PRINCIPAL FACTORS, MAXIMAL SUBGROUPS AND CONDITIONAL
IDENTITIES OF FINITE GROUPS

BY
REINHOLD BAER

The three principles for the classification of finite groups that we are going
to discuss here may be loosely described as follows:

A principal factor of a finite group G is just a minimal normal subgroup M
of an epimorphic image H of G. [Jordan-Holder’s Theorem determines the
multiplicity of a principal factor which will not concern us here.] Two struc-
tural invariants may be derived from this principal factor: the structure of
M as an abstract group and the group T' = T'y M of automorphisms, induced
in M by H.

Typical examples. The group @ is nilpotent if, and only if, T M = 1 for
every principal factor. The group G is supersoluble if, and only if, every
principal factor M is cyclic of order a prime.

It should be noted as a feature of particular interest that such a class may
be described in essentially different fashions.

Example. G is supersolubleif, and only if, T'z M is cyclic of exponent p — 1
whenever the order of the principal factor M is a multiple of the prime p.

The point of view indicated here is closely related with Gaschiitz’ locally
defined formations.

It should be noted that the structure of a principal factor and of the group
of automorphisms, induced in it, are not at all independent. Example:
Such a group of automorphisms is cyclic if it is abelian.

Maximal subgroups. We just quote two typical examples: Wielandt’s
Theorem that a group is nilpotent if, and only if, its maximal subgroups are
normal; and Huppert’s Theorem that a group is supersoluble if, and only if,
its maximal subgroups are of index a prime.

Conditional identities.  Noting that the only variety [= class of groups,
defined by identical relations (B. H. Neumann )] which contains so important
a class as the class of all finite p-groups is the variety of all groups, we have
to look for something less restrictive. The following theorems may indicate
the direction in which to look: The group @ is nilpotent if, and only if, zy = yz
whenever the elements x and y in G have relatively prime order. The group
@ is supersoluble if, and only if, £*"y = yaz® " whenever ¥ is an element in
@ of order a power of p and z is an element in G of order prime to p.

Immersion. If a class A of finite groups has been defined by defining some
requirements on the principal factors, then this leads to the concept of A-
immersion of a normal subgroup N of G by imposing these requirements only
on those principal factors of G which are contained [covered by] N.
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Ezamples. The normal subgroups which are part of the hypercenter are
“nilpotently immersed”’; and supersoluble immersion has been investigated
under just this name.

This generalization appears to be justified by the following well known
result: G is nilpotent if, and only if, every primary subgroup of G is “nil-
potently immersed” in its normalizer. Likewise we should quote the theorem
that a group is supersoluble if, and only if, its primary subgroups are super-
solubly immersed in their normalizers.

Every immersion principle A leads us to a class of groups: the groups that
are A-immersed in themselves. It is worth noting that essentially different
immersion principles may lead in this fashion to the same class of groups; see
Remark 7.6, D.

In this preliminary and somewhat cursory discussion we have restricted
ourselves to finite groups only and by and large our results will be most strik-
ing when restricted to finite groups. But for the more general parts of our
discussion such a restriction will not be needed. at all [§§1, 2]; and in almost
all our discussion of immersion it will suffice to assume the finiteness of the
immersed normal subgroup.

In §3 we prove and discuss a general theorem, reducing immersion proper-
ties of a normal subgroup N in G to the corresponding immersion properties of
the primary subgroups of N in their normalizers [Theorem 3.4].

In §4 a quite simplified type of immersion is discussed: no requirement
is imposed upon the structure of the principal factors and the induced groups
of automorphisms are all required to belong to one and the same class a of
groups. This paves the way for §5 where this class « is supposed to be the
class of finite abelian groups. The type of immersion obtained is subdivided
into subtypes; and the general theory is then executed in some detail for these
subtypes. One of them is supersoluble immersion. Here again more can
be said and this is done in §6.

In §8 quite a different type of immersion is discussed. It stems from the
concept of dispersed groups and shows some new phenomena. The results
of §7, discussing dispersion, prepare the way for this part of our discussion.

