SOME SUBGROUPS OF SL.(F)

BY
Jack McLaveHLIN!

1. Introduction

In this paper we determine those irreducible subgroups of SL,(F.) which
are generated by transvections.

TuroreEM. Let V be a vector space of dimension n = 2 over Fy and let G be
an irreducible subgroup of SL(V') which is generated by transvections. If
G # SL(V) then n = 4 and G is one of the following subgroups of Sp(V):
Sp(V), 04(V), Oi(V) (except at n = 4), the symmetric group of degree n + 2,
or the symmetric group of degree n -+ 1.

This result has some relevance to the question left open in [3].

Some of the notation and terminology of [3] will be used and we review it
briefly there. (Since we work over a finite prime field our assumption that
G is generated by transvections is equivalent to the assumption that G is
generated by subgroups of root type.) If G contains the transvection r
with P = Im (+ — 1) and H = Ker (r — 1) we say P is a center (for G), H
is an azis (for G). Also we say P is a center for H and H is an axis for P.
The set of centers for G is C and the set of axes for Gis A. For P ¢ C, a(P)
is the intersection of the axes of P and for H € A, ¢(H ) is the sum of the centers
for H.

2. Preliminary lemmas

Our determination will be made by induction on %; in this section we collect
some information needed for the induction. G is a group satisfying the
hypotheses of the theorem.

Lemma 2.1. G s transitive on C and A.

Progf. Choose P such that dim a(P) is maximal. Then Lemma 2 of [3]
tells us that G has an orbit of centers containing P and all centers off a(P).
Since @ is irreducible there cannot be a second orbit. Likewise for 4.

Lemma 2.2. " If P e C and a(P) is not a hyperplane then G = SL(V).

Proof. Choose P ¢ C and suppose S is another center on a(P). By Lemma
4 of [3] we have a center @ off a(P) and a(S). Let K be a hyperplane over
Q + a(P). Since K D a(P), K is an axis for P. Then using Lemma 2 of
[3] we see K is an axis for @ and then K is an axis for S. Thus all points on
P + Sare centers. Since Gis irreducible, C spans V and consequently every
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point of Visin C. Now let H be an axis for P. If @ C H and Q & a(P)
then @ is a center for H (again Lemma 2 of [3]). Hence ¢(H) = H. Now
dualize the remarks at the beginning of the proof and see that every hyper-
plane is an axis. Lemma 3 of [3] completes the proof.

These two lemmas are valid for arbitrary irreducible groups generated by
subgroups of root type.

From now on we suppose G % SL(V). Then for P ¢C, a(P) is a hyper-
plane, P*, and for H ¢ A, ¢(H ) is a point, H*. We also are assuming that the
ground field is F» and consequently for each P ¢ C there is a unique transvec-
tion 7p with center P, axis P*. These involutions form a single conjugate
class—which generates G. If P and @ are two centers then r» 7¢ has order
1,2, or 3 according as P = Q, P = Q C P*,Q & P*. TFor P ¢C, A(P) will
be the centers > P lying on P* and T'(P) will be the centers off P*.

Lemma 2.3. P 4 > A(P) = P*.
Proof. Choose @ ¢ T'(P); it will suffice to show that all centers are on

P+ Q 4+ D> A(P). Suppose R eT(P)nT(Q). Then (R + Q)n P* =
S is a center and

RSQ+8SQ+P+ 2 AP)
If R e T(P) n A(Q) let T be the third point on P + R. Then
TeT(P)nT(Q) so RSP+TCQ+ P+ > AP).
The same sort of argument yields:

LemMA 24, If P eC and Q ¢ T'(P) then G is generated by 74 , 7p , and those
Tswith S ¢ A(P).

CoOROLLARY. @G 1s primitive on C.

Forif P ¢ C and G» € M C G, then we have n(P) % P. Then n(P*) = P*
and by Lemma 2.3. there will be a center S € P* with @ = 7(S) & P*.
But 7o = n7sq " eM so M = G.

LeMMmA 2.5. Gp is transitive on T'(P).

Proof. If R,Q e¢T(P)and R ¢ T(Q) then P* n (Q + R) = 8 is a center,
7seGp and 75(Q) = R. If R eA(Q) let T be the third point on P + R;
then T and R are in the same G,-orbit—as are T and Q.

LemMA 2.6. Let Gr = (rs| S ¢ A(P)); then G is transitive on A(P).

