A VARIATION OF THE TCHEBICHEFF QUADRATURE
PROBLEM

BY
A. MEIR AND A. SHARMA

1. Introduction

The original Tchebicheff problem of quadrature was to find a formula of
the form

1 n

(11) [ 5@ @ = B % 1)
1 i=

with real B™, and real nodes z{™ in [—1, 1] such that (1.1) is valid for poly-
nomials of degree <n. It is well known [4] that Bernstein proved that the
problem has a negative solution if n > 10. On the other hand the Gauss
quadrature formula

1 n
(12) [ @) @ = 2 495
is known to be valid for polynomials of degree <2n — 1, with AM > 0,
—1 < &™ < 1foralli. Inarecent paper, Erdss and Sharma [2] have shown
that an “intermediate” formula of the form

1 k n—k
(13) [ ) do = 3 4L + B X f(af)
_ = pe=

with fixed k, real 5™, 25, 4™ and B™ cannot be valid in general for poly-
nomials of degree n + k, if » is sufficiently large. It was also shown that if
the degree of exactness of a formula of the form (1.3) is N (i.e. there exists a
formula of the form (1.3) valid for polynomials of degree <N = N(n)) then
N(n) < Cx v/n, where C; is independent of n.

In this paper we consider the problem of the validity (for polynomials) of
a formula of the form

1 k n—k

a8 [ 1@ p) & = 3 AP + B Z )

where p(z) is a non-negative weight function. Although we give a complete
solution of the problem only when p(z) = (1 — 2%)% a > —1, some of our
results hold for more general weight functions. A special case, when k = 0
has been treated recently by L. Gatteschi [4] who proved that there exists a
constant no(a) such that if n > ny(a) then for the degree of exactness N of
the formula

(15 [ 1)1 = &) de = B 3 staf?)
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we have N < n. We shall obtain here an estimate in terms of n for the degree
of exactness of the more general formula of type (1.4) with p(z) = (1 — 2%)%,
a > —1.

It is of interest to observe that for « = —3%, a formula of type (1.5) with
degree of exactness 2n — 1 does exist:
1 n .
o 2\—le _T 2 —1
(1.6) f_lf(x)(l )7 dx - ’glf<cos o 7r> .

This is a special case of the general Gauss quadrature formula also valid for
polynomials of degree <2n — 1:

() [ 1@a =2 @ = EACSE)

y—

where A\ > 0 are the so-called Cotes numbers and .Eﬁ") are the zeros of the

Jacobi polynomials P ().

2. The main theorem
We shall prove the following:

TuEOREM 1. Let k be a fized non-negative integer, p(z) = (1 — 2°)%
a > —1. Then for the degree of exactness N = N(n, k, @) of & formula of type
(1.4), we have

(2.1) N < ¢ .0t
where C = C(k, &) s independent of n.
As a consequence we can formulate the

CorOLLARY. If @ > —3%, then N = o(n) as n — . In particular, if
N = n + k, then there exists an integer ng = no(a, k) such that n < ny .

When k = 0 and « = 0, it is known that ny = 9. The determination of ne
as a function of k& and « seems to be more complicated.

Theorem 1 gives an upper bound for the order of exactness N(n) of a
formula of type (1.4). However, we do not know if this is in fact the right
order. A priori, the possibility of N(n) being bounded by a fixed constant is
not ruled out except in the special case « = —3% where N(n) > 2n — 1. If
we assume some restrictions on the nodes, we are able to show that N(n) is
indeed bounded. This is the subject of Theorems 2 and 3 in §5 which might
be of some independent interest. Theorem 4 in §5 is a generalization of a
lemma of Bernstein.

3. Preliminary lemmas

For the proof of the theorems we shall require a number of lemmas. For
typographical reasons, we shall write z; for x§"), y; for yﬁ") etc. whenever there
is no danger of misunderstanding.
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Lemma 1. If a formula of type (1.4) is valid for polynomials of degree <N,
then B™ > 0.

It is easy to see that N > 2k and thus the proof is immediate if we apply

(1.4) to
f@) = 14 (2 = v
Lemma 2. If p(x) = p(— z) and a formula of type (1.4) is valid for poly-
nomials of degree <N with certain {A}Y, {y}}, B and {x}T™", then the same
formula is valid with {A 3%, {—yii, B and { —x}i™
It is easy to verify that the lemma holds for f(z) = 2’,0 < v < N.