We are very much indebted to Dr. Ulrich Schoenwaelder for many a useful
critical comment.

Notations. {---} = subgroup, generated by the enclosed subset.
zoy =a Yy wy = 2 %’

XoY =setofallzoyforrin Xandyin Y.

X' = {XoX}.

S¢ = core of the subgroup Sin G = M, S°

product of all normal subgroups X of G with X € 8.

¢xY = centralizer of Y in X.

3X = center of X.

nxY = normalizer of ¥ in X.
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PRINCIPAL FACTORS OF FINITE GROUPS 3

bX = hypercenter of X = intersection of all normal subgroups ¥ of X
with 3(X/Y) = 1.

¢X = intersection of all normal subgroups ¥ of X such that X/Y is an e-
group.

&G = Frattini subgroup of G = intersection of all maximal subgroups of G.

factor of a group G = epimorphic image of a subgroup of G.

o(z) = order of the element z.

o(G) = order of the finite group G.

p-element = element of order a power of p.

p-group = group all of whose elements are p-elements.

p’-element = element whose order is prime to p.

p'-group = group all of whose elements are p’-elements.

T = trivial class, consisting of 1 only.

U = universal class, containing all groups.

X C Y signifies that X is a proper subgroup of Y.

1. We denote throughout by 8 a class of ordered pairs (A, B) of group-
theoretical properties ¥ and 8. This class may consist of one pair only and
it will usually be a countably infinite set.

We shall say that N is a 6-tmmersed normal subgroup of G, in short N 6 G,
if N is a normal subgroup of the group G, meeting the following requirement:

If o is an epimorphism of G upon H with N° 5 1, then there exists a pair
(¥, B) in 0 and a normal subgroup M of H with 1 € M C N’ such that M
is an U-group and H/cx M is a B-group.

It is clear that 1 6 G is always true. We recall that H/cx M is essentially
the same as the group of automorphisms, induced by H in M. If 9 consists
of the one pair (2, B) only, then we say (U, B)-immersed and N (A, B) G
instead of #-immersed and N 6 G.

Finally, we shall term G a 6-group whenever G 6 G.

ProrosiTion 1.1.  The relation X 6 Y has the following properties:

(1) If o is an epimorphism of G upon H, then N 6 G implies N° 6 H.

(2) If A and B are normal subgroups of G with A € B, if A 6 G
and B/A 6 G/A, then B 0 G.

(8) Products of 6-tmmersed normal subgroups are 8-itmmersed normal
subgroups.

Proof. (1) is an almost immediate consequence of the definition of im-
mersion together with the remark that products of epimorphisms are epi-
morphisms.

Suppose next that A and B are normal subgroups of G with A € B and
A 0G,B/A0G/A. If ¢is an epimorphism of G upon H with B” 5~ 1, then
we distinguish two possibilities: If firstly A” # 1, then we deduce from
A 0 G the existence of a pair (A, B) in 6 and a normal subgroup M of H with
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1c M C A° C B’ such that M is an N-group and H/cx M is a B-group.
If secondly A° = 1, then ¢ induces an epimorphism X\ of G/A upon H; and
we deduce from B/A 9 G/A and 1 = B° = B the existence of a pair (%, B)
and a normal subgroup M of H with 1 € M C B* = B such that M is an
A-group and H/cx M is a B-group. This proves B § G.

Denote by It a set of 6-immersed normal subgroups of G and let P be the
product of the normal subgroups in 9. Consider an epimorphism o of G
upon H with P° £ 1. Then there exists a normal subgroup N in the set I
with N° # 1. From N 6 G we deduce the existence of a pair (%, B) in 9
and a normal subgroup M of H with 1 € M € N° C P’ such that M is an
A-group and H/cx M is a B-group. Hence P 6 G.

We define the §-hypercenter s G as the product of all f-immersed normal
subgroups of G. This is a well determined characteristic subgroup of G
[since 1 6 G].

