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This study is concerned primarily with finding necessary and sufficient con-
ditions for a spray map to be connexion preserving. We now define these
terms. Let M and ’M be connected C manifolds with connexlons D and ’D,
respectively (see references [4] or [7] for undefined terms). Let f be a C
map of M into ’M with Jacobian f.. If X is an element of the tangent spce
Mm and Y is an arbitrary C vector field on a neighborhood of m, then f is
connexion preserving in the direction X, or connexion preserving with respect to X,
if

(1) f,(Dx Y) ’D.,x(f, Y),

where the right side is computed as in [7, p. 142]. If f is connexion preserv-
ing with respect to all vectors X at all points of M, then we say f is a connexion
preserving map. It is easy to show that f is connexion preserving if and only
if f. commutes with parallel translation along C curves. To obtain a spray
map, we choose points m in M and ’m in ’M, let U be a normal neighborhood
of m, let F be a linear map of M, into ’M,, and define

(2) f ’exp, F (exp,)-1
on U. Thus in (2), f maps geodesics in U emanating from m into geodesics
in ’M emanating from ’m via the association of initial tangent vectors pro-
vided by F. Any map of form (2) is called a spray map, and sometimes we
may call it a spray map from m.
The local theorems which provide conditions implying a spray map is con-

nexion preserving are found in Section 2. In Section 3, we use the method of
Ambrose in [1] to obtain a global theorem. Among the applications in Sec-
tion 4, we obtain a differential geometric proof of a classical theorem concerning
homomorphisms of Lie groups. Finally in Section 5, we generalize a local
result of E. Cartan in [2], and then follow a suggestion of R. Hermann to
obtain an existence theorem for geodesic submanifolds of an affine connexion.

This work is a generalization of [6] where a similar study was made under
the restriction that M and ’M have the same dimension. ]3esides extending
the previous results, we believe the methods used in Sections I and 2 illustrate
more clearly the connection between hypotheses and conclusions of the
analytical parts of the theorems involved. In particular, we exhibit clearly
the inference chain from hypotheses about curvature and torsion to Jacobi
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fields to the Jacobian of the exponential to conclusions about parallel transla-
tion.

1. Jacobi fields for affine connexions

In this section let M be a manifold with connexion D, curvature R, and
torsion Tor. Recall, for Coo vector fields X, Y, and Z, on M,

(3) Tor (X, Y) nx Y Dr X [X, Y]

(4) R(X, Y)Z Dx Dr Z Dr Dx Z Dtx,r Z.

Let a be a geodesic in M with tangent field T. Following [8], we define
CJacobi field W along (r to be a field W on a such that

(5) Dr W R(T, W)T - Dr Tor (T, W).

To motivate this definition suppose a(t, w) is a 1-parameter family of
geodesics in M with a0 a, i.e. a0(t) a(t, 0) a(t), (see [7, p. 144]).
Let T a.(O/Ot) and W a.(O/Ow). Then from Section 10.1 of [7],
DrT 0, IT, W] 0, andTor (T,W) DrW- DwT. Thus

R( T, W) T Dr Dw V Dr(Dr W Tor(T,W)),

and W satisfies (5).
Let el, e be a set of linearly independent parallel fields along a with

T e. Any Coo field W on can be represented uniquely in the form
CW ’i=lf e where f are real-valued functions on the domain of

The torsion and curvature tensors induce Coo real-valued functions
and R.k8 on the domain of a by letting

(6) Tor (e, e) T,. e

(7) R(e e)e ,’-R,
Using this notation we prove the following proposition which is exactly
analogous to the Riemannian case.

PROPOSITION 1. A C field W f e is Jacobi along a if and only if

for i 1, n, where the summation index j goes from 1 to n, and the prime
superscript indicates differentiation. A Jacobi field W is uniquely determined
by the vectors W, and (Dr W), at one point m on a. The set of all Jacobi fields
along a is a real vector space of dimension 2n. The set of Jacobi fields along
that vanish at one particular point is a real vector space of dimension n.

Proof. Since the e are parallel, we have Dr W fe and
Dr W " equation (5) becomesfief. Since T e,
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fe R(en, f e)e, -% Dr Tor (e, if e)

:f Rn,, e -q-- Dr( ,sf Tn e)

j,i(f# Rnj,, q- fjT, q- f# T,)e.

Equating coefficients of e yields (8).
The existence and uniqueness theorems concerning solutions to second order

linear ordinary differential equations when applied to (8) will prove the
remaining sentences in the proposition.

In order to connect Jacobi fields with the exponential map in the usual way,
we fix some notation. For m in M and A in M,, let fi_ denote the unique
"constant" vector field induced on M.b by A (see [7, p. 132 and p. 145]).

PROPOSITION 2. Let T and A be any vectors in M. Let

Q [(t, w) in R exp is defined on t( T + wA ],

which is an open set in R2. Let a Q ---> M by

a(t,w) exp t(T q- wA).

Then a is a one-parameter family of geodesics and W (exp.),(tfi_) is a
Jacobi field along each geodesic such that W(O, w) 0 and Dr W(t, O)
exp, fiio A.

Proof. The definition of the exponential map implies a is a one-parameter
family of geodesics which in turn implies W is Jacobi. Finally,

Dr W(t, O) D(t exp, fitr) exp, fi-r + tD(exp, fi),

and evaluating at 0 shows Dr W(t, 0) A.
We remark that conjugate points may be defined as singularities of the

exponential map or in terms of Jacobi fields, as in the Riemannian case.
Indeed, Theorems 3, 4, and 5, in [7, p. 145], are true for general affine con-
nexions and their proofs are identical to the Riemannian proofs given in [7].

