
A VARIATION OF THE TCHEBICHEFF QUADRATURE
PROBLEM

BY

A. MEIR AND A. SHARMA

1. Introduction

The original Tchebicheff problem of quadrature was to find a formula of
the form

(1.1) f_ f(x) dx B() f(x))

with real B(’), and real nodes xi in [-1, 1] such that (1.1) is valid for poly-
nomials of degree _<n. It is well known [4] that Bernstein proved that the
problem has a negative solution if n _> 10. On the other hand the Gauss
quadrature formula

(n)e[(n)(1.2) f(x) dx _, A, .,,,,
i=1

is known to be valid for polynomials of degree _<2n 1, with A) > 0,
-1 < (’) < 1 for all i. In a recent paper, Erd6s and Sharma [2] have shown
hat an mtermedmte" formula of he form

l n--k

[ f(x) dx A()" (’) B (’)
1.3 J(Yi )-t- f(x

i=I =i
(n) B(n)with fixed k, real y), x.), A and cannot be valid in general for poly-

nomials of degree n -t- k, if n is sufficiently large. It was also shown that if
the degree of exactness of a formula of the form (1.3) is N (i.e. there exists a
formula of the form (1.3) valid for polynomials of degree _<N N(n)) then
N(n) <_ Ck /,, where Ck is independent of n.

In this paper we consider the problem of the validity (for polynomials) of
a formula of the form

k n--k

(1.4) I f(x) p(x) dx A(n),v (n) (n) ,,,.(n)
.(y )+B .,f(

=i =I

where p(x) is a non-negative weight function. Although we give a complete
solution of the problem only when p(x) (1 x2) ", a > -1, some of our
results hold for more general weight functions. A special case, when/ 0
has been treated recently by L. Gatteschi [4] who proved that there exists a
constant n0(a) such that if n > n0(a) then for the degree of exactness N of
the formula

(1.5) f(x)(1 x)" dx B(’)

_
f(x

j=l
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we have N < n. We shall obtain here an estimate in terms of n for the degree
of exactness of the more general formula of type (1.4) with p(x) (1 x)",
a> --1.

It is of interest to observe that for a -1/2, a formula of type (1.5) with
degree of exactness 2n 1 does exist"

f_ ( 2j--1 )(1.6) f(x) (1 x)-/ dx
r

f cos
n --1 2n

This is a special case of the general Gauss quadrature formula also valid for
polynomials of degree _<2n 1"

(1.7) f(x)(1 x2) "dx X (() ())
--I

where ) > 0 re the so-called Cotes numbers and n) are the eros of the
Jacobi polynomials P("’")(x).

2. The main theorem
We shall prove the following"

THEOREM 1. Let k be a fixed non-negative integer, p(x) (1 x) ,
a > 1. Then for the degree of exactness N N(n, ], a) of a formula of type
(1.4), we have

(2.1) N < C. n1/(2a+2)

where C C k, a) is independent of n.

As a consequence we can formulate the

ConoLnnv. If a > --1/2, then N o(n) as n -- . In particular, if
N n - k, then there exists an integer no no(a, It) such that n no.

When k 0 and a 0, it is known that no 9. The determination of no
as a function of k and a seems to be more complicated.
Theorem 1 gives an upper bound for the order of exactness N(n) of a

formula of type (1.4). However, we do not know if this is in fact the right
order. A priori, the possibility of N(n) being bounded by a fixed constant is
not ruled out except in the special case a -1/2 where N(n) _> 2n 1. If
we assume some restrictions on the nodes, we are able to show that N(n) is
indeed bounded. This is the subject of Theorems 2 and 3 in 5 which might
be of some independent interest. Theorem 4 in 5 is a generalization of a
lemma of Bernstein.

3. Preliminary lemmas
For the proof of the theorems we shll require number of lemms. For

typographical reasons, we shall write x for x.), y for y) etc. whenever there
is no danger of misunderstanding.
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LEMMA 1. If a formula of type (1.4) is valid for polynomials of degree

_
N,

then B(") > O.

It is easy to see that N > 2k and thus the proof is immediate if we apply
(1.4) to

(x

LEMMA 2. If p(x) p(- X) and a formula of type (1.4) is valid for poly-
nomials of degree _N with certain {Ai}, {yi}, B and {xj}[-, then the same
formula is valid with {A }[ -y,} B and -xj} -.