CoROLLARY 1.2. The 0-hypercenter has the following properties:

(1) Yo G is a 6-tmmersed characteristic subgroup of G.

(2) hilG/he G] = 1.

(8)  Be G s the intersection of all normal subgroups X of G with h(G/X) = 1.
4) (9 @) S he(G”) for every homomorphism o of G.

Proof. (1) is an immediate consequence of Proposition 1.1, (3). There
exists one and only one characteristic subgroup C of G with 2y G & C and
C/% G = hlG/b Gl. It is a consequence of (1) that h G 8 G and
C/h G 6 G/hs G. Thus it follows from Proposition 1.1, (2) that C 6 G;
and this implies C & B§ G because of the definition of the #-hypercenter.
Hence H[G/9 G] = C/hy G = 1, proving (2). —(4) is an immediate conse-
quence of (1) and Proposition 1.1, (1).

To prove (3) we denote by J the intersection of all the normal subgroups X
of G withh(G/X) = 1. Itis an immediate consequence of (2) that J € 5, G.
If X is a normal subgroup of G with §(G/X) = 1, then we deduce from (4)
that

Xb G/X C he(G/X) = 1.

Hence ) G © X for all these X, proving h G & J. Thus J = § G, proving
(3).

Remark 1.3. Assume that 6 consists of the one pair (U1, T) only where
as always
T = trivial class, consisting of 1 only,

1l = universal class, containing all groups.

If X is a normal subgroup of the group Y such that X is a U-group and Y /¢y X
is a T-group, then Y/cy X = 1sothat ¥ = ¢y X and X € 3Y. It follows
from Corollary 1.2, (3) that

ba, v G = By G = H@ = hypercenter of @.
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This may serve as a justification for the term 6-hypercenter.

Proposition 1.1, (1) may be expressed in the form: #-immersion is epi-
morphism inherited. —Similarly we shall say that 6-immersion is factor
tnherited, if § meets the following requirement:

If N is a 9-tmmersed normal subgroup of G and if T is a normal subgroup
of the subgroup S of G with T < N, then T 6 S.

A justification for the expression “f-immersion is factor inherited’” will
be found in the criterion of Proposition 1.5 below.

ProrosiTioN 1.4. If 6-immersion is factor inherited, then

(a) 6-tmmersed normal subgroups are 0-groups and

(b) if A, B are normal subgroups of G with A C B, then B 0 G is necessary
and sufficient for A 6 G and B/4A 6 G/A.

Proof. If N is a §-immersed normal subgroup of G, then letting S =T = N
in our definition we obtain N ¢ N so that N is a 6-group. —Assume next
that A and B are normal subgroups of G with A € B. It is a consequence of
Proposition 1.1, (2) that A 6 G together with B/A 6 G/A implies B § G. If
conversely B 8 G, then we deduce B/A 6 G/A from Proposition 1.1, (1); and
we deduce 4 6 G by letting N = B, S = G and T = A in our definition of
factor inheritance of -immersion.

The group theoretical property € is said to be factor inherited, if every
factor [ = epimorphic image of a subgroup] of an €-group is an €-group.

ProrosITION 1.5. 9-immersion is factor inherited, if for every pair (A, B)
in 0 the properties A and B are factor inherited.

Proof. We shall first treat two special cases and then reduce the general
case to these two special cases.

Case 1. Assume that N ¢ G and that U C G.

Consider a normal subgroup V of U with V(U n N)/V # 1. This last
condition is equivalent to U n N ¢ V. There exist normal subgroups X
of G with (Un N)n X C V, for instance X = 1; and among these there
exists a maximal one, say W [Maximum Principle of Set Theory]. From
1 = WN/W we would deduce N & W so that

UnN=UnNaWCV,

a contradiction. Hence 1 3 WN/W. From N 6 G we deduce now the exist-
ence of a pair (¥, B) in 0 and of a normal subgroup K of G with

WcCcKCWN

such that K/W is an U-group and (G/W)/cew(K/W) is a B-group. Be-
cause of the maximality of W we have

UnNanWCV, UnNnK &V,
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Consequently V(U n N n K)/V is a normal subgroup of U/V with
1cV(UnNnK))V CV(UnN)/V.
From UnNnW C V nN n K we deduce that
ViUnNnK))V~((UnNnK)/(VaNnK)
is an epimorphic image of
(UaNnK))(UnNaW)=xW({UnNnK)WCK/W.