2. Connexion preserving local maps
As in the introduction, we let M and ’M be C mmfifolds with connexions

D and ’D, respectively. In general, the prime superscript before letter
will denote an object associated with ’M. This notation is fixed throughout
this section.

CDEFINITION Let be a geodesic in M and let f be a map from a neigh-
borhood of the imuge of into M. The map f is curvature and torsion parallel
invariant along if the following condition is satisfied" Choose any real num-
ber b in the domain of and any base e, e, of M where m a(b).
Let P e denote the parallel translate of e along from m to z(t). Let
’e (f,) e and let ’P ’ f odenote the parallel translate of e along ’
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from ’m %(b) to %(t), for i 1, .-., n. Define C functions T. and
R. on the domain of by letting

(9) Wor (Pt e Pt e) T(t)(Pt e)

(10) R(Pt e Pt el)Pt e R,(t) (Pt e,).

The condition we impose is that the following equations hold on the domain of
(and ’)"

(11) ’Tor Pt e, Pt e) = T(t)(’Pt’e)

Pt e ’Pt’e)’Pt’e R,(t)(’Pt’e,).(12) ’R(’

Some remarks are in order. Notice ’e, e need not be independent.
The following lemmu shows that the definition is independent of the base
e, e at m, nd Theorem 1 will show the definition is independent of the
point m when f is geodesic preserving.

LEMMA. The above definition is independent of the base o, e,, at m.

Proof. Let v, v be ny base t m and let (a.) be the non-singular n
by n matrix of real numbers such that v. a- e. Hence

v f. v _.
aij ei

Letting Tor (Pt v, Pt v) ’= S(t)(Pt v), we find

S t) _,.,.,= a a a

where - U
thau denotes the k, entry in the inverse matrix of the matrix (a).

We now check the condition (11) for the base v, v,

’Tor (’Pt’y, ’P Yj) Er,s ari a,/Tor (’Pt’e. ’Pt’es)
-_,, a,. a Tr(t)’Pt’e

’, S(t)au(’rt’eu)

The computation needed to check (12) for v, v is similar.

TEOE 1. Iff is geodesic preserving and also curvature and torsion parallel
invariant along a geodesic o-, then f is connexion preserving in the direction of z
and f. commutes with parallel translation along o-.

Proof. In normal neighborhood U of ny point m on we cn write

(13) f ’exp, (f.) o (exp)-

since f is geodesic preserving. We restrict the domain of z,so lies in U and
show f. commutes with parallel translation along through this domain. A
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simple finite repetition of the argument will show f, commutes with parallel
translation along between any two points.
By Proposition 2, the fields W (expm),(t) and the fields ’Wi f, W

(’exp,m) ,( ’-e) are Jacobi along z and ’z f z, respectively, for i 1, n.
Define C reM-valued functions g.(t) on the domain of by

(14) W(t) i1 gj(t)(Pte).

Since there are no points a(t) conjugate to m in the normal neighborhood U,
the matrix (g(t)) is non-singular for b(z(b) m). Assuming e is the
tangent to at m, the Jacobi equations (8) imply for r and s 1, n that

(15) gr j Vjr g (R,, + T’,jr)g O,

where

(16) g,(b) 0 and g’,(b) .
Consider the fields Y(t) = g(t)’ ’Pte along for j 1,.. n.

We show each Y. is Jacobi along ’a for

’D’ Y, i " Pt e)g(t)(’

’R(’T, Y,)’T + ’D,r’Tor (’T, Y,)

by (15), (11), and (12). But Yj(b) 0 and (’D,r Y)(b) ’e, hence
Y ’W for each j by the uniqueness of Jacobi fields (Proposition 1). Thus

(17) f,(=g(t)Pte) Y -=g(t)(’Pte)
and since f, is linear and gi.(t) is non-singular for b,

(lS) Pte Pt(f,e).f,(Pte)

This proves the theorem.

COROLLAnY 1. Let M and ’M be C manifolds with connexions D and ’D,
respectively. A C map f of M into ’M is connexion preserving if and only if it
is geodesic preserving and curvature and torsion parallel invariant along all
geodesics.

In the proof of Theorem 1 we only used the fact that f was geodesic pre-
serving to obtain (13). Hence we can sharpen the result by making the as-
sumption that (13) holds, i.e. that f is a spray map.

COROLLARY 2,. Let f be ,a spray map from a normal neighborhood U ofm in M
into ’M. Let ( be a geodesic through m such thatf is curvature and torsion parallel
invariant along . Then f, commutes with parallel translation along .
We now investigate conditions under which spray map is connexion
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preserving. The case in which (f,)m is onto is treated in Theorem 2 while
Theorem 3 covers the general case.

First some notation. If Z is a vector in Mm, let be the C field induced on
each normal neighborhood of m by parallel translating Z along geodesics
emanating from m. If A is a subspace of M, let fi be the distribution (in
the sense of Chevalley [3]) on each normal neighborhood of m generated by
all fields for Z in A. If A and B are C distributions with a common domain
let DAB be the set of all fields Dz X for Z in A and X in B, and define sets
R(A, B)B and Tor (A, B) analogously.

THEOREM 2. Let f ba a C map from a normal neighborhood U of m in M into
’M such that f(U) is contained in a normal neighborhood of ’m f(m), and let
K denote the tcernel of f, at m. Then f is connexion preserving onto a normal
neighborhood of ’m if and only if the following three conditions hold"

(a) f is a spray nap from m,
b f is curvature and torsion parallel invariant along all geodesics emanating

floom m and contained in U,
(c) there exists a complement N to K (i.e. N is a subspace of M, with

Mm N K and N n K 0) such that (f,), maps N onto ’M,, with
D(/) c K, R(K, )) c/, Tor (/, ) c RT, and Dx in if Y in N and
X in , at all points of U.