LeMMA 3. The degree of exactness N = N(n, k) of formula (1.4) s
(1) @ mon-decreasing function of n for k > 1 and
(ii) @ non-decreasing function of k for k > 0.

Proof. Suppose a formula of type (1.4) is valid for polynomials of degree
<N. Then defining
A§n+1) = A(n) (2 < 7: < k) A{n’*‘l) = Ag.n) . B(n)
13 - — 3
B(n+l) — B(n) x(;_H-l) — xf"'n) (1 _<_j S n — k),
i = i, g =Y A1 <i< k),

we see that a formula of type (1.4) with n replaced by (n + 1) is valid for
polynomials of degree <N and thus N(n, k) is non-decreasing in n; (ii)
defining yiH = %%, A,‘Jii B™ we see that a formula of type (1.4) with k
replaced by (k + 1) is valid for polynomials of degree <N and thus N(n, k)
is non-decreasing in k.

Lemma 4. Let Q(x) be a polynomial of degree m satisfying 0 < Q(z) <1
wm [—1,1]. Let L, M be fixed integers and

(3.1) zo = —1 4+ AMm™, 1<ALL
a point in [—1, 1].  Suppose Q(xo) = 1. Then

)

(3.2) f Q) (1 — )% do > Co Mm%, a> —1,

where C; = Cy(L, a) is independent of M and m.

Proof. Since Q(z) = Q(x0) — [z Q'(t) dt, we have from Bernstein’s
inequality for the derivatives of polynomials

Qz) >1 —m |z — 2.
Now, for large m, o < 0 and thus (1 — z)® > for —1 <z < 2. So, if
-1 < Xy < o

(3.3) f Qz)(1 — 2" dz > %f {1 — m* (@ — 2)}(1 + 2)* da.
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Choosing z; = 2o — m ° we get from (3.1) and (3.3) after some simplifications

f_iQ(x)(l = ___l__[(kM)aﬂ _ M) — (M — 1)“+2]

= 2(a + 1)mzet? at2
1 6 \*
>0 7 a
e (1 xM) OM)*, 0<6<1,
Ci(L, ) M*
Z m2at2

which proves the lemma.

LemMa 5 (Szegd) [6, pp. 166, 236,351]. Fora > —1,lett < < -+ < fn
be the zeros of Pu(z) = P& (z), and let \™ be the corresponding Cotes num-
bers. Then

(3.4) & = cos (vm/m + p,/m)
where p, 1s uniformly bounded independent of v and m;
(3.5) | Pa(&)] = vy ime*

where v, remains between fixed positive bounds independent of v and m for
1 <»<m/2

(3.6) >\§m) =5, V2a+1m—-2a—2

where 8§, remains between fized positive bounds independent of v and m for
1< »<m/2,

(3.7) max < | Pu(z)] = ("2%).

LemMA 6. Let k, K be fixed positive integers and p (z) = (1 — )% o > —1.
Suppose a formula of type (1.4) is valid for polynomials of degree <N =
N(n, k). Let m < N/2 and suppose there exists an integer p = p(n),
1 < p < K such that in the interval I, = (£ | £5m,] there is mo yi of formula
(1.4) but there is an x; in the interval 1 » = [t Em). Then

(3.8) B™ < C, N7
where C; = Cu(k, K, ) is independent of n.

Proof. According to a lemma of Erdos and Turan [3] we have

(3.9) L) + l(z) > 1 for z el
where

(3.10) L(z) = 157 (@) = Pu(2)/(z = &)Pn(%).

Since by hypothesis one of the z,’s, say x5, isin I », we have by (3.9)
(3.11) max (| (x|, | La(@)] 2 3.

To be specific let | I,(x;)] > 3. Consider the polynomial
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(3.12) fi@) = L) [T (& — 9)' (@ — &)™
Then by Gauss quadrature formula

1 ptk
(3.13) [ 2@ = ae = £ 2,

and since 2m — 2 < N, applying formula (1.4) to fi(x) and observing that
fi(z) > 0 and B™ > 0

(3.14) [ @1 = 7 @ > B e,
From (3.13) and (3.14)
(3.15) B < E A Jiléi) fi(&)
i=p» fl(ﬁ?l)
Now, by (3.10) and (3.12) we have after simplification forp < j < p + k
A& _ 4_(%@_)2 : (sj — yy>2. .
(816) e~ B \Faen) M a=y) &

where
A= 1050 (= )% T (& — 807
By 35),forp <j<p-+k
| Pn(£)/Pu(t)| < a(h, K, a).
Also, since y, ¢ I, , one obtains easily on using (3.4)

EJ -

Xy — yv

< + < Cz(k K a)

— yv
an similarly
Aj S Cs(k, K, a).

