broken geodesic defined on [0, s + | 7;|], where s = ||+ ---
+ | 7-1 |, such that o, (¢) = oy (¢) if ¢ in [0, s] while

oy(1) = expman [(¢ — slPy (15)] = expy (¢ — )1

iftinfs,s + [r;|]. Letm, = ay(s + | 7;|), Py be the composite of I, followed
by parallel translation along o, of M, into M, , and exp, = €Xpmy) © Py .

For each y in Y} and subspace 4, of M, , let A, denote the distribution
induced on each normal neighborhood of m(y) by parallel translating A,
along geodesics emanating from m(y).
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DeriniTion. A linear map F of M,, into ' M, is curvature and torsion spray

tnvariant if the following condition is satisfied: Choose any base e;, - - - , e, of
M., and let

I.:R"— M,
by I,.(8;) = e; where 6; = (8a1, -+ , 8:») is & unit point in R” (and é&;; is the

Kronecker delta). For each y in Y, let o, be the broken geodesic in M cor-
responding to I, and let ‘o, be the broken geodesic in ‘M corresponding to
I, =Fol,. Fori=1,---,n,let P,e: denote the parallel translate of e;
along g, from m to oy (t), and let 'P/e; be the parallel translate of ‘e; = F(e;)
along ‘s, from ‘m to ‘e, (t). Defining broken C” functions 7' and R, on the
domain of oy s0 equations (9) and (10) hold, the condition we impose is that
equations (11) and (12) should also hold on the domain of ¢, (and ‘s, ).

A computation similar to the one in the lemma in Section 2 will show the
above definition is independent of the base e;, - - - , e, .

With I, , I, , and ¥ = Y, fixed as in the above definition, we notice if y in
Y, then P, is an isomorphism of R" onto M, , and we define the linear map
F, = 'P, o P;" with kernel K, and image @, . Furthermore, let f, be the spray
map 'eXprmay © Fy o (eXpmay) ™ defined from a normal neighborhood U, of
m(y) into a normal neighborhood of ‘m(y). We use this notation in the fol-
lowing theorem.

THEOREM 4. Let M and 'M be complete with M simply connected and let F be
a linear map of M, into "M +,, . There exists a connexion preserving map f of M
wmito 'M such that f(m) = '"m and (fsx)m = F if and only if the following three
conditions are satisfied :

(a) the map F is curvature and torsion spray invariant,

(b) for each y in Y there is a complement Ny to K, in Myqy such that
Fy(Ny) = Qy with

Dﬁ,,KyCKv; R(R,,N,)N, c K,, Tor (K, , N,) c K,,

and D, Z in K, if Z in N, and X in K, , at all points of U, ,
(¢) foreachyinY, /Dé,,(gu) c Qu on f,(Uy).

Proof. 1If fis connexion preserving, then for each y in ¥ f(m(y)) = ‘m(y)
since foo, = 0, , and hence (a), (b), and (c¢) follow from Theorem 3 since
(fe)mey = Fy.

Assuming (a), (b), and (c), we slightly alter the method of Ambrose in [1]
and Hicks in [6] to obtain the map f. We define an equivalence relation, ~,
on the points of Y as follows: y; ~ y. if all three of the following hold:
(1) m(y) = m(ye), (2) 'm(yr) = ‘m(ys), and (3) 'Py, 0 P} = 'Py, 0 Py} .
Let W be the set of equivalence classes of this equivalence relation. Let I de-
note the natural map of ¥ into W, thus I(y) is the equivalence class containing
y. We define maps

e:W—->M and ’¢e: W—'M

by e(w) = m(y) and "e(w) = 'm(y) for any y with I(y) = w (or y in w).
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For each real number § > 0, let
B(s) =[p in R*[p| <3

For each y in Y, let A(y) be a real number >0 such that exp, maps B(A(y))
diffeo onto a normal neighborhood of m(y) contained in U, . Indeed, we re-
define U, to be the image of exp, on B(A(y)). Let I(y) denote the map of
B(A(y)) into W defined by I,(r) = I(y, r) where (y, r) is the element of Y
obtained by placing r immediately after the last non-zero slot iny. A topology
is now defined on W by requiring that each I, , for all y in Y, be an open map
of B(A(y)) into W. Thus the topology has a sub-base consisting of sets of
the form I, A where y in Y and A is an open subset of B(A(y)). We define
B, = I, B(A(y)).