Proof. If f is connexion preserving then (a) and (b) follow from Corollary
1. Since f, commutes with parallel translation, the kernel of (f,) is/ for
any p in U. If X in K and Y in 2, where N is any complement to K, then
f,(D,p X) ’D.,,(f, X) 0 since f, X 0. Hence Dr X is in K.

If Y is in N, let ’Y (f,)m Y and by Theorem 1, ’x() (f,) : since
parallel translation commutes with f,. Thus if X in K then f,(Dx )
’D ’ 0 since f, X 0 and f, is inbedded in the field ’. (To facilitatef,X

understanding, we include the following example. Let f" Ra---> R by
f(a, b, c) (a, b). Let Y z(O/O) andX O/Oz. ThenDxY O/Ox
(with the standard connexion on each R), and f.(Dx Y) O/Ox. The map
f is connexion preserving since f, clearly commutes with parallel translation.
Indeed, by equation (1), p. 142, in [7],

D,x(f, Y) [(O/Oz)z](O/Ox) + zD],x(O)Ox) O/Ox

since f, X 0. Thus Dx Y is not in the kernel of f, even though X is; how-
ever, Y is not of the type and f, Y depends on z.)

Furthermore, if f is connexion preserving then

f,(R(X, Y)Z) ’R(f, X, f, Y)f, Z
and f, Tor (X, Y) ’Tor (f, X, f, Y).

Hence if X in K then f, X 0, and thus R(X, Y)Z nd Tor (X, Y) are in K
for all Y and Z. Since f is a spray map onto u neighborhood of ’m, (f,) maps
any complement N to K onto ’M,.
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Assume now f satisfies (a), (b), and (c). Since (f,)m maps onto ’M,m it is
clear that f maps onto a normal neighborhood of ’m.

Let el, e,n be a base for N, where ’n is the dimension of ’M, and let
e,n+l, en be a base for K. We write e for the fields on U for
i 1,...,n. Let T _-_aebeaC ’’radial’’ field on V U- [m]
such that T is a tangent field on V to geodesics emanating from m. To be
more explicit, let zi, z be the dual base of linear functionals to e, Ca,
then let

z, o/oz )

onM [0] and T (expm), R on V. By definition then we have Dr T 0,
Dr ei O, Ta 0, and er a are known C functions on V.

Let rk denote the connexion functions on U associated with the base field
el en SO

(19) De. ei kl F. e.

We now develop a system of first order ordinary differential equations, (22),
that determine the functions 1 along a geodesic a emanating from m. Define
C functions R. and T. on U by equations (6) and (7). Then by (3), on
V we have

[T, e] Dr e Dei T Tor (T, e)

(20) -De( a e) ,. ak T e.
(e a)e ,a F, et: , aTe

where sums go from 1 to n. By (4) and (20),

R(T, e)e- DrD e. D Dr e. D[r.] e.
(21)

Thus on a,

(22)

where r and ] go from 1 to n, a(a(t)) is constant, and the functions Ro, o ,
(e a) o a, and Tr a, are known. Furthermore, since (D e.) 0, at a(0),

(23) F;.(0) 0.

Turning our attention to ’M, let f, ei ’e and f. T ’T. Thus ’e 0
for i > n while ’e, ’e,, is a C base field on a normal neighborhood of
’m. Writing’T ..i:=l-’ ,(_.,_.,:, since f. (e), (’e)]() we have

’T() f. T _, a(p)(’e,)()
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for i summed from 1 to tn, so

(24) a ’a o f
fori= 1,...,’n. Furthermore, ifl_<j_<nandl_< r_’n,

(el)par--
SO

(25) (el at) (’elan) o f.
For each s, j, i 1, ’n, we apply the analysis of the previous paragraph
to ’M and use equations 11 and (12) to obtain, along the geodesic ’o. f o o.,

(26)

where r and lc are summed from 1 to ’n only, and ’r(0) 0.
If either i > ’n or j > ’n, then ’D].e f. e. 0 on o. since either e or el is in

K, but by (c), Dei el is also in/ and f.(De ej) O. Thus to show f is con-
nexion preserving at any point on o. it is sufficient to show f.(De ej) D,e
when i _< ’n and j _< ’n. In this case,

f. (De, e) f. 2k=ln r, ek) 2;-n=l rjik tek

towhile ’D,ei’e ’=1 ,-kl,l’k hence we show F. o. Fl for i, j, and
s <_ ’n. Since/, the kernel of f., is spanned by e,n+l, en, the condition
(c) of the hypothesis implies,

(27) R. 0 for /c > ’n and i,j,s_< ’n,

(28) T 0 for r > ’n and i,k_<’n,

(29) I’ 0 for /c > ’n and s,j <_ ’n,

(30) r 0 for r > ’n and k,i_< ’n.

For example, to prove (29), De e Esn_- I’k es which implies r 0 for
s <_ ’n if De e. in

Finally, the conditions (27) to (30) imply that the differential equations
(22) for r are valid when r and/c are summed from 1 to ’n, provided i, j, and
s, are _<’n, and thus (22) becomes identical with (26). Thus I’(o.(t))
’r;(’(t)) for all i, j, and s, that are _<’n, which concludes the proof that f is
connexion preserving.