Combining the above inequalities and (3.11) we get
HED /(@) £ alk, K, a),
whence from (3.6) and (3.15)
B™ < ¢k, K, a)m™",
Since m < N/2, the statement of the lemma is immediate.

LemMa 7. Let p(z) = (1 — 2°)% a > —1 and let k be a fized non-negative
integer, k > $a. Suppose a formula of type (1.4) is valid for polynomials of
degree <N and let m < N/4. Then there exists o fixed positive integer u inde-
pendent of n and an integer my such that for m > mo in each interval I =
£, £ u < p < 6k, there is an x; or a y; of formula (1.4).

Proof. Suppose the lemma is false. Then there exists an infinite sequence
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of integersu, , with u, — o« andfor each r a sequence m, , with m, , — © such
that in the corresponding intervals I5"%) there is no z; or y; of formula (1.4).
For simplicity of printing we shall omit the subsecripts 7 and s in the rest of

the proof.

Consider now the polynomials of degree <2m — 2

= L(2)- ,1.11 hi ().

(3.17)

It is easy to see that

Eoti — &
Ep+1 b — Y;

Then by (3.4) for 1 < j < k we have
| Ep4s — & | < co(k, a)p-m™
and if ¢ ¢ I, , then for 0 < j < k we have

n (Epri — £0)°

318 h <'Ep+.1 .
( ) ‘ J(x)l |x—$p+j|!$p—yil

+

|2 — Epes| = ek, a)pu-m™,
and thus by (3.18)

(3.19) | hi(@)| < es(ke, a)n™, zelpy.
Also by (3.4), (3.5) and (3.7) forz ¢1,,,
(3.20) () < ook, a)p™u™ < ciolk, @)™

where the last inequality follows from p < 6ku. From (3.17), (3.19) and
(3.20)

(3.21) fo(z) < eulk, )™ zelyu

Now we observe that the function fy(x) is non-negative on [—1, 1] and that
forv <pandv>p-+k

(3.22) fa(&) = 0.
On the other hand from (3.4) and (3.5) it follows easily as before
(3.23) Fo(bpti) < en(k, @), 0<j<k

By (3.21) fo(x) < 1 for z ¢1I,, if u is sufficiently large. Since fa(¢,) = 1,
the maximum of fo(z) in [—1, 1] is attained at some point zo € I,,. Obvi-
ously fa(zo) > land @ = —1 + Aum ™ with some \, 1 < A < k + 1.

Let fs(z) = (fo(2))’(fa(20))™>. Then fs(x,) = 1 and thus by Lemma 4,

(3.24) /_11 fo(x)(1 — 2" dz > cw(k, a)u® m>*%
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On the other hand, since we may apply formula (1.4) to f3(x), we have

1 n—k
[ #@ 1 =) de = B X fiws)

(3.25) < BV Y (hla)

n—k

S Cu(k,a),u—%-’-%—-l'B(") z:l fz(wj)
=

where the last inequality follows from (3.21) on using the fact that x; ¢ [, .

Applying formula (1.4) and Gauss quadrature formula to f2(x), using (3.6),
(3.22) and (3.23)

L@ = 2 do = B ) = A, hleor)

S 014‘(’0, a)“2a+l m-—2a-—2.
Hence from (3.24), (3.25) and (3.26) we have

Clﬁ(k, a) S #—%+3a'

(3.26)

Since 2k > 3a by hypothesis, the last inequality is impossible for sufficiently
large u. This contradiction proves the lemma.

4. Proof of Theorem 1

We shall prove the theorem for k > 1. The statement of the theorem for
the case k = 0 is an immediate consequence of formulas (11) and (13) of
Gatteschi’s paper [4], and of formula (3.6) of this work.

If £ > 1, by Lemma 3(ii) we may assume that k¥ > $a. Also, by Lemma
3(i) it is sufficient to prove the theorem when lim,., N(n) = «.

Let n be a sufficiently large integer and let N(n) be the degree of exactness
of a formula of type (1.4). Let u be the integer whose existence was proved
in Lemma 7, and m < N/4. Consider the k 4+ 1 intervals

¢
ISmeinun (»=0,1,--- k) where I{7 = [£) £

Then clearly at least one of these intervals is free of the y.’s of formula (1.4)
under consideration. Suppose this happens for » = »;. Then consider the
subinterval I{3" 11y us1),« which is a fortiori free of y,’s and thus by Lemma 7,
must include at least one of the x,’s, say x .