Since expy, is a diffeo from B(A(y)) onto U, and exp, = e o I, , we notice I,
is 1:1 from B(A(y)) onto B, and e is 1:1 from B, onto U, .

LEvMA 1. Both e and 'e are continuous.

Proof. Choose w in W, y in w, and an open neighborhood U of ¢(W) =
m(y). Let A = (exp, U) n B(A(y)). Since exp, is continuous, the set 4
is open in R" and the origin, 0, isin A. Hence I, A is an open set containing
w and e(I, A) < U. Thus e is continuous. If ‘U is a neighborhood of
‘e(w), then let

'A = (‘exp,'U) n B(A(y))

and I, 'A is a neighborhood of w with ‘e(I,/A) < 'U. Thus ‘e is continuous.

LemMmA 2. For each y in Y the map f, s a connexion preserving map of
U, into 'M.

Proof. This follows from Theorem 3 and the hypothesis of Theorem 4.

LemMaA 3. For yy and yz in Y and r1 and 5 in R", let 2 = (y1, m1) and
22 = (Y2, 72) bepoinisin Y with | r: | < A(y:),fori = 1,2, and 21 ~23. Then
there 1is a neighborhood A; of r; with A; C B(A(y:)), for © = 1, 2, such that the
following hold:

(1)  exp,, © exp,, maps A; diffeo onto A,

(2) ifonetakespiin A; , then expy, p1 = expy, pz2implies (y1,p1) ~ (Y2, p2).

Proof. Let q = e(z:) = expy,(r:). The set Uy, n Uy, is open and includes
g. By continuity there exists a real number § > 0 such that

€XPy, (B(7'1 > 5)) c UZ/1 n Ullz )

where B(r;; 8) is the usual metric open ball of radius 6 about 7. Let
Ay = B(r1;0) and let A; = exp,, °exp,, (4:1). Thus conclusion (1) is
satisfied since exp,, is a diffeo on B(A(%1)) and exp;, is a diffeo on Uy, .

We now show f,, = f,, on A = exp,, (41). Since f,,(q) = f,,(q) = "e(2:)
and f,, and f,, are connexion preserving, it suffices to show (fy,)« = (fys)«
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at g, or equivalently, F,, = F,,. But this follows from property (3) of the
equivalence relation since F,, = 'P, o P;}! = 'P,,o P;} = F,, .

To prove (2) of the conclusion, we choose p; in A; with exp,, p1 = expy, s .
Thus m(ys, p1) = m(ys, p2). Since f, = ‘exp,oexp,” on U,, we have

‘m(y1, p1) = ‘expy, pr = fi,(expy, P1) = fu(expy, p2) = ‘m(y:, po).

Hence it remains to show 'P,, o P;} = 'P,, o P;} where x; = (yi, p:) for
1=1,2.

Let v be the geodesic in Uy, from m(z,) to m(y1), and let ’y be the geodesic
in ‘M from ‘m(y) to ‘m(x) which is the reverse of f,, o y. Let P, and
'P., denote parallel translation along v and ’y, respectively. Since fuy 18
connexion preserving,

((fu;)*)m(x1) = IP’7°F1J1°P7 = IP’“/°/P111°P;11°P1 = ’P11°P:11;

and similarly, ((fy,)#)m@y = Py © Ps,. From abovef,, = f,, on A, hence
their Jacobians are equal at m(x1) = m(xs), which completes the proof of the
lemma.

LevmMma 4. FEach I, is continuous.
Proof. The proof is similar to that of Lemma 6 in [1, p. 358].

Lemma 5. For each y, and ys in Y, the mappings I, and I, are C* related,
ie. (I, | (By, n By,)) o I, is C™.

Proof. Choose w in By, n By, with w = I, v = I,, 7. Let A, and A,

be neighborhoods of r; and 7, , respectively, which are related as in Lemma 3.
On Al ,

(Iu_zl | (By, n By,)) 01, = (exp;; | (Uy, n Uy,)) © expy,
and the latter map is C*. Since w is arbitrary the lemma is proved.
LemMma 6. The space W is Hausdorff.

Proof. Let wy and w, be arbitrary points of W with w; # w.. Choose y;
in Y with I(y:) = w: for7z = 1, 2. Since y1 ~ y2, one of the following three
statements must be true: (1) m(y1) # m(y2), (2) ‘m(y1) # 'm(y2), (3)
'Py, o Pyl % 'P,, o Py

If (a) holds, we take disjoint open neighborhoods U; and U of m(y1)
and m(ys), respectively. Let B; = ¢ (U;) for ¢ = 1, 2, and then B; and B,
are open disjoint neighborhoods of wy and ws , respectively. If (2) holds, we
separate w; and we by a similar argument using the map ’e.