CTHEOREM 3. Let f be a map from a normal neighborhood U of m in M
into ’M such that f(U) is contained in a normal neighborhood of ’m f(m), let
K denote the kernel of f. at m, and let Q (f.),(M,). Then f is connexion
preserving if and only if the following four conditions are satisfied"

(a) f is a spray map from m,
b f is curvature and torsion parallel invariant along all geodesics emanating

from m and contained in U,
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(c) there exists a complement N to K such that (f,)(N) Q with
Da/ c/, R(R, _) c R, Tor (R, ) R, and Dx in I if Y in N and
X in K, at all points of U,

(d) ’n(() c:: 0 on f(U).

Proof. If f is connexion preserving then (a), (b), and (c) follow as in the
proof of Theorem 2. To prove (d), we fix some notation. Let el, e, be
base of N and e,n+l, e be a base of K as above. Thus Q has dimension
’n with base ’o "", e,n. Letv. %. forj 1,... and extend these
independent vectors to a base v, vd of ’M, where d is the dimension of
’M. For i andj _< ’n,

f..(De ej) f.( =1P e) nP Vk

while ’Dr.e, f. ej = ’FS ve. If f is connexion preserving then ’F 0
for/ > ’n which implies ’nv(v) in O for i and j _< ’n. Thus ’D ( 0 on
f(U).
Assume now (a), (b), (c), and (d) hold. As before, if either i > ’n or

j > ’n, thenf,(D e) 0 ’Df. (f, e-) Thus our only concern is with i
and j < ’n. The condition (d) implies ’F. f 0 for k > ’n, so we must
show P a ’P f a for i, j, and/ <_ ’n along each geodesic emanating
from m and contained in U. This will follow by showing equations (22) and
(35) define the same set of differential equations. The condition (c) again
implies that the indices of summation r and/c in (22) actually go only from 1
to ’n.
Let ’T ’a v be the C field defined on ’U [’m], where ’U is a normal

neighborhood of ’m with f(U) ’U, such that ’T,() f.(T,) for p in U.
Thus

(30) [’ T, v] E:, [(v’a) q- E=, ’a(’P. + ’T)]v

as in (20). Condition (d) implies

(31) ’T 0 for / > ’n and r,i <_’n, and

(32) ’Ro’ 0 for 1 > ’n and r,i,j <_ ’n.

To prove (31) notice that ’Tor (v, v) =,’Tv is in only if (31)
holds, and ’Tor (v, v) ’D v ’Dv v [v, v] is in ) for r, i _< ’n by
(d) and Theorem I (which shows is integrable). Similarly, (32) follows by
(d) and Theorem l. Finally, since’z fozhasitstangent’TinO (andf, T
is always in ), we have ’a 0 and (v’a) ’ 0 for lc > ’n and i _< ’n.
Thus on ’, equation (30) holds for/ and j summing from 1 to ’n.
By (32) ’R(’T, v)vi in ( for i, j _< ’n, so on ’,

(33) ’R(’T, v)v ’n ’n

by (b) and (12).
thus

Also on ’, (v’a) ’( (e a:) r for i,/ <_ ’n by (25),
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’R(’T,v)v. D,rD v D,r, v.
(34)

(’T’F)v + ,,(e a + a’P + a T)’F v

where k, r, and s go from I to ’n and i, j _< ’n. Thus

(35)
dt

r [a, e, ak + ,r
on ’o., where/c and r go from 1 to ’n for i, j, and s _< ’n, and ’F(0) 0.
The differential equations (22) and (35) imply F o O. F. o for all i, j,

and s _< ’n. Hence f is connexion preserving and Theorem 3 is proved.

3. A global theorem
In this section we use the method of Ambrose (see [1]) to extend the results

in [6]. We will try to keep the notation as much like [6] as possible.
Again let M (dimension n) and ’M (dimension d) be C connected manifolds

with connexions D and ’D, respectively, and assume both connexions are
complete.
We now set up the necessary notation in order to relate broken geodesics in
M to broken geodesics in ’M. Let k be any integer > 0. Let Y be the set of
finite sequences (r, r)--with j variable--where the r are arbitrary
variable points of R. Let I be a linear map of R intoM for a fixed point m
in M. Corresponding to I we now define for each y in Yk the following four
objects"

C(a) a broken geodesic O. emanating from m,
(b) a point mu re(y) in M,
(c) a map P of R into Mu,

C R(d) a map expu -- M.We proceed by induction on j. If j 1 and y rl, then

O.r (t) exp, [tI,(rl)]

for in [0, rl I], ml O.,1 (i rl I), Prl is the composite of Im followed by parallel
translation along O.r of M, into M(), and

exprl exp,(r)

Ifj > 1 and y (r, r.) is a point of Y let y’ (rl, r._). Let
a be the broken geodesic defined on [0, s + r I], where s rl+
+ r- I, such that O.(t) O.,(t) if in [0, s] while

O.(t) exp,(u,)[(t s]P,(r)] exp,, (t s)r

if in Is, s -t- r. I]. Let m O.(s -t- r I), P be the composite of I followed
by parallel translation along O. of Mm into M(), and expu exp() o P.
For each y in Yk and subspace A of M(), let denote the distribution

induced on each normal neighborhood of re(y) by parallel translating A
long geodesics emanating from m(y).
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DEFINITION. A linear map F of Mm into ’M,m is curvature and torsion spray
invariant if the following condition is satisfied: Choose any base el, e of
M,, and let