Thus V(U n N n K)/V is a factor of the %A-group K/W and as such it is
itself an A-group.
Denote by R the uniquely determined subgroup of U with

VCR and R/V = coywlV(UnNnK)/V]
and denote by S the uniquely determined normal subgroup of G' with
WC S and S/W = cow(K/W).
Then So K © W so that
[UnSle[V(UnNnK)SVIUnNaW]=17.

Hence U n 8 € R so that U/R is an epimorphic image of

U/(Un8)~US/8 S G/S=(G/W)/(8/W) = (G/W)/corw(K/W).
But the latter group is a B-group. Hence

(U/V)/erplV(UnNnK)/V] = (U/V)/(R/V)>~U/R

is likewise a B-group.

Thus we have shown that N § @ and U & G imply (UnN) ¢ U.

Case 2. Assume that N ¢ G and that A is a normal subgroup of G with
ACN.

Consider a normal subgroup K of G with KA/K # 1. This is equivalent
toAd € Kandto KnA C A. There exist normal subgroups X of G with
KC Xand KnAdA = A n X; for instance X = K. Among these there
exists a maximal one, say M [Maximum Principle of Set Theory]. From
1= MN/M we would deduce A T NC MandA =AnM=AnKCA,
a contradiction. Hence MN/M 1 so that from N 6 G we can deduce the
existence of a pair (2, B) in 0 and of a normal subgroup L of G with

M cLCMN

such that L/M is an A-group and (G/M)/ceu(L/M) is a B-group. Be-
cause of the maximality of M we have

KnA=AnMCAnlL.
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From K(L n A)/K = 1 we would conclude that L n A € A n K, a contra-
diction. Hence

1c K(LnA)/K C KA/K.
Furthermore

K(LnA))K~ (LnA)/(KnA)
= (Lnd)/(MnA)~M(LnA)/MC L/M.

The normal subgroup K(L n A)/K of G/K is therefore a factor of the A-group
L/M and as such it is itself an ¥-group.
Denote by R the uniquely determined normal subgroup with

MCR and R/M = cgu(L/M);
and denote by S the uniquely determined normal subgroup with
KC S and S/K = cqx[K(L n A)/K].
Then R o L & M and consequently
RoK(LnA)SC K(AnM)=K(AnK) = K;

and this implies B & S. Consequently

(G/K)/caixlK(L n A)/K] = (G/K)/(8/K) ~G/8
is an epimorphic image of

G/R >~ (G/M)/(R/M) = (G/M)/ca;u(L/M).

Since the latter group is a B-group, so is (G/K)/ce/xlK(L n A)/K].

Thus we have shown that every normal subgroup 4 of G with A € N and
N ¢ G likewise satisfies 4 6 G.

The general case. Assume that N 0 G, that T is a normal subgroup of the
subgroup 8 of G and that T € N.

Application of Case 1 shows that N n S 6 S. Naturally T € N n S; and
since T is a normal subgroup of S, we may apply Case 2. Hence T 6 S; and
thus we have shown that §-immersion is factor inherited.

Lemma 1.6. If A and B are factor inherited group theoretical properties,
and if N 1s a normal subgroup of G, then the requirements

(a) N(U,B)aG
and

(b) N (% N)Gand (U, B) G
are equivalent.

The simple proof may be left to the reader.
Remark 1.7. 1t is not difficult to construct a 6 such that f-immersion is
factor inherited [use Proposition 1.5] and a finite group G with either of the
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following properties:
The Frattini subgroup ®G of G is not part of §s G.
The [ordinary] hypercenter )G of @ is not part of b G.