Now suppose (1) and (2) are false and (3) is true. Let A be an open sub-
set of 0 in R" such that A < B(A(y:)) for ¢ = 1, 2, and exp,, 4 is a normal
neighborhood of m(y1). Letting I,,(A) = B, we obtain open neighborhoods
B; and B, of w; and w, , respectively, and we show By n B; is empty. If 2
in B; n B, then there exists p1 and p; in A such that z; = (y1, p1) and
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X2 = (Y2, p2) areinz, i.e. x1 ~ . Since the point m(x;) is contained in the
normal neighborhoods U,, (¢ = 1,2) of m(y.), we let ¢ denote the unique geo-
desic in exp,, 4 from m(y:) tom(x1). Also the point ‘m(z,) is contained in a
normal neighborhood of ‘m(y1) = ‘m(y.) since f,(U,) is contained in a normal
neighborhood of m(y) for each y in Y. Let'c be the unique geodesic
‘s = fy, 00 from ‘m(y1) to ‘m(x:). Let P, be parallel translation along o
from m(y1) to m(z1), and let 'P., be the corresponding parallel translation
along ‘c. Notice 'P., is an isomorphism. Thus we have,

P, = P,oP, ,P,, = P,oP,,,'P,, = 'Pryo’'Py,, and 'P,, = 'P,;0'P,,,
as mappings on R". Since @y ~ 25, 'P; 0 P} = 'P,, o P, which implies
'Piy o 'Py, 0 Pyl o Pt = 'Piyo /Py, o Pyt o Poy.

Since P, and 'P., are isomorphisms, we conclude
'Py, 0 Pyl = 'Py, 0 Pyt
which contradicts (3). Thus By n By is empty.
LemmA 7. The space W 1is arcwise connected.

Proof. Let wy = I(0), where 0 is the origin in R". We connect any point
w in W to wy by a continuous curve. Lety = (r;, -+, 1) be in w. Let

a; . [0, 1] - Y
by a;(t) = (r1, -+, rju1, tr;) forj =1, -+ | k, and let

a:[0,k]—>Y
by a(t) = a;(t — j) forj <t <j+ 1. Thenb(t) = (Ioa)(t)fortin [0, k]is
the desired curve with b(0) = wo and b(k) = I(y) = w. To see that b is
continuous, we take f, with j < t, < j + 1 and notice b(t) = Lagq)((t — to)7;)
for tnearty. If i, = 7, then b(¢) = I,y c(t) is the image of a broken straight
line ¢ through the origin in RB" under the homeo I, for ¢ near ¢, .

The lemmas proved above imply that W becomes an n-dimensional con-

nected Hausdorff C* manifold by using the pairs (I, B,) as coordinate pairs
(see [7]). The maps e and ‘e become C° maps of W into M and 'M, respec-

tively. Since e is a local diffeo (from B, to U, for each y), we define a c”
connexion D on W by requiring e to be connexion preserving.

LemMA 8. The map ‘e : W — "M 1s connexion preserving.
Proof. This follows since on B, we have
‘e = 'expyo I, = 'exp,oexp, oe = fyoe
and f, is connexion preserving.

LemmA 9. The connexion on W is complete.
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Proof. Take win W and X in W,,. Let o be the geodesic, defined for all
¢t in R since M is complete, with ¢(0) = e(w) and T,(0) = e« X. Since e is
connexion preserving and a local diffeo, we can lift ¢ to a unique geodesic v
in W with ¢ = e o v, and v will be defined on all of R.

LemMa 10. W s a covering space of M.

Proof. We apply Theorem 3, p. 249, in [6].
We now complete the proof of Theorem 4. Since M is simply connected,

the map e is a diffeo and thus f = ‘ec ¢ ' is a connexion preserving map of
M into ‘M with f(m) = 'm and (fe)m = Fo = F

4. Some applications
In this section we obtain some results using Theorem 4.

TuEOREM 5. Let G and H be connected C” Lie groups with Lie algebras g
and h, respectively. Let F be a Lie algebra homomorphism of g into h. Then
there exists a local homomorphism f : U — H, where U is a normal neighborhood
of the identity ¢ in G with (f«). = F. If G is simply connected, then there
exists a unique homomorphism f of G into H with (f«). = F.