I R’--.-M
by I(/t) e where/t (i, t) is a unit point in R (nd is the
Kronecker delta). For ech y in Y let zv be the broken geodesic in M cor-
responding to I nd let ’v be the broken geodesic in ’M corresponding to
I, F o I. For i 1, n, let Pt e denote the prllel translate of e
along from m to z(t), and let ’Pt’e be the parallel translate of ’e F(e)
along a from ’m to ’z(t). Defining broken C functions T and R,, on the
domain of so equations (9) and (10) hold, the condition we impose is that
equations 11 and (12) should also hold on the domain of (and

A computation similar to the one in the lemma in Section 2 will show the
above definition is independent of the base e, e.
With I, I,, and Y Y fixed as in the above definition, we notice if y in

Y, then P is an isomorphism of R onto M(), nd we define the linear map
F ’P P with kernel K and image Q. Furthermore, let f, be the spray
map exp,() F (exp())- defined from a normal neighborhood U of
re(y) into a normal neighborhood of ’re(y). We use this notation in the fol-
lowing theorem.

THEOnEM 4. Let M and M be complete with M simply connected and let F be
a linear map ofM into ’M,. There exists a connexion presewing map f of M
into ’M such that f(m) m and (f.) F if and only if the following three
conditions are satisfied:

a) the map F is curvature and torsion spray invariant,
(b) for each y in Y there is a complement N to K in M() such that

F N Q with

n R, R(,) R, Tor (, )
and D in ff Z in N and X in at all points of U

(c) for each y in Y, ’Do(O) on h(U).

Proof. If f is connexion preserving, then. for each y in Y f(m(y) ’re(y)
since foz ’, and hence (a), (b), and (c) follow from Theorem 3 since
(f.)(,) F.
Assuming (a), (b), and (c), we slightly alter the method of Ambrose in [1]

and Hicks in [6] to obtain the map f. We define an equivalence relation,
on the points of Y as follows: y y if all three of the following hold:
(1) m(y) m(y), (2) ’m(y) ’m(y), and (3) ’P o p ’p p)
Let W be the set of equivalence classes of this equivalence relation. Let I de-
note the natural map of Y into W, thus I(y) is the equivalence class containing
y. We define maps

e: WM and e: W’M
by e(w) m(y) and ’e(w) ’m(y) for any y with I(y) w (or y in w).
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For each real number > 0, let

B(ti) [p in Rn;Ipl < ].

For each y in Y, let A(y) be a real number > 0 such that expy maps B(A(y))
diffeo onto a normal neighborhood of re(y) contained in Uy. Indeed, we re-
define Uy to be the image of expy on B(A(y)). Let I(y) denote the map of
B(A(y) into W defined by Iy(r) I(y, r) where (y, r) is the element of Y
obtained by placing r immediately after the last non-zero slot in y. A topology
is now defined on W by requiring that each Iy, for all y in Y, be an open map
of B(A(y)) into W. Thus the topology has a sub-base consisting of sets of
the form Iy A where y in Y and A is an open subset of B (A(y)). We define
By IyB(A(y)).

Since expy is a diffeo from B (A(y)) onto
is 1 "1 from B(A(y)) onto By and e is 1:1 from By onto Uy.

LEMMA 1. Both e and ’e are continuous.

Proof. Choose w in W, y in w, and an open neighborhood U of e(W)
m(y). Let A (exp-lU) n B(A(y)). Since expy is continuous, the set A
is open in R and the origin, 0, is in A. Hence Iy A is an open set containing
w and e(IyA) c U. Thus e is continuous. If ’U is a neighborhood of
’e(w ), then let

’A (’exp-l’U) n B(A(y))

and Iy ’A is a neighborhood of w with ’e(Iy’A) U. Thus ’e is continuous.

LEMMA 2. For each y in Y the map fy is a connexion preserving map of
Uy into tM.

Proof. This follows from Theorem 3 and the hypothesis of Theorem 4.

LEMMA 3. For Yl and y. in Y and rl and r2 in R’, let z (y, r) and
z2 (y2, r:) be points in Y with r < A(y), for i 1, 2, and z zs Then
there is a neighborhood A of r with A B(A(y)), for i 1, 2, such that the
following hold"

(1) expy-. expy maps A diffeo onto
(2) if one takes p in A then expy p exp. p. implies y p (ys, p).

Proof. Let q e(z) expy (r). The set Uy n Uy is open and includes
q. By continuity there exists a real number ti > 0 such that

expy (B (rl )

where B(rl; ) is the usual metric open ball of radius about r. Let
A B(rl 0) and let As exp- expy (A). Thus conclusion (1) is
satisfied since expy is a diffeo on B(A(y)) and exp- is a diffeo on Uy..
We now show fy fy on A expy (A). Since fy (q) fy(q) ’e(z)

and fy and fy are connexion preserving, it suffices to show (fy). (fy).
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at q, or equivalently, Fzl F,. But this follows from property (3) of the
equivalence relation since Fzl ’P p-l ’Pz2 P-I F2
To prove (2) of the conclusion, we choose p in A with exp p exp p2

Thus m(y, p) m(y, p). Since f, ’expo exp on U, we have

’m(yl p) ’exp p f(exp p) f(exp p) ’m(y p).

Hence it remains to show ’pop ’p px where x (y, p) for
i= 1,2.

Let be the geodesic in U from m(x) to m(y), and let ’ be the geodesic
in ’M from ’m(y) to ’m(x) which is the reverse of f . Let P and
’P, denote parallel translation along and ’, respectively. Since f is
connexion preserving,

((f),)() ’p, F p ’p, -’popop pop,
and similarly, ((f),)m() P p. From abovef f on A, hence
their Jacobians are equM at m(xl) m(x), which completes the proof of the
lemma.