It is easy to verify that the lemma holds forf(x) xv, 0 _< _< N.

:LEMMA 3. The degree of exactness N N n, k) of formula (1.4) is
(i) a non-decreasing function of n for k

_
1 and

(ii) a non-decreasing function of k for k >_ O.

Proof. Suppose a formula of type (1.4) is valid for polynomials of degree
_<N. Then defining

A+) A") (2_ i_ k), A’+) A(’) -B(")

B(+) B(), x(+) ()
=xj (1 <_j<_n--k),

x(,*+) y(,*), -(,+) y),+- y (1

_
i_ k),

we see that a formula of type (1.4) with n replaced by (n - 1) is valid for
polynomials of degree

_
N and thus N(n, k) is aoa-decreasing ia n; (ii)

defining y+o’(’) x(’).- A+ we see that a formula of type (1.4) with ]

replaced by (k W 1 is valid for polynomials of degree

_
N and thus N(n, k)

is non-decreasing in k.

LEMMA 4. Let Q(x) be a polynomial of degree m satisfying 0

_
Q(x)

_
1

in [-1, 1]. Let L, M be fixed integers and

(3.1) x0-- -1 + Mm-, 1

_ ,_ L,
a point in [- 1, 1]. Suppose Q(xo) 1. Then

a.2 () 1 ) dx >_ C Mm-- >--i,

where C C(L, ) is independent of M and m.

Proof. Since Q(x) Q(xo) o Q’(t) dr, we have from Berasteia’s
inequality for the derivatives of polynomials

Q(x) >_ 1 m xo x I.
Now, for largem, x0 < 0andthus (1 x)" >_ 1/2for-1

_
x

_
x0. So, if

--1 _<xl <x0

(3.3) Q(x) (1 x:)" dx >_ - 1 (Xo x) (1 + x)" dx.
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Choosing xl x0 we get from (3.1) arid (3.3) after some simplifications

jl X2) 1 [ ,+1 (hM)"+2 (XM 1)"+211Q(x)(1 dx >_
2(a + 1)m"+

(kM)
.+2

m+ 1 (XM), 0 < 0 < 1,

> (L, )M
m2a+2

which proves the lemma.

LEMMA 5 (Szeg5) [6, pp. 166, 236, 351]. For a > -1, let < < <
be the zeros of P(x) P"’")(x), and let h) be the corresponding Cotes num-
bers. Then

(3.4) cos (/m + p/m)

where p is uniformly bounded independent of and m;

--a--8/2ma+2(3.5)

where remains between fixed positive bounds independent of and m for
1 m/2,

(3.6) h) 2,+m-,-2

where remains between fixed positive bounds independent of and m for
l ggm/2,

(3.7) max g P(z) (").
LEMMA 6. Let k, K befixed positive integers and p x (1 x) , a > 1.

Suppose a formula of type (1.4) is valid for polynomials of degree N
N(n, k). Let m N/2 and suppose there exists an integer p p(n),
1 < p < K such that in the interval Iv [ + there is no y of formula
(1.4) but there is an x in the znterval Iv +. Then

(3.8) B(n) < C2 N-"-

where C C:(k, K, a) is independent of n.

According to a lemma of ErdOs and TurKn [3] we have

lv(x) + lv+(x) 1 for x(3.9)

where

(3.10) l(x) l(’)(x) P(x)/(x )P’(,).
Since by hypothesis one of the x.’s, suy x, is in I, we have by (3.9)

(3.11) max (I l,(Xl)l, I,+t(x)l >_ 1/2.

To be specific let I(x)l >_ 1/2. Consider the polynomial
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(3.12) fl(x) l(x) II= (x y):(x ,+)-.
Then by Gauss quadrature formul

(3.13) fl(z)(1 x2) ,, ,(),
jp

und since 2m 2 < N, applying formula (1.4) to f(x) and observing that
A(x) 0 and B() > 0

(3.14) (x)(1 z) dx _>, (x).