Proof. Let G = M, H = 'M, and let D and 'D be the left invariant con-
nexions. Thus D and ‘D are both C* complete connexions with zero curva-
ture and torsion constant under parallel translation. Let Xi, ---, X, be a
base of g, i.e. each X, is a C” left invariant vector field on G. Since Dy X; = 0
for each vector T tangent to G, each X is a globally parallel field. Letting

Tor (X:, X;) = —[Xi, Xj] = 21 Tin Xi,

we define constant functions T for 7, 7, and k¥ < n. Since F is a Lie algebra
homomorphism,

Tor ('X:,’X;) = —['X:, X)) = 21 Tist ' Xi,

where 'X; = F(X;) for¢ =1, - - - | n, and this holds along each broken geodesic
emanating from the identity in H. Thus F is curvature and torsion spray
invariant.

We may assume the base X, - -+, X, has been chosen s0 X1n41, + -+, X,
span the kernel K of F. Let N be the subspace spanned by X, -+ , X/, .
IfYinNthenY = > ;% a; X, for a; in R, and hence ¥ is a left invariant field.
Thus Dx ¥ = 0isin K for any X. In this case, if Z is a field in K and X is
any vector, then DxZ is in K for Z = Zf‘nH b;X; and Dx Z =
> (Xb)X:. IfZ,inK,and Y,in N, ,let Z and Y be the left invariant
fields generated by Z, and Y, , respectively. Thus

Tor (Zp, Yp) = (Dz Y —-DyZ — [Z, Y])p = '_[Z7 ]p'

But F is a Lie algebra homomorphism, hence F([Z, Y~]) = [FZ, FY] = 0
since Z is in K. Thus Tor (Z,, Y,) isin K,. Since N, and K, have bases
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Xl(m(y))7 Tty X'n(m(y)) and X'n+l(m(y))7 ) Xn(m(y))>
respectively, the conditions of part (b) in Theorem 4 are satisfied.
Let @ = F(g) and let the left invariant vector fields Y1, - -+, Y, be a base

for Q@ (and @, = (Q,), for any pin H and y in Y). If Z and W are fields in
Qy,then Z = DX Xa; Vi, W =2.50;Y;, andD, W = D 5, 50a:(Y:b)Y;
isin @, .

If @ is not simply connected, we apply Theorem 3 to obtain a connexion
preserving map f = expg o F o expg- on a normal neighborhood U of ¢ in G.
If U is not convex, we may choose a normal convex neighborhood of ¢ con-
tained in U and redefine U to be this neighborhood. We show f is a local
homomorphism relative to U. If z, y, and 2y are in U, let Y = expg'y be
the field in ¢ lying in the normal neighborhood of 0 that corresponds to U.
Thuso(t) = x exp (1Y) is the geodesic in U from x to zy, and 'a(¢) = (fo o) (1)
is a geodesic in H with ‘0(0) = f(z) and T',(0) = f«(Y,). But fu(Y,) =
F(Y)sw since f is connexion preserving. Hence ‘o(t) = f(z) exp (tF(Y))
and ‘o(1) = f(zy) = f(z) exp F(Y) = f(x)f(y).

If G is simply connected, we apply Theorem 4 to obtain a connexion pre-
serving map f of G into H which is a local homomorphism by the above para-
graph. For arbitrary « and y in G, we let ¢(¢) be a broken geodesic from e
to y in G. Replacing exp (¢Y) in the above argument by o(¢), we can show
fzy) = f(x)f(y).

We now list three theorems that follow immediately from Theorem 4.
In all three we assume M and 'M are connected C° manifolds with complete
connexions D and 'D, respectively, and M 1is simply connected.

THEOREM 6. Let F be a linear injection of M., into "M+, . There exists a
connexion preserving immersion f of M into ‘M such that f(m) = 'm and
(fe)m = F if and only if the map F is curvature and torsion spray invariant and
for each y in Yaim an , 'Da,(Qy) < @y on £,(U,) where Qo = F(M,,).

Proof. In this case K is zero so condition (b) of Theorem 4 is trivially
satisfied.

TuEOREM 7. Let F be a linear bijection of M,, onto "M, . There exists a
connexion preserving map f of M onto 'M such that f(m) = 'm and (fs)m = F
if and only of the map F is curvature and torsion spray invariant, and in either
case, f 1s a covering map.