But then for z; all the conditions of Lemma 6 are satisfied with
K = (2k+2)(n+1). Henceby (3.8)

(4.1) B™ < Cy(k, a)N72*72

If 8. is the coefficient of z* in Py () = Pz '“)(x) then from the minimiza-
tion property of these polynomials, we have on using formula (1.4)
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wy B P@G e < [T - w0 -

< B™(n — k)2,
From (4.1) and (4.2)
(n — BN > COu(k, a)

whence
N S Ca(k, a)nll(2a+2)

which concludes the proof of Theorem 1.

5. Distribution of nodes

We now turn to the result briefly indicated in §2 that if we assume certain
restrictions on the nodes of a formula of type (1.4), then N is bounded.
More precisely we shall prove

TaeoREM 2. Let 6 > 0 be fixed and let I5 be any subinterval of [—1, 1] of
length 8. Suppose p(x) of formula (1.4) satisfies
(51) [ @) de=v >0
I

and suppose that I; is free of the nodes x;’s and y.’s of a formula of type (1.4).
Then there exists an integer No = No(k, 8) such that the formula (1.4) fails to
be valid in general for polynomials of degree >N .

Proof. Let x be the midpoint of I; and denote the zeros of the Legendre
polynomials Py(z) of order Nby n (1 L k < N), 9= —1, qy1 = 1.

Suppose the formula (1.4) is valid for polynomials of degree 4N + 4k + 2
and that N is so large that

M1 — Np < 8/6 where 5, < @ < npa .

Set
(5.2) F(x) = o(®) 2in-ai<onn ()
where
w(z) = I;I1 (@ — y)°
Wy _1=4 Py() }2 L <, <
(5:3) o (e) 1 - nf{(w — n)Px(n,)) ’ sv=N
AP = LTI P, i) = 152 Pua).

The polynomials r(z) have been defined by Egervary and Turén in the
study of the stability problem of an interpolation process. From one of their
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results in [1] we obtain

(5.4) Dtemn 5o 1 (2) < cip(8)NT!
uniformily in —1 < 2 < 1, and
(5.5) SN (z) = 1.

Since |# — x0| < 8/6 and |z — 7, | < §/6 together imply |z — 5, | < 8/3,
we have from (5.4) and (5.5)

(5.6) F(z) > w(x) Z]m—mgs/s r(x) > (8/3)™(1 — eu(NTH).

On the other hand, since | # — o | > 8/2 and | 7y — #, | < 8/3 together imply
|z — 9, | > 8/6, we have again from (5.4) and (5.5) that for |z — o | > /2,

(5.7) F(z) < (@) 2 jomn > () < 2%eig(8)N L
Also by (5.5), we have
(5.8) F(z) < 2%

uniformly in —1 < 2z < 1. Applying the formula (1.4) to F(x), we get
from (5.8),

(5.9) 2% lip(x) dx > [1F(x)p(x) dx = B™ zk F(x;).

Since, by hypothesis, | z; — x| > 8/2,1 < j < n — Fk, it follows from (5.7)
on applying (1.4) to F*(z) that

' ? oo S e
(5.10) f-l F(2)p(z) dz = B ;1 F*(;)

n—k

< 2% (B)NB™ 3 F(a;).
j=1
Combining (5.9) and (5.10), we get
1
(511) [ F@)p(2) dz < ens, N

On the other hand it follows from (5.6) that
xo+3/6

f_z F(2)p(z) do > f F'(2)p(z) do

0—0/6

(5.12)
> v-(8/3)*(1 — cu(8)NT)’
so that from (5.11) and (5.12), we have
en(8, B)NT 2 7+ (8/3)™(1 — ew(®)NT)’

which is obviously impossible if N is sufficiently large. This contradiction
proves the theorem.
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Let p > 0 be fixed and let I, be any closed subinterval of length 2p in
[—1, 1]. Let I’ be a subinterval of I, having the same midpoint and of
length 26/3, 8 < p. We can now formulate

TrEOREM 3. Suppose p(x) > 0,8 [ p(x) de < cr. Suppose a formula
of form (1.4) holds for polynomials of degree 2N + 2k + 1, N = N(n) and
denote by u(8) the number of xs in I'. If yiel (1 < 1 < k) then there
exist constants c(k, p) and No(k, 8) such that

(5.13) u(8)/mé 2 c(k, p) <mplies N(n) < No(k, 8).