LEMMA 4. Each I is continuous.

Proof. The proof is similar to that of Lemma 6 in [1, p. 358].

LEMMA 5. For each yl and y in Y, the nappings I and I are C related,
i.e. (I7) (B n B=)) 5 is C.

Proof. ChoosewinB nB withw I,r I=r=. LetA, andA=
be neighborhoods of r and r, respectively, which are related as in Lemma 3.
OnA,

(I (B, n B)) I (expT U, n U)) o exp

and the latter map is C. Since w is arbitrary the lemma is proved.

LEMMA 6. The space W is Hausdorff.
Proof. Let w and w= be arbitrary points of W with w, # w. Choose y

in Y with I(y) w for i 1, 2. Since y, y=, one of the following three
statements must be true" (1)m(y) m(y), (2)’m(y) ’m(y=), (3)

If () holds, we tke disjoint open neighborhoods U nd U of m(y)
nd m(y), respectively. Let B e-(U) for i 1, 2, nd then B nd B
re open disjoint neighborhoods of w nd w, respectively. If (2) holds, we
separate w nd w by similar rgument using the mp ’e.
Now suppose (1) nd (2) re fMse nd (3) is true. Let A be n open sub-

set of 0 in R such that A c B(a(y)) for i 1, 2, nd exp A is normal
neighborhood of n(y). Letting I (A) B, we obtain open neighborhoods
B nd B of w nd w, respectively, nd we show B n B is empty. If z
inB n B, then there existsp nd p in A such that x (y, p) and
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x2 (y2, p) are in z, i.e. xl x. Since the point n(xl) is contained in the
normal neighborhoods Um (i 1, 2) ofm(y.), we let a denote the unique geo-
desic in expy1A from m(yl) to m(xl). Also the point ’m(x) is contained in a
normal neighborhood of ’m(y) ’m(y) since f(U) is contained in a normal
neighborhood of m(y) for each y in Y. Let ’a be the unique geodesic

’ fl from ’m(y) to ’m(x). Let P be parallel translation along
from m(y) to m(xl), and let ’P, be the corresponding parallel translation
along ’. Notice ’P, is an isomorphism. Thus we have,

’pl ’p, ’pv and ’P. ’P, ’Py.PI Po pv, P2 P o Pv2
’p p- ’Px o p- which impliesas mappings on R. Since x x2,

’P,oo ’po p-o p;- ’p,o ’po p-:o p-.
Since P and ’P, are isomorphisms, we conclude

which contradicts (3). Thus B. n B is empty.

LEMMA 7. The space W is arcwise connected.

Proof. Let w0 I(0), where 0 is the origin in R".
w in W to w0 by a continuous curve. Let y

We connect any point.., r) be in w. Leg

a." [0, 1]-+ Y

by a(t) (r, r_, try) forj 1, k, and let

a [0,/] --* Y

bya(t) a(t--j) forj_<t<j+l. Thenb(t) (Ioa)(t)fortin[O,k]is
the desired curve with b(0) w0 and b(k) I(y) w. To see that b is
continuous, we take to withj < to < j -4- 1 and notice b(t) Ia(to)((t to)r)
for near to. If to j, then b(t) I() c(t) is the image of a broken straight
line c through the origin in R" under the homeo I(.) for near to.
The lemmas proved above imply that W becomes an n-dimensional con-

nected Hausdorff C manifold by using the pairs (I-, B) as coordinate pairs
(see [7]). The maps e and ’e become C maps of W into M and ’M, respec-
tively. Since e is a local diffeo (from B to U, for each y), we define a C
connexion b on W by requiring e to be connexion preserving.

LEMMA 8. The map ’Me" W is connexion preserving.

This follows since on B we have

’e ’exp o I ’exp o exp-1 o e f o e

and f is connexion preserving.

LEMMA 9. The connexion on W is complete.
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Proof. Take w in W and X in Ww. Let z be the geodesic, defined for all
in R since M is complete, with (0) e(w) and T(0) e.X. Since e is

connexion preserving and a local diffeo, we can lift z to a unique geodesic 5"
in W with e 5", and 5’ will be defined on all of R.

LEMMA 10. W is a covering space of M.

Proof. We apply Theorem 3, p. 249, in [6].
We now complete the proof of Theorem 4. Since M is simply connected,

the map e is a diffeo and thus f ’e e-1 is a connexion preserving map of
M into ’M with f(m) ’m and (f.)m F0 F.

4. Some applications
In this section we obtain some results using Theorem 4.

THEOREM 5. Let G and H be connected C Lie groups with Lie algebras g
and h, respectively. Let F be a Lie algebra homomorphism of g into h. Then
there exists a local homomorphism f U -- H, where U is a normal neighborhood
of the identity e in G with (f,)e F. If G is simply connected, then there
exists a unique homomorphism f of G into H with (f.)e F.

Proof. Let G M, H ’M, and let D and D be the left invariant con-
nexions. Thus D and ’D are both C complete connexions with zero curva-
ture and torsion constant under parallel translation. Let X1, X be a

Cbase of g, i.e. each X is a left invariant vector field on G. Since DrX 0
for each vector T tangent to G, each X is a globally parallel field. Letting

Tor (Z,, X) IX,, X] = T.X,
we define constant functions T for i, j, and k _< n. Since F is a Lie algebra
homomorphism,

’X] _-1 T. ’XTor (’X, ’X.) X, ,
where ’X F(X) for i 1, n, and this holds Mong ech broken geodesic
emanating from the identity in H. Thus F is curvature and torsion spray
invariant.
We my assume the base X1, X has been chosen so X,,+,, X

spn the kernel K of F. Let N be the subspace spanned by X,, X,.
If Y in N then Y _’n,:= a X for a in R nd hence F is a left invrint field.
Thus Dx F 0 is in K for ny X. In this cse, if Z is field in R nd X is
ny vector, then DxZ is in R for Z ,+bX and D Z
",+ (Xb)X. If Z in R and Y in r,, let Z and Y be the left invriant
fields generated by Z and Y, respectively. Thus

Tor (Z, Y) (Dz Y DrZ [g, Y]) -[Z, Y].