2. In the present section we are going to discuss the simplifications arising
from the presence of sufficiently many minimal normal subgroups.

Lemma 2.1.  Assume that M is a minimal normal subgroup of G with M 6 G.
Then there exists a pair (A, B) in 0 such that M is an A-group and such that
H/cg(M°) [=2 G/cqg M] is a B-group for every epimorphism o of G upon H
with M° # 1 [and hence M ~ M°).

Proof. Because of the minimality of M there exists a pair (%, B) in ¢
such that
M is an ¥-group and G/ce M is a B-group.

Suppose next that K is a normal subgroup of G with KM/K # 1. Then
M € K sothat M n K € M. Since M n K is a normal subgroup of G and
M is a minimal normal subgroup of G, we conclude that M n K = 1. Since
M and K are normal subgroups of G, this implies M o K = 1 so that K C ¢¢ M.

Wenote M = M/(M nK)~ KM/K. Suppose next that z is an element
in G. Then Kz belongs to the centralizer of KM /K in G/K if, and only if,
zoM C K. Butzo M C M, since M is a normal subgroup of G. Hence
zoM C Kif,and only if, z o M € K n M = 1; and this is equivalent with
zoM = 1. It follows that

CG/K(KM/K) = CgM/K.
Hence
(G/K)/ceix(KM/K) = (G/K)/(¢caM/K) >~ G/ca¢ M.

Since the latter group is a B-group, so is the [isomorphic] former one.

The normal subgroup N of G is termed an m-immersed normal subgroup
of G, if there exists to every epimorphism ¢ of G upon H with N° = 1 a
minimal normal subgroup M of H with M C N°.

This condition is certainly satisfied, if the normal subgroup N of G' meets
one of the following requirements:

(1) The minimum condition is satisfied by the normal subgroups of G
which are part of N.

(2) The minimum condition is satisfied by the normal subgroups of N.

(3) The minimum condition is satisfied by the normal subgroups of G.

(4) N is finite.

ProrositioN 2.2. If 0-immersion is factor inherited, then the following
properties of the m-immersed normal subgroup N of G are equivalent:
(i) NG
(ii) If o s an eptmorphism of G upon H and iof M is a minimal normal
subgroup of H with M & N°, then M 6 H.
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(iil) If o is an epimorphism of G upon H and +f M is a minimal normal
subgroup of H with M C N°, then there exists a pair (N, B) in 6 such that
M s an U-group and H/cx M is a B-group.

Proof. Suppose first that N ¢ G. If ¢ is an epimorphism of @ upon H,
then N° 6 H by Proposition 1.1, (1). If M is a minimal normal subgroup of
H with M C N°, then we recall that 6-immersion is factor inherited; and
this implies in particular M ¢ H. Hence (ii) is a consequence of (i). —
By means of Lemma 2.1 we deduce (iii) from (ii). —Assume finally the
validity of (iii); and consider an epimorphism ¢ of G upon H with N7 = 1.
Since the normal subgroup N of @ is m-immersed, there exists a minimal
normal subgroup M of H with 1 € M C N°. By (iii) there exists a pair
(%, B) in 6 such that M is an A-group and H/cx M is a B-group. Conse-
quently N 6 G, proving the equivalence of (i)-(iii).

Remark 2.3. Assume that p is a prime and that m and n are relatively
prime integers with 1 < n < m. Denote by U the class of all elementary
abelian groups of an order p” with r a divisor of m 4+ n. Denote by B the
class of all finite abelian groups. Let N and M be elementary abelian groups
of orders p™ and p™ respectively. There exists a cyclic group I'y of auto-
morphisms of order p” — 1 which is transitive on the elements, not 1, of
N—Ilet F be the field of order »™ and let N be isomorphic to its additive
group, I'y to its multiplicative group, acting in the canonical way. Like-
wise there exists a cyclic group I'y of automorphisms of M whose order is
p™ — 1 and which is transitive on the elements, not 1,in M. LetA =M ® N
and let T' be the group of all automorphisms of A which preserve M and N
and which induce in M an automorphism in I'y; and in N an automorphism
in 'y . Finally let G@ = AT be the product of A and T, formed in the holo-
morph of 4.