Proof. Suppose R, S ¢ A(P) are in different Gp-orbits. Then T e A(R)
or T ¢ A(S) for otherwise (rz, 7r, 7s) moves R to 8 (via T'). In particular
R ¢ A(S) so we can choose Qe T(R) n I'(8). If P € R 4 S then P =
Q*n (R 4+ 8) and Q ¢ A(P)—against the above remark. Hence P + R + S
has dimension 3 and

Qel'(P)nT(R)nI(S).
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Let X = (P+8)nQ*,Y = (P + R)nQ", Z be the third point on X + Y,
and U be the third point on P + Z. Now {(rp, 7¢, Tr , 7s) fixes X and moves
P to R. Hence G moves Sto U and U ¢ C. The dual of Lemma 2.3 tells us
that for some T ¢ A(P), X &€ T*. Then S ¢ T* so R © T*. But now
Ud T so S and U are in the same Gz-orbit. Symmetry will finish the
argument.

CoroLLARY. If P eC and for some S ¢ A(P) the third point on P + S
is i C then @ = Sp(V).

For this will then be true for each S in A(P) and consequently the third
point on the line joining any two centers is a center. V = > C so all points
of V are centers. Then all hyperplanes are axes and the corollary follows
from Lemma 3 of [3].

Lemma 2.7. The dimension of V s at least 4.

Proof. Recall that we are now supposing G # SL(V') so certainly n > 2.
If = 3 then A(P) is not empty by Lemma 2.3. If n = 3and S ¢ A(P) then
P* = 8 + P = S* against our hypothesis that each axis has a unique center.

If PeC and S € A(P) then 4 induces a transvection on P*/P with center
P + S/P and axis P* n S*/P. Let G(P) be the subgroup of SL(P*/P)
generated by all such transvections.

LemMa 2.8. G(P) is an irreducible group.

Proof. Suppose X/P is stable for G(P). Then for S e A(P), 7¢ fixes X
so either S € X or 8* D X. Using Lemmas 2.6 and 2.3 we have § C X
implies X = P*and S* 2D X implies X = P.

CoroLLARY. The centers for G(P) are precisely the S + P/P with S ¢ A(P)>
and the dual statement for axes.

For G(P) is transitive on this set of centers and being an irreducible group
it is transitive on its full set of centers.

Lemma 2.9. Ifn > 4 then G(P) = SL(P*/P).

Proof. If G = Sp(V) this is certainly so. Otherwise by the corollary to
Lemma 2.6 we know that for S ¢ A(P), the third point on P + 8 is not a
center. If G(P) = SL(P*/P) then Gy is doubly transitive on A(P), so for
S e A(P) Gp,s is transitive on A(P) — {S}. Then if A(P) n A(S) is not
empty A(P) — {S} € A(S) and we find P* & S*—a contradiction. If
n > 450 dim P* > 3 then we can choose B, S, Tin A(P)soP ER+ S+ T
and dim (R + S + T') = 3. The preceding remarks tell us that distinct
centers on R 4+ S + T are not perpendicular and consequently all points on
R + 8 + T are centers. On the other hand S* n (R + S + T') is a line
thru S in S* and so contain at most two centers. This contradiction finishes
the proof.
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3. Construction of the polarity

V continues to be a vector space of dimension n = 2 over F; and G is an
irreducible subgroup of SL(V') which is generated by transvections. We
suppose each member of C has a unique axis and each member of 4 has a
unique center. We refer to this correspondence between C' and A as the
partial polarity determined by @G.

LemMma 3.1.  The partial polarity determined by G extends uniquely to o null
polarity on the subspaces of V.

Proof. We go by induction on n. For n = 2 there is nothing to do; take
n > 2. By Lemma 2.7 we know n = 4 and Lemmas 2.8 and 2.9 tell us that
the group G(P) satisfies the hypotheses of the lemma. Hence the partial
polarity determined by G(P) extends uniquely to a null polarity on the sub-
spaces of P*/P. We proceed to assemble some facts which will allow us to
build the desired polarity.

(1) IfPeCand X = N{Q*|Q  I'(P)} then X = 0.

X is stable for Gp so S ¢ A(P) implies S € X or 8* © X. By Lemma 4
of [3], S € X s0 S* 2 X. Thus X is on all axes and X = 0.

(2) If X is a point then X & P* for some P ¢ C.

Suppose false, choose P ¢ C and let Y be the third point on P + X. If
QeT'(P)thenY = Q* n (P + X) against (1).

(3) IfXisapointandY = N{H ¢4 | H D X} then Y = X.
Choose P ¢ C'so X © P*; an induction hypothesis tells us that
P+X=NHe¢A|HD2P+ X}.

It suffices then to produce Q ¢ I'(P) with Q* 2 X. If such does not exist
we arrive at a contradiction as in the proof of (2).

(4) IfP, Sy, - SmeCand P C Y S;then P* D NSF.

Suppose false for some minimal m. If all S; € Si we may suppose, by

induction, that P* n Si/8; 2 N(Si n 8;)/S:. Then
P* 2 N(8t n 8F) = NSi.