Proof. In this case, K is zero and @ = ‘M, so Theorem 4 can be applied
to obtain f. The fact that f is a covering map follows from Theorem 3,
p- 249, in [6].

The next theorem is essentially the main theorem of [6] and can be used to
prove the other theorems in [6].

TurOREM 8. Let F be a linear bijection of M, onto "M, , and let "M be
simply connected. There exists a connexion preserving diffeo f of M onto "M
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with f(m) = 'm and (f«)m = F if and only if F s curvature and torsion spray
imvariant.

Proof. Apply Theorem 7 to get both f and .

5. Geodesic submanifolds

In this section we generalize a theorem due to E. Cartan in [2] and a theorem
of R. Hermann in [5]. Our methods are similar to those used in Sections
2 and 3.

DrriNiTION. Let M be a C* manifold with connexion D. A submanifold
'M of M 1is a geodesic submanifold if and only if there is a connexion 'D on 'M
with 'Dx ¥ = Dx Y for all C” fields X and Y tangent to ‘M.

CoRrOLLARY. A submanifold "M of M is a geodesic submanifold if and only if
D:iz'M < 'M where 'M 1is the tangent distribution to ‘M, i.e. Dx Y 1is tangent
to'M if X and Y are fields tangent to ‘M.

Proof. This follows immediately by letting 'Dx Y = Dx Y.
Notice the image f(M) in Theorems 4, 5, and 6, is an immersed geodesic
submanifold. The Riemannian case of the following theorem is due to Cartan.

TaeoreM 9. Let M be a C”° manifold with connexion D. Choose m in
M, Q a subspace of M., , U a normal neighborhood of m, let W be the normal
netghborhood of 0 wn M, such that exp, maps W diffeo onto U, and let
'M = expn (W n Q). Let Q be the C° distribution defined on U by parallel
translating @ along geodesics emanating from m. Then 'M is a geodesic sub-
manifold of M if and only if R(Q, §)Q < § and Tor (Q, Q) < Q on 'M.

Proof. Assume first that ‘M is a geodesic submanifold and let ‘D be the
connexion on ’M such that 'Dx Y = Dx Y for C* fields X and Y tangent to ‘M.
We show @, = 'M, for p in ‘M. Let Z be in Q, let ¢ be a geodesic in "M
emanating from m and passing through p, and let 7' be the tangent to o.
Extend Z to be a parallel field along ¢ with respect to ‘D, i.e. 'DrZ = 0,
but then Dy Z = '‘DrZ = 0 also, which implies Z is in § along ¢. Thus
Q, ="M, forpin’M. Since’M isgeodesic, Dq § = D.z'M < {. Moreover,
if X, Y, and Z, are in @, for p in ‘M, we can extend them to tangent fields on
'M such that [X, Y] is tangent to ‘M. Hence

R(X,Y)Z = 'Dx'DyZ — 'Dy'Dx Z — 'Dix.r1 Z

isinQand Tor (X,Y) ='Dx Y — 'Dy X — [X, Y]isin Q.

Now suppose R(Q, §)§ < Q and Tor (§,J) < Qon'M. Lete,, - -, e
be a base for @ and extend it to a base e;, - -+ , e, of M, . Extend each e; to
be a C” field on U by parallel translating e; along geodesics emanating from m.
We show again that §, = "M, for pin’M. Leto(t) = exp, tX be the geodesic
in ‘M from m through p. For each i = 1, --- | n let & be the constant field
on M,, induced by e; and let W(1) = (expm) s t(&:)x be the Jacobi field along
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o such that W;(0) = 0 and Dx W, = e;. Since (exp,)« is an isomorphism
at points in W, we can define C™ real-valued functions g:;(¢) on the domain
of o by

(36) Wit) = 2k gu(teda(d)),

and the n by » matrix (g:;(¢)) is non-singular for ¢ ¢ 0. Let T be the tangent
to o, and let T, and Rsj.s be defined by equations (6) and (7). The Jacobi
equations (8) imply, for each u,j =1, - -+ n,

(37) gz; - Z @y 05 Ryion gi; — Z as Toru g:: - Z Qs Telzm grj = 0

where r, s, and ¢ are summed from 1ton, and T = Y a,e,. By hypothesis

(38) Rijps =0 if¢, 75,7 <k and s>k,
and
(39) Tip =0 if4,7 <k and r> k.