Then A is an elementary abelian group of order p™™".
a normal subgroup of G with 4 = ¢¢ 4; and

GlegA = G/A~T~Ty,® T'y

Furthermore, 4 is

is a direct product of two eyclic groups of finite order and hence abelian.
It follows that A (%, B) G.

Next we note that M and N are minimal normal subgroups of G. Since
neither m nor = is a divisor of m -+ 7, as m and n are relatively prime, we see
that neither M nor N is (¥, B) immersed in G.

The hypothesis that §-immersion be factor inherited is consequently indis-
pensable for the validity of Proposition 2.2. This leads us to the following
definition:

The normal subgroup N of G is stricily §-immersed in G, in symbols N § G,
if to every epimorphism ¢ of G upon H and to every minimal normal subgroup
M of H with M © N’ there exists a pair (2, B) in 6 such that M is an ¥A-group
and H/cg M is a B-group.
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CoRrOLLARY 2.4. Assume that N is an m-immersed normal subgroup of G.

(A) If N 6G,then N 6G.

(B) If 6-immersion is factor inherited, then N 0 G and N § G are equivalent
requirements.

The validity of (A) is easily derived from the various definitions and
that of (B) is contained in Proposition 2.2.

3. It will be convenient to make use of the concept of the commutator
quotient. We remind the reader of its definition [which implicite, has been
used before]: If X and Y are normal subgroups of the group G with X C Y,
then the commutator quotient

(XY) = (XY )e = set of all elements g in G withgo ¥ C X.

This is the uniquely determined normal subgroup of G which contains X and
satisfies

(3.1) (X2Y)/X = cqx(Y/X).

Since X is a normal subgroup of @, we have clearly X o Y C X and this is
equivalent to saying X C (X:Y). Furthermore the following three state-
ments are evidently equivalent:

(3.2) Y/X is abelian; YooY C X; Y C (XIY).

In the present section we shall discuss the special situation arising in case
the normal subgroup under consideration is finite and soluble. The basis of
this discussion is the

LemMma 3.3. Assume that A and B are finite normal subgroups of the group G
with A C B, and that B/A is an elementary abelian p-group and a minimal nor-
mal subgroup of G/A. Then every p-Sylow subgroup P of B has the following
properties:

(a) B = AP and B/A ~ P/(A n P).

(b) G = AngP.

(¢) A n P isanormal subgroup of ng P and P/ (A n P) is a minimal normal
subgroup of n¢ P/(A n P).

(d) ([PnAlP) = ngPn (4:B).

(e) G/(A:B) ~neP/([P n AL:P).

(f)  The group of automorphisms, induced in B/A by G/A, is essentially the
same as the group of automorphisms, induced in P/(PnA)byne P/(Pn A).

(g) [G/A)/ce/alB/Al =~ [na P/(P n A)]/engriennlP/(P n A)].

Proof. (a) is an immediate consequence of the facts that B/A is a p-
group and P a p-Sylow subgroup of the finite group B.

Since P is a Sylow subgroup of the finite group B, the Frattini argument
proves G = BngP. Noting B = AP [by (a)] and P € 1e P we conclude
that @ = Bng P = APng P = Ang P. This proves (b).
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It is a consequence of the remark (3.2) and the commutativity of B/A that
(1) A c BC (A:B).

Combine this with (b) to see that

(2) G = (A:B)ngP.

Next we note that A is normalized by G and hence by ne P. Since P too
is normalized by ne P, we may conclude that A n P is a normal subgroup of
ng P. To prove the second half of (¢) consider a normal subgroup W of
naP with

AnPCWCPCB.
Clearly A and W are normalized by ne P. Furthermore
(A:B)o W C (A:B)oPC (A:B)oBC A
so that
(A:B)Yo AW C [(A:B)o A]J[(A:B) o W] C AW.