Proof. Let x, be the midpoint of I, and therefore also of I’. Applying
formula (1.4) to the polynomial F(x) given by (5.2), we have

'/: F(z)p(z) dx = B™ . E;GF(xj)
(5.14) >B™. Y F(x)
|zj—zo| <8/6
> B™.(5p/6)™- (1 — cis(8)N")u(5)

where the last inequality follows from the inequality p > & and from (5.4)
and (5.5).

On the other hand, from (5.7) and (5.8) we have

ﬁF(x)p(x) dz =f| + fm_zwz F(z)p(x) dx

zo—z| <8/2

(5.15) < o p(x) de + 2%cis(8)N ™

|zo—2z| <8/2
S 22k(6175 -I- 016(5)N“1).

Also it is easy to see directly (or from the theory of orthogonal polynomials)
that there exists a constant ¢i3(k) such that

[ a@p@) o > nlh).

Hence from formula (1.5)
(5.16) es(k) < B™ 33 w(z;) < B™-(n — k) 2%,

Combining (5.14), (5.15) and (5.16) we see easily that if N is sufficiently
large then u(8)/né < c(k, p), which completes the proof of the theorem.

Remark. The number 3u(8)/2né is, in a way, the relative density of the
z’s in I’. This theorem shows that if the relative density of the z’s is too
high in a certain interval then a formula of the type (1.4) cannot be valid for
polynomials of very high degree. In this sense Theorem 2 and 3 are comple-
mentary.
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Bernstein’s proof of the impossibility of Tchebicheff quadrature for » > 10
is based on a lemma which shows that the smallest node 27’ is smaller than
the smallest zero of the Legendre polynomial of order m, m = [(n — 1)/2].
An analogous result holds for the more general formula (1.4) and is formu-
lated in

TureoreM 4. Let p(x) > v > 0 and suppose a formula of type (1.4) is valid
for polynomials of degree <2m + 1. Then for m > my , me = my(k) we have

(5.17) min (29, —2i%) < ¢
where —1 < P <P <. < f(ﬁ) < 1 are the zeros of the m™ orthogonal
polynomial Q. (x) with weight function p(x) on [—1, 1].

Proof. We shall omit the superseripts of 2%, ¥’ and ¢ where the in-
tention is clear.

By Lemma 2, we may assume without loss of generality that
(5.18) ¥y =0 for 72> [k/2] + 1.
In this case we shall show that z; < ¢r. Set

R(z) = (z — )Qn(@) I« (2 — 9)’(2 — §)7
(5.19)
8(x) = R(x) — {(x — &) + 2 224 (& — 1)} Qn(2).

Then S(z) is a polynomial of degree 2m — 1, so that by Gauss quadrature
formula and by (5.19),
k—1

1
[3@p@) de =2 sPRG), AP >0

since S(¢;) = R(¢,) for1 < 2 < m. Also from (5.19) it is easily seen that
R(t:) <0,1<7<k—1,andsince A% > 0 for all ¢, we have

(5.20) f_ll S(z)p(z) dz <0 .

By a theorem of Erdos and Turdn [6, Theorem (6.11.1) p. 111], it follows
that limn-w {§” = —1 for fixed ». Then if m > my = mo(k), we have
¢™ < —2/8for1 < i < k. Thus from (5.18), we get fork > 1,

(521) —f + 2 2t (8 — yi) < —3(2k — 1) + 2[k/2] < 0.
Observing that

1
fl 2Qh(x)p(x) dz = 0
we obtain from (5.19), (5.20) and (5.21) that

f_ll R(z)p(z)dxr < 0.
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Hence using formula (1.5),
1 n—k
[ RGIp(a) de = B T Ry < 0.
-1 =1

Since by Lemma 1, B™ > 0 we have for some j, R(z;) < 0. But R(z) > 0,
if x > %, so that z; < ¢ and a fortiori #; < {&, which completes the proof
of the theorem.

6. Remarks

The above method can be modified to show that not all the x;’s and y,’s
can be real if the quadrature formula of form (1.4) is to hold. Analogous
problems for an infinite interval with & = 0 have been investigated by Ullman
[7] and Wilf [8]. An extension of their results for a general k remains open.
A further possible extension of our result could be the case when k = k(n)
tends to infinity at a certain rate. To these and related problems we propose
to return later.
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