So we suppose S; $ Sz . Then all three points on S; 4+ Sz are centers and
PSCTH+ 8+ -+ 8Sn

where T is one of the points on S; + S;. By the minimality of m,
P*D2T*nSin---n8s.

Since 77 € (75, 75,), 7r fixes St n Sy and T* 2 Si n Sz . Thus we have a
contradiction and the statement is true for all m.
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(5) If X isa point then H = Y {P ¢C|P* 2 X} is a hyperplane con-
taining X.

We first note that if @ ¢ C and Q* $ X then by (4),Q $H Thus H # V.

Now choose P ¢ C with P # X and X € P*. By induction we have

P+ Y {SeAP)|S* 2D X}

is a hyperplane of P* which contains P 4+ X. Thus it suffices to find @ ¢ I'(P)
with @* 2 X and (3) tells us such Q exist.

If X e C then the hyperplane determined in (5) is just X*; if X is any point
we now write X" for the hyperplane determined in (5). We can then im-
prove (4).

(6) If X isapoint, S; e Cand X & D 8; then X* D NS; .
The argument is, as in (4), by induction.

(7) If X and Y are points with X € ¥Y* then ¥ C X*.
Since Y* = Y. {SeC|8* D Y}, (6)says
X DNHA|HDY} =Y

by (3).

With (7) we’ve finished the proof of the lemma—we have a one-one map
from the points of V onto the hyperplanes of ¥V which behaves properly with
respect to incidence. Such a map extends uniquely to a polarity. We have
X C X* for all points X so we have a null polarity

4, G(P) is the symplectic group

We keep the assumptions of § 3. Then G & Sp(V).

Lemma 4.1. If G < Sp(V) and G(P) = Sp(P*/P) then G is one of the
orthogonal groups.

Proof. We haven = 4 and for P e C, each line through P on P* contains
exactly one other center. Define Q on V by @(0) = Oand forz = 0,Q(z) =1
or 0 according as () is a center or not. Then Q(ox) = Q(x) for all ¢ ¢ G and
allz ¢ V. Choose z, y distinet in V and different from 0. We want to show

Q) +Qy)+Qxz+y)=0 or 1

according as (z) C (y)* or not. If (x) e C then our relation comes directly
from the definition of @. We suppose then that x and y are not centers. If
(x) € (y)* then z, y and z + y are mutually perpendicular so z + y is not a
center and our relation holds. Now suppose (z) & (y)* and choose a center
(z) C (y)*. Letfbe an alternate form on V which yields our polarity. Then
fly +2zx+2)=1+f(2,2) and we see (x + 2) C {y + 2)" if and only
if {x + y) is not a center. Hence in either case (x + y) is a center and we
have the desired relation. Thus @ is a quadratic function belonging to f and
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G € 0(Q). Since G contains all the orthogonal transvections G = 0(Q).
(We cannot be in the situation n = 4, @ of maximal index, because there the
subgroup of O(Q) generated by transvections is not irreducible ).

5. G(P) is a symmetric group

The irreducible symplectic representation of degree 2k over F, of the sym-
metric groups of degree 2k + 1 and 2k + 2 is described in [1].

LemMA 5.1. Ifn = 6 and G(P) is the symmelric group of degree n orn — 1
then G s the symmetric group of degree n + 2 or n + 1.

Proof. For this and the remaining lemma we will need some of the nu-
merical relations on the parameters of a primitive group of rank 3. These are
developed in [2] and we use the notation of that paper. We use m for either
n orn — 1. Our assumptions tell us some of the parameters immediately.
Thus

(here S ¢ A(P)). We want to determine
l=|T(P)| and w=[A(P)nAQ)]

for @ e I'(P). In I'(P) we have Q, the & — u elements in A(Q) — (A(Q) n
A(P)) and the 1 + k& — u elements consisting of the third point on@Q + S as
S runs over the centers on P* and off P*nQ*. Sol=2(1+k — u). From
[2] we have the relation ul = k(k — X\ — 1) so

W= (k+ Lu+ (kb — X —1) = 0.

From the known values of k and X we obtain u = mor ("z%).
From [2] we know that d = (A — u)® + 4(k — u) isasquare. If u = m,

d =d(m) = ¥(m — 1)’(m — 6)* + 2m(m — 3).

We see d(5) = 24,d(6) = 36, and d(7) = 65. The parameters coming from
m = 6, u = 6 are those of Us(2) on the cosets of Sps(2), however we can
ignore m = 6 here since Sg = Spi(2)—a case disposed of in the previous sec-
tion. Thus we may assume that if y = m thenm > 7.

We now count the lines full of centers on P*—call such lines A-lines. If
S € A(P), there are 2(m — 2) members of A(P) which are not on S*. Hence
there are m — 2 h-lines through S on P*. So if & is the number of A-lines on
P* we have 3k = (3')(m — 2).