Thus we have shown that AW is normalized by (A:B) and ne¢ P and conse-
quently by (4:B)ng P = G (by (2)). Hence AW is a normal subgroup of
G and AW C B so that AW /A is a normal subgroup of G/4 which is part of
the minimal normal subgroup B/A4 of G/A. If AW /A were equal to 1, then
W would be part of A and this would imply W € A n P € W, a contradiction.
Hence AW/A = B/A so that B = AW. From W € P € B = AW and
Dedekind’s Modular Law we conclude now that

P=W(AnP)=W

[because of A n P € W]. This shows that P/(4 n P) is a minimal normal
subgroup of n¢ P/(A n P), completing the proof of (c).
The element x in G belongs to ng P n (4:B) if, and only if,

zoPC P and z0B C A.

Since B = AP by (a), and since xo A & A for every z as 4 is a normal sub-
group of @, this pair of inequalities is equivalent to

2oPC P and zoP C 4.
This pair of inequalities is equivalent to
zoPC AnP;

and this signifies that = belongs to ([A n PlP). Hence = belongs to
ne P n (A:B) if, and only if, z belongs to ([A n P]:P), proving our equation
(d).

Next we note that by (2) and (d)
G/(A:B) = (A:B)ng P/(A:B) ~ngP/[ng Pn (A:B)] = ne P/([P n A]:P),

proving (e).
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To prove (f) and (g) we note first that by (3.1) the group of automorphisms,
induced in B/A by G/A, is essentially the same as

[G/A]/ca/alB/A] = [G/A)/[(A:B)/A] ~ G/(A:B),

that the group of automorphisms, induced in P/(Pn A) by ng P/(Pn A), is
essentially the same as

e P/(P nA)/crgrienalP/(PnA)]
= [ng P/(P n A)]/[((P n A):P)nge/(PnA)]
>~ 1g P/([P n AJ:P)ngr = ¢ P/[neg P n ([P n AL:P)]
= ng P/([P n A]:P) by (d);
and combining these isomorphies with (e) we obtain (f) and (g).

TaEOREM 3.4. If 6-immersion is factor inherited, then the following properties
of the finite, soluble normal subgroup N of G are equivalent:
(i) NeG.
(i) P 6 ng P for every primary subgroup P of N.
(iii) If o is an epimorphism of G upon H and if M is a minimal normal sub-
group of H with M & N’ then there exists a pair (N, B) in 0 such that M is an
N-group and H/cx M is a B-group.

p-subgroups of N.

(a) N, 0@ for every prime p where N, is the product of all normal
(iv)
(b) (N nU)6U for every maximal subgroup U of G.

Proof. (ii) is a consequence of (i), since f-immersion is factor inherited.
Assume next the validity of (ii) and consider a pair A, B of normal sub-
groups of G such that

ACBCN and B/A is a minimal normal subgroup of G/4.

Since N is soluble, so are B and B/A. Since B/4 is characteristic simple,
B/A is an elementary abelian p-group. Denote by P some p-Sylow subgroup
of B. Then we deduce from Lemma 3.3 and the finiteness of N the following
facts:

(a) B/A ~P/(AnP).

(b) A n P is a normal subgroup of ng P and P/(A n P) is a minimal
normal subgroup of ng P/(A n P).

(¢) [G/A)/ceralB/A] = [ng P/(P n A)l/cvgriennlP/(P n A)].

From (ii) we deduce P 0 ng P. Denote by ¢ the canonical epimorphism of
ng Pupon H = ng P/(AnP). Then P° = P/(PnA)is by (b) a minimal
normal subgroup of H. Consequently there exists a pair (A, B) in 0 such
that P7 is an U-group and H/cz(P?) is a B-group. Apply (a) and (¢) to see
that

(d) B/A is an A-group and [G/A]/ce/4[B/A] is a B-group.
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This shows that (iii) is a consequence of (ii). —Since N is finite, (i) is a
consequence of the [much stronger] condition (iii). Hence (i)-(iii) are
equivalent.