From (3.13) and (3.14)

(3.15) B -’-" k(x)"

Now, by (3.10) and (3.12) we have after simplification for p

where
h, i,,=,+ (x, 5). .=,,,, (,

By (3.5),forp j p+k

P:()/P:()l c(, K, a).

Also, since y, I, one obtains easily on using (3.4)

+ c=(, K, )y,
1

x, y x y
an similarly

ca(, K, a).

Combining the above inequalities and (3.11) we get

k()/f(x,) c(k, K,

whence from (3.6) and (3.15)

B(") c(, K, a)m-="-.
Since m N/2, the statement of the lemma is immediate.

LEMMA 7. Let p(x) (1 x)", a > --1 and let be a fixed non-negative
integer, k > }a. Suppose a formula of type (1.4) is valid for polynomials of
degree N and let m N/4. Then there exists a fixed positive integer inde-
pendent of n and an integer mo such that for m _> mo in each interval I(),_

,+, < p < 6, there is an x or a y of formula (1.4).

Proof. Suppose the lemma is false. Then there exists an infinite sequence
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of integersr, with r -- and for each r a sequence mr,8 with m,8 --, such
that ir the corresponding intervals T(mr") there is ro xi or y of formula (1.4).tr,$t

For simplicity of printing we shall omit the subscripts r and s in the rest of
the proof.

Consider now the polynomials of degree _< 2m 2

(3.17)
f(x) Z(x) l((x- y.)( +)t5-1 (x ,+i)(, y’)

It is easy to see that

(3.18) h(x) < v -t- ’ -t- (- )
x

Then by (3.4) for 1 _< j g k we have
--2I+ -< c,(, ,)p.,

and if x I.v,, then for 0 < j _< k we have

x v+" >-- c(k, a)pg. m-:,
and thus by (3.18)

--1(3.19) h(x)l

_
cs(k, a) x . Iv,,.

Also by (3.4), (3.5) and (3.7) for x I,

(3.20) lv(x) <_ C9(k,

where the last inequality follows from p < 6k#. From (3.17), (3.19) and
(3.20)

)t-2k+23-1(3.21) f2(x) _<

Now we observe that the function f2(x) is non-negative on [-1, 1] and that
fort <pand>pA-k

(3.22) f2() 0.

On the other hand from (3.4) and (3.5) it follows easily as before

(3.23) f2(v+’) _< c,(k, a), 0 <_ j <_

By (3.21) f(x) < 1 for x Iv,,, if g is sufficiently large. Since fi.(v) 1,
the maximum of f(x) in [-1, 1] is attained at some point x0 e Iv,,. Obvi-
ously fi.(xo) > 1 and x0 -1 -f- hgm- with some h, 1 _< h _< k + 1.

Let f(x) (f(x)) (f2 (x0))-2. Then f(x0) 1 and thus by Lemma 4,

(a.) (z)( z) a >_ e(, ).. m-"-’.
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OI1 the other hand, since we may apply formula (1.4) tofa(x), we have

x2)" B() -fa(x)(1 dx
--1

(3,25)

__
B(n) Z (f2(x.))

n-k

< c(, .)-/"-.()

where the last inequality follows from (3.21) on using the fact that xj I..
Applying formula (1.4) and Gauss quadrature formula to f2(x), using (3.6),

(3.22) and (3.23)

f
n--k

f(x) (1 x2)" dx S() Z f2(x) ^+(3.26) 5-’-1 -’0__
14"(], a) tt

23+1 m-23-2.
Hence from (3.24), (3.25) and (3.26) we have

--2k+33C1(1, O)

__
12

Since 2k > 3a by hypothesis, the last inequality is impossible for sufficiently
large u. This contradiction proves the lemma.

4. Proof of Theorem
We shall prove the theorem for/ >_ 1. The statement of the theorem for

the case k 0 is an immediate consequence of formulas (11) and (13) of
Gatteschi’s paper [4], and of formula (3.6) of this work.