But F is u Lie algebra homomorphism, hence F([Z, Y]) [FZ, FY] 0
since Z is in K. Thus Tor (Z, Y) is in R:. Since . and R: have bases
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Xl(m(y) ), X,,(m(y)) and X,n+(m(y) ), X,,(m(y) ),

respectively, the conditions of part (b) in Theorem 4 are satisfied.
Let Q F(g) and let the left invariant vector fields Y1, Yk be a base

for Q (and ( ()y) for any p in H and y in Y). If Z and W are fields in
Qy, then Z aY, W =[bjY., andDzW i.’=la(Yb)Y
is in Q.

If G is not simply connected, we apply Theorem 3 to obtain a connexion
preserving map f exp. F exp on a normal neighborhood U of e in G.
If U is not convex, we may choose a normal convex neighborhood of e con-
tained inU and redefine U to be this neighborhood. We show f is a local
homomorphism relative to U. If x, y, and xy are in U, let Y exply be
the field in g lying in the normal neighborhood of 0 that corresponds to U.
Thus (t) x exp (tY) is the geodesic in U from x to xy, and ’(t) (f ) (t)
is a geodesic in H with ’r(0) f(x) and T,(0) f,(Y). But f,(Y)
F(Y)() since f is connexion preserving. Hence ’z(t) f(x) exp (tF(Y))
and ’z(1) f(xy) f(x) exp F( Y) f(x)f(y).

If G is simply connected, we apply Theorem 4 to obtain a connexion pre-
serving map f of G into H which is a local homomorphism by the above para-
graph. For arbitrary x and y in G, we let z(t) be a broken geodesic from e
to y in G. Replacing exp (tY) in the above argument by (t), we can show
f(xy) f(x)f(y).
We now list three theorems that follow immediately from Theorem 4.

In all three we assume M and ’M are connected C manifolds with complete
connexions D and ’D, respectively, and M is simply connected.

THEOIEM 6. Let F be a linear injection of M,, into ’M,m. There exists a
connexion preserving immersion f of M into ’M such that f(m) ’m and
(f,),, F if and only if the map F is curvature and torsion spray invariant and
for each y in Yaim (M) ’D(Q) ( on f(Uy) where Qo F(M,,).

Proof. In this case K is zero so condition (b) of Theorem 4 is trivially
satisfied.

THEOnEM 7. Let F be a linear bijection of M,, onto ’M,m. There exists a
connexion preserving map f of M onto ’M such that f(m) ’m and (f,),, F
if and only if the map F is curvature and torsion spray invariant, and in either
case, f is a covering map.

Proof. In this case, K is zero and Q ’M, so Theorem 4 can be applied
to obtain f. The fact that f is a covering map follows from Theorem 3,
p. 249, in [6].
The next theorem is essentially the main theorem of [6] and can be used to

prove the other theorems in [6].

THEOREM 8. Let F be a linear bijection of M, onto ’M,,,, and let ’M be
simply connected. There exists a connexion preserving diffeo f of M onto ’M
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with f(m) ’m and (f.), F if and only if F is curvature and torsion spray
invariant.

Proof. Apply Theorem 7 to get both f and f-1.
5. Geodesic submanifolds

In this section we generalize a theorem due to E. Cartan in [2] and a theorem
of R. Hermann in [5]. Our methods are similar to those used in Sections
2 and 3.

DEFINITION. Let M be a C manifold with connexion D. A submanifold
’M of M is a geodesic submanifold if and only if there is a connexion ’D on
with ’Dx Y Dx Y for all C fields X and Y tangent to tM.

COROLLARY. A submanifold ’M of M is a geodesic submanifold if and only if
D, ’fl ’fl where ’fl is the tangent distribution to ’M, i.e. Dx Y is tangent
to ’M if X and Y are fields tangent to ’M.

Proof. This follows immediately by letting ’Dx Y Dx Y.
Notice the image f(M) in Theorems 4, 5, and 6, is an immersed geodesic

submanifold. The Riemannian case of the following theorem is due to

CTHEORE 9. Let M be a manifold with connexion D. Choose m in
M, Q a subspace of M, U a normal neighborhood of m, let W be the normal
neighborhood of 0 in M, such that exp, maps W diffeo onto U, and let
’M expm (W n Q ). Let be the C distribution defined on U by parallel
translating Q along geodesics emanating from m. Then ’M is a geodesic sub-
manifold of i if and only if R(Q, ) and Tor (Q, )) ) on ’M.