Since ocisin M, a, = 0if r > k, and thus forj < k and v > £,
(40) g/t:j - Z Qr Qs Rn‘su gt’j - Z as Tsiu g:a - E Qs T;iu gij = 0

where r and s run from 1 to k& while 7 is summed from k¥ + 1 to n. Since for
j <kandu >k, g.;(0) = 0and g,;(0) = 0, and g,;(¢) satisfy thelinear system
(40) which depends only on g,, for r > k and s < k, we conclude g,;(t) = 0.
Thus forj < k, W;(t) liesin @, , and since Wi(t), - - - , Wi(t) form a base for
"Mow if t # 0, we know 'Mowy = Qo -

The next (and final) theorem of this study was motivated by a sugges-
tion of R. Hermann in [5].

We fix some notation. Let M be a C* manifold of dimension » and let D be
a complete connexion on M. Let m be in M, let @ be a subspace of M,,
and let I,, = P, be a linear injection of R* onto Q, where 0 is the origin in
R*and 2 < k < n. Using this integer k, we let Y = Y, be defined as in the
second paragraph of Section 3, and we use the other notation introduced
there. For eachyin Y, welet Q, = P,(R*), let U, be a normal neighborhood
of m(y), and let @, be the usual distribution induced by @, on U, .

TuroreM 10.  If foreachy in Y, R(Q, ,3,)Q, < @, and Tor (§,,q,) c §,,
then there exists an tmmersed complete geodesic submanifold 'M of M such that

"My = Qyforallyin Y.

Proof. We use a slight modification of the method used to prove Theorem
4. The lemmas we refer to will be the lemmas occurring in the proof of
Theorem 4. Let ~ be an equivalence relation on Y defined by: y1 ~ y; if
m(y) = m(y2) and Q,, = @,,. Let W be the set of equivalence classes of
this equivalence relation, and let I denote the natural map of Y into W.
Define the map e : W — M by e(w) = m(y) for any y such that I(y) = w.

For each real number 8 > 0, let B(3) = [p in R*: |p| < 8]. Foreachy
in Y, let A(y) be a real number >0 such that exp, maps B(A(y)) diffeo
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onto its image M, , and we demand M, < U, . Let I, be the map of B(A(y))
into W defined by I,(r) = I(y,r). Againdefine a topology on W by requiring
that each I, be an open map of B(A(y)) onto its image B, . Since exp, is a
diffeo from B(A(y)) onto M, and exp, = eol,, we know I, is 1:1 from
B(A(y)) onto By and e is 1:1 from B, onto M, , for each y in Y.

The map e is continuous, and this is proved exactly as in Lemma 1 (but
here A is a subset of R*). By Theorem 9 and our hypothesis, for each y
in Y, M, is a geodesic submanifold of M. Changing n to k in Lemma 3,
that lemma is valid in the present case and the new proof need only use the
first paragraph of the old proof. Again, Lemma 3 is used to show each I,
is continuous. Then for each y; and ¥ in Y, the mappings I,, and I,, are C*
related since

(I | (Byy 0 By,)) o Iy = (expy,; | (My, n My,)) o expy,

on the neighborhood A; (see the proof of Lemma 5). The space W is Haus-
dorff by the second paragraph of the proof of Lemma 6. The space W is
arcwise connected by the proof of Lemma 7 (with n replaced by & throughout).

Thus W becomes a k-dimensional connected Hausdorff C* manifold by
using the pairs (I3, B,) as coordinate pairs, and e is then a C* map of W
into M since eo I, = exy, on B(A(y)). Since e is a local diffeo (from B,
onto M,), ¢ is an immersion of W into M. The image ‘M = ¢(W) is an
immersed geodesic submanifold of M since each M, is a geodesic submanifold.
If we define a connexion on W by letting e be connexion preserving then the
proof of Lemma 9 shows W is complete. This proves Theorem 10.

In the Riemannian case, Theorem 4 and Theorem 10 (due to Hermann)
can be modified so the hypothesis only involves a subset Z of Y where
Z = [(r1, ) in Y such that | r, | < A(r1)].

Finally, we remark that Theorem 9 implies the condition (d) in Theorem 4
can be replaced by the condition (d’), where (d’) states for each y in Y,

IR(Q:/ ’ Qy)Qu c Qzl and 'Tor (Qu s Qﬂ) c Qu .
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