33 Also, by LemmaIf k >_ 1, by Lemma 3(ii) we may assume that k >
3(i) it is sufficient to prove the theorem when lim, N(n)

Let n be a sufficiently large integer and let N(n) be the degree of exactness
of a formula of type (1.4). Let be the integer whose existence was proved
in Lemma 7, and m <_ N/4. Consider the/ 1 intervals

(m)I(.,+a)(+1).,+1 ( 0, 1, k) where Ii,j

Then clearly at least one of these intervals is free of the y’s of formula (1.4)
under consideration. Suppose this happens for u u. Then consider the

() which is a fortiori free of y’s and thus by Lemma 7,subinterval (2+)(+) ,
must include at least one of the x’s, say x.
But then for x all the conditions of Lemm 6 are satisfied with

K= (2k+2)(u+l). Hence by (3.8)

(4.1) B(")

_
Ca(k, a)N-"-.

o(",") (X) then from the minimiza-If/, is the coefficient of x in Psi(x) -tion property of these polynomials, we have on using formula (1.4)
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P2(x)(1 x2)" dx < f_ (x yi)(1 x)" dx
i-----1_

B() (n /c)2.
From (4.1) and (4.2)

whence
(n )N-"-: > C(, )

N <_ C5(], a)n1/(2a+2)

which concludes the proof of Theorem 1.

5. Distribution of nodes
We now turn to the result briefly indicated in 2 that if we assume certain

restrictions on the nodes of a formula of type (1.4), then N is bounded.
More precisely we shall prove

THEOnEM 2. Let > 0 be fixed and let I be any subinterval of [-1, 1] of
length . Suppose p x of formula (1.4) satisfies

(5.1) f p(x) dx >_ > o

and suppose that I is free of the nodes xi’s and y’s of a formula of type (1.4).
Then there exists an integer No No(k, ) such that the formula (1.4) fails to
be valid in general for polynomials of degree >_ No.

Proof. Let x0 be the midpoint of I and denote the zeros of the Legerdre
polynomials Pv(x) of order N by / (1 _< k _< N), 70 -1, vN+I 1.

Suppose the formula (1.4) is valid for polynomials of degree 4N A- 4/ A- 2
and that N is so large that

]p+l VP --< i/6 where
Set

(5.2)

where

F(x) w(x) ,,_, </3 rN) (x)

k

() II (- )
i=1

(5.3) (N)(x) I x2 1 Pn(x) t’r
1-- V2 (x w)P’(W)

1<_ <_N

rg)(x) 1-t-x .() 1 x
i+1

22
PN(x) (x) P(x)

The polynomials r)(x) have been defined by Egervry and Turn in the
study of the stability problem of a interpolation process. From one of their
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results in [1] we obtain

(5.4) lx-,,l>,16 rN)(x) < c16()N-1

uniformily in --1 _< x _< 1, and
X7’+ oN> (x) 1.(5.5) ..,=o

Since x x /6 nd x , /6 together imply x0 /3,
we hve from (5.4) nd (5.5)

) )( N(5.) f(x) (x) _/ (x) (/3 - c() ).

On the other hnd, since x Xo > /2 nd Ix0 /3 together imply
x /6, we hve gin from (5.4) nd (5.5) that for Ix x0 > /2,

(5.7) F(x) < (x) _,>/rV)(x) %()-.
Also by (5.5), we hve

(5.8) F(x) 2

unifory in 1 x 1. Applying the formul (1.4) to F(x), we get
from (5.8),

Since, by hypothesis, zi zo[ > /2, 1 N j N k, i follows from (.7)
on applying 1 A) o F (z)

(.10)

%()- f().

Combining (5.9) and (.10), we ge

(.11) N(z)p() dz e(, )-.

On ghe ogher hand ig follows from (g.6)

(5.12) . (/a)(1 c()N-)
so ha from (g.ll) and (.12), we have

Cl,(, )- .(/a)(1
which is obviously impossible if N is suNeiengly large. his eongradieion

proves ghe heorem.
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Let p > 0 be fixed and let I.p be any closed subinterval of length 2p in
[-1, 1]. Let I’ be a subinterval of Isp having the same midpoint and of
length 2/3, _< p. We can now formulate

THEOREM 3. Suppose p x >_ O, -1 f, P x dx <_ c17 Suppose aformula
of form (1.4) holds for polynomials of degree 2N + 2 + 1, N N(n) and
denote by () the number of xj’s in I’. If y t I2 (1 <_ i <_ ]) then there
exist constants c lc p) and No l such that

(5.13) ()/n >_ c(]c, p) implies N(n) <_ No(k, ).