Proof. Assume first that ’M is a geodesic submanifold and let ’D be the
connexion on ’M such that ’Dx Y Dx Y for C fields X and Y tangent to ’M.
We show( ’Mforpin’M. LetZbeinQ, let a be a geodesic in
emanating from m and passing through p, and let T be the tangent to
Extend Z to be a parallel field along with respect to ’D, i.e. Dr Z 0,
but then DrZ DrZ 0 also, which impliesZ is in alongz. Thus
Q, ’M, for p in tM. Since ’M is geodesic, DQ )= D, ’_/[ ). Moreover,
if X, Y, and Z, are in ( for p in ’M, we can extend them to tangent fields on
M such that [X, Y] is tangent to ’M. Hence

R(X, Y)Z ’Dx ’D . Z ’D . ’Dx Z ’Dx,. Z

is in and Tor (X, Y) ’Dx Y ’Dr X [X, Y] is in ).
Now suppose R(), ()( ( and Tor (), )) on ’M. Let e, ..., e

be a base for Q and extend it to a base e, e of M. Extend each e to
Cbe a field on U by parallel translating e along geodesics emanating from m.

We show again that ), ’M, for p in ’M. Let z(t) expm tX be the geodesic
in ’M from m through p. For each i 1, n let g be the constant field
on M,, induced by e and let W(t) (exp,). t()tx be the Jacobi field along
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a such that W(0) 0 and Dx W, e,. Since (expm). is an isomorphism
at points in W, we can define C real-valued functions g,j(t) on the domain
of a by

(36) W(t) ’’- g,(t)e,(cr(t) ),

and the n by n matrix (g.(t)) is non-singular for 0. Let T be the tangent
to a, and let T and Ry, be defined by equations (6) and (7). The Jacobi
equations (8) imply, for each u, j 1, n,

(37) "g,-- arasRr,s,g- asTsr,g,y- a.Tr,g, 0

where r, s, and i are summed from 1 to n, and T a, e,. By hypothesis

(38) Ry,, 0 ifi, j,r_< k and s> k,
and

(39) T. 0 ifi, j_< k and r> k.

Since is in ’M, ar 0 if r > k, and thus for j <_ k and u > k,

(40) "g, aaRr.,g a8 T.,g a, T,,gj 0

where r and s run from 1 to k while i is summed from k q- 1 to n. Since for
j _< k and u > k, g(0) 0 and g.(0) 0, and g,(t) satisfy the linear system
(40) which depends only on g,, for r > k and s _< k, we conclude g-(t) =- 0.
Thus forj <_ k, W(t) lies in O,(t), and since W(t),... W(t) form a base for
’M(o if 0, we know ’M,,(t)
The next (and final) theorem of this study was motivated by a sugges-

tion of R. Hermann in [5].
CWe fix some notation. Let M be a manifold of dimension n and let D be

a complete connexion on M. Let m be in M, let Q be a subspace of Mm,
and let I, P0 be a linear injection of R onto Q, where 0 is the origin in
R and 2 _</ < n. Using this integer k, we let Y Y be defined as in the
second paragraph of Section 3, and we use the other notation introduced
there. For each y in Y, we let Q P(R), let U be a normal neighborhood
of re(y), and let ( be the usual distribution induced by Q on U.
THEOREM 10. Iffor each y in Y, R(Ou ) and Tor (),)

then there exists an immersed complete geodesic submanifold ’M ofM such that
’M,() Q for all y in Y.

Proof. We use a slight modification of the method used to prove Theorem
4. The lemmas we refer to will be the lemmas occurring in the proof of
Theorem 4. Let be an equivalence relation on Y defined by" y y if
m(y.,) m(y.) and Q Q. Let W be the set of equivalence classes of
this equivalence relation, and let I denote the natural map of Y into W.
Define the map e W -- M by e(w) m(y) for any y such that I(y) w.
For each real number > 0,1etB(i) [pinR" Pl < t]. For eachy

in Y, let A(y) be a real number > 0 such that exp maps B(A(y)) diffeo
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onto its image My, and we demand My c Uv. Let Iv be the map of B (A(y))
into W defined by Iv(r) I(y, r). Again define a topology on W by requiring
that each Iv be an open map of B (/(y)) onto its image By. Since expv is a
diffeo from B(a(y)) onto My and expv e o Iv, we know Iv is 1:1 from
B(A(y)) onto By and e is 1:1 from By onto My, for each y in Y.
The map e is continuous, and this is proved exactly as in Lemma 1 (but

here A is a subset of Rk). By Theorem 9 and our hypothesis, for each y
in Y, My is a geodesic submanifold of M. Changing n to k in Lemma 3,
that lemma is valid in the present case and the new proof need only use the
first paragraph of the old proof. Again, Lemma 3 is used to show each I
is continuous. Then for each yl and y2 in Y, the mappings Iv1 and Iw. are C
related since

(I’ (By, Bye)) o Iv (exp- (Mv My,)) o exp,,

on the neighborhood A1 (see the proof of Lemmu 5). The space W is Haus-
dorf by the second paragraph of the proof of Lemma 6. The space W is
arcwise connected by the proof of Lemma 7 (with n replaced by k throughout).
Thus W becomes a /c-dimensional connected Hausdorff C manifold by

using the pairs (/, By) us coordinate pairs, and e is then a C map of W
into M since e Iv exyv on B (/(y)). Since e is a local diffeo (from By
onto My), e is an immersion of W into M. The image M e(W) is an
immersed geodesic submanifold of M since each My is geodesic submanifold.
If we define a connexion on W by letting e be connexion preserving then the
proof of Lemma 9 shows W is complete. This proves Theorem 10.

In the Riemannian case, Theorem 4 and Theorem 10 (due to Hermann)
can be modified so the hypothesis only involves a subset Z of Y where
Z [(r, r2) in Y such that r2 < z(rl)].

Finally, we remark that Theorem 9 implies the condition (d) in Theorem 4
can be replaced by the condition (d), where (d’) states for each y in Y,

’R(()v, v)(v c ()v and ’Wor (v, v) (v.
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