Choose Q ¢ T'(P) and let E; be the orbits of Gp,e on A(P) n A(Q). Set
wi = |E;| and s; = |hlines on P* n Q* passing through an S in E;|.
Since each h-line on P* is either on P* n Q* or meets P* n Q" in a point we
have

3(E)(m — 2) = Do duisi + 2 pi(m — 2 — s;)
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= p(m —2) — $2 pisi.

3u=(3) + (2/(m = 2)) 2 pisi.

In particular, 3u = (3) soif u = mthenm < 7. Hence we may suppose that
uw = (37') and then ! = 2m. Thus each center is on exactly m h-lines. If
we choose S ¢ A(P), there will be just 2 h-lines through S and off P*. Take
Tin A(P)n A(S) and R in A(P) off 8* and T*. If X is the third center on
S + R then T 4+ R and T + X are the 2 h-lines through T and off S*—each
lies in P*. Now keep S ¢ A(P) and choose Q@ e I'(P) n I'(S). The above
remark shows that T ¢ A(P) n A(S8) implies that T ¢ A(P) n A(Q).

Wehave S; e A(P),72= 1,2, ..+, m — 1such that if r; = rg, then 7; 7411
has order 3 and all other pairs commute. Choose @ ¢ T'(P) n I'(8,) and put
o=171p,7 = 7¢. If 7and 7, do not commute replace 7, by 7172 71. One
way or the other we see that G is generated by the involutions o, 7, 71, + -+,
Tm-1 Where the product of adjacent members in this list has order 3 and all
others commute. Thus G = Su4e—that is G = Sp41 0r Suge.

Hence

6. G(P) is an orthogonal group
We will have a proof of the theorem if we prove
LeMma 6.1. G(P) is an orthogonal group only when i is a symmetric group.

Proof. We suppose n = 2m = 6 and that G(P) is one of the orthogonal
groups of degree 2(m — 1). Then we know

E=2"2%2""—¢) and \=2¥"2 _1,

(Here ¢ = =1 according as the form for G(P) has maximal index or not.)
As in §5 we have

w— (k4 1u+ 3k — N —1) = 0.
Hence (k + 1)* — 2k(k — N — 1) is a square—say 3°. Then
¥ —1=Fk\N+4—k)
= 2" (2™ — £)(2 + £2™7%)
= 2™7H(2"™ T — £)(1 + £2™7%),

If ¢ = —1 then m = 3 and G(P) is the symmetric group of degree 5. We
suppose ¢ = 1, set x = m — 1 and then

=1 =252 — 1)(2°% 4+ 1).

Since the orthogonal group of maximal index in dimension 4 is not generated
by transvections we havez = 3. Ify = 1 (4) theny = a-2°" + 1 for some
a and we have

(a2 P4+ 1)= (2 =1)(27+1) and a= —1(2°7%).
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Writea = 82° > — 1. Thena > 1s08 = 1,2, 0or 3. We can rewrite our
condition as

ala — 122 = (272 4+ 1)(2° — (a + 1))
= (2°% 4+ 1)2°%(4 — B).

Hence a(a — 1)/2 = (2% 4+ 1) (2 — 8/2) and 8 = 2. This determines

= 3 and G(P) is the symmetric group of degree 8. Finally supposey = —1
(4)—say y + 1 = 02" Then a(a2”? — 1) = (2° — 1)(2** + 1) and
o = B3-22 4+ 1. Then o > 1 and consequently « < 4. This forces z = 3
which this time is a contradiction.

7. Concluding remarks

The well-known identifications of the Weyl groups of type E can be read
from our list. Let V be a vector space of dimension # over F; and let (4;;)
be the Cartan matrix for E, . Choose a base {x;} for V and let G be the sub-
group of SL(V') generated by the mappings r; given by r;z; = z; + A x;.
The 7; are transvections with center (x;). If fis the alternate bilinear on V
whose matrix with respect to the given base is (4;;) then @ is in the group of
f. Form = 6 and 8, f is non-singular and for n = 7, f has a radical, {x), of
dimension 1. Thus if W is the Weyl group of E, we have a homomorphism
from W into Sp( V') in the first two cases and into Sp(V/(z)) in the latter case.
Forn = 7 and 8, —1 ¢ W so —1 is in the kernel of our homomorphism in
these two cases. Since W is transitive on the roots, the image of our homo-
morphism will be an irreducible group (generated by transvections). Since
W is finite the kernel of our homomorphism is a 2-group. Knowing the order
of W and scanning our list for the possible images of W we see W =2 0s( — 1, F;)
atn =6, W/(—1) = Sps(F;)atn = 7,and W/{—1) =2 0s(1,F.) at n = 8.
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