Proof. Let x0 be the midpoint of I and therefore also of Ir.
formula (1.4) to the polynomial F(x) given by (5.2), we have

--k

F(x)p(x) dx B(’) ., F(x)
"I

(5.14) >_ B(’) F(x)
I-zol

_> B(’). (5p/6)2. (1 C16()--1)()

Applying

where the last inequality follows from the inequality p >_ and from (5.4)
and (5.5).

(5.15)

On the other hand, from (5.7) and (5.8) we have

F(x)p(x) dx fo-l <_/2
-l- f F(x)p(x) dx

xo--xl>/2

<_ f, p(x) dx + 2:c1()N-1

o-zl _</2

< 2(c + c()N-i).

Also it is easy to see directly (or from the theory of orthogonal polynomials)
that there exists a constant cs(]) such that

f()p() dx > c().

Hence from formula (1.5)

(5.16) c8(k,)

_
B() ’.- (x)

_
B(’).(n k).2.

Combining (5.14), (5.15) and (5.16) we see easily that if N is sufficiently
large then t()/n < c(k, p), which completes the proof of the theorem.

Remark. The number 3()/2ni is, in a way, the relative density of the
x.’s in I’. This theorem shows that if the relative density of the x/s is too
high in a certain interval then a formula of the type (1.4) cannot be valid for
polynomials of very high degree. In this sense Theorem 2 and 3 are comple-
mentary.
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Bernstein’s proof of the impossibility of Tchebicheff quadrature for n >_ 10
is based on a lemma which shows that the smallest node x( is smaller than
the smallest zero of the Legendre polynomial of order m, m [(n 1)/2].
An analogous result holds for the more general formula (1.4) and is formu-
lated in

THEOREM 4. Let p(x) >_ > 0 and suppose a formula of type (1.4) is valid
for polynomials of degree <_ 2m 1. Then for m >_ mo, mo too(k) we have

(5.17) rain (x(), ,_) <
where -1 < () < () < < () < 1 are the zeros of the m orthogona
polynomial Q,(x) with weight function p(x) on [- 1, 1].

Proof. We shall omit the superscripts of x(’), y(’) and (’) where the in-
tention is clear.

By Lemma 2, we may assume without loss of generality that

(5.18) y >_ 0 for i _> [k/2] -{- 1.

In this case we shall show that xl < ’k. Set

R(x) (x )Q,(x) I-, (x y,)(x t,)-
(5.19)

S(x) R(x) (x k) - 2 -1 (, y)}Q(x).
Then S(x) is a polynomial of degree 2m 1, so that by Gauss quadrature
formula and by (5.19),

k--1

S(x)p(x) dx =. ()

since S(i’) R(’i) for 1 _< i _< m. Also from (5.19) it is easily seen that
A(m)R() 0,1 <i< /c 1 and since. >0foralli, wehave

(5.20) S(x)p(x) dx < 0

By a theorem of ErdSs aad Tura [6, Theorem (6.11.1) p. 111], it follows
that limo i’( -1 for fixed 9. Then if m _> m0 mo(k), we have
() < -2/3 for i

_
i

_
k. Thus from (5.18), we get for k _> 1,

(5.2) - + 2 _, (r- y) < -(2 ) + 2[/2] < o.
Observing that

xQ,(x)p(x) dx 0

we obtain from (5.19), (5.20) and (5.21) that

f_ R(x)p(x) dx < O.
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Hence using formula (1.5),

R(x)p(x) dx B(’)

_
R(x) < O.

j------1

Since by Lemma 1, B(n) > 0 we have for some j, R(x) < O. But R(x) > O,
if x > , so that x < and a fortiori x < , which completes the proof
of the theorem.

5. Remarks
The above method caa be modified to show that aot ull the x’s and y’s

can be real if the quadrature formul of form (1.4) is to hold. Aaalogous
problems for aa iafiaite iaterwl with k 0 have beea iavestigated by Ullman
[7] aad Wilf [8]. Aa exteasioa of their results for a geaeral remains open.
A further possible extensioa of our result could be the case whea k(n)
teads to infinity at a certaia rate. To these aad related problems we propose
to return later.
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