(iv) is a consequence of (i), since f<immersion is factor inherited, and since
N, is a characteristic subgroup of the normal subgroup N of G and as such
N, is a normal subgroup of G.

Assume conversely the validity of (iv) and consider a p-subgroup P of N.
If firstly G = ng P, then P is a normal subgroup of G so that P € N, . Since
N, 060G and since #-immersion is factor inherited, P 8 ng P. If secondly
n¢ P C G, then all subgroups, conjugate to P in G, are contained in the finite
normal subgroup N.Hence their number is finite; and this is equivalent to
the finiteness of the index [G:ng P]. Consequently there exists a maximal
subgroup U of G withng P C U. Apply (iv.b) to show (Nn U) 6 U. Since
6-immersion is factor inherited, and since P C N ntng P € N n U, we conclude
again P §ng P. Hence (ii) is a consequence of (iv), proving the equivalence
of (i)-(iv).

Remark 3.5. A. The hypothesis, that -immersion is factor inherited, has
been used when deducing (ii) from (i); but this hypothesis has not been used
when deducing (iii) from (ii) and when deducing (i) from (iii). This is our
principal reason for inserting (iii) whose equivalence with (i), on the basis of
factor inheritance of §-immersion, is contained in Proposition 2.2.

B. No use has been made of the solubility of N when deducing (ii) from
(i) and (i) from (iii). But this hypothesis is indispensable when deducing
(iii) or (i) from (ii), as may be seen from the following

Ezample. Let % = Uand B = & (= commutativity) and let 6 just con-
sist of the one pair (U, &). Furthermore let G = N be the simple group of
order 60. Then

ng P/cq P is abelian for every primary subgroup P of G.

This property is much stronger than the property (ii) of Theorem 3.4. But
the validity of G 6 G would imply that G/3G = @ is abelian which is patently
false.

COROLLARY 3.6. If 6-immersion is factor inherited, then the following prop-
erties of the finite soluble group G are equivalent:
(1) @ s a 6-group.
(ii) P 9ng P for every primary subgroup P of G.
(iii) If M s a minimal normal subgroup of the epimorphic vmage H of G,
then there-exists a pair (U, B) in 6 such that M is an A-group and H/cg M is a
B-group.

(a) G, 0G for every prime p (where G is the product of all normal
(iv) p-subgroups of @).
(b) Every mazimal subgroup of G is a 6-group.

This is just the special case N = G of Theorem 3.4.
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The group theoretical property € is said to meet the Jwasawa-Schmidt re-
quirement if every finite group whose proper factors are E-groups is soluble.
—If in particular € is factor inherited, then this implies that finite €-groups
are soluble. —The most notable examples of properties meeting the Iwasawa.-
Schmidt requirement are nilpotency [Iwasawa-Schmidt], supersolubility
[Huppert] and dispersion [Baer [2]].

CoroLLARY 3.7. If G-immersion is factor inherited, and if the group theo-
retical property 6 meets the Iwasawa-Schmidt requirement, then the following
properties of the finite normal subgroup N of G are equivalent:

(i) NeoG.

(ii) P 6ne P for every primary subgroup P of N.

(iil) If o is an epimorphism of G upon H and if M is a minimal normal sub-
group of H with M C N°, then there exists a pair (N, B) in 6 such that M s
an U-group and H/cx M is a B-group.

We precede the proof of this result by a proof of the following special case:

(4+) If P ongeP for every primary subgroup P of the finite group F, then
F is a g-group and hence soluble.

Proof. If (4 ) were false, then there would exist a finite group G of minimal
order with the following properties:

(1) P 0ng P for every primary subgroup P of G.
(2) @ is not a soluble §-group.

Since §-immersion is factor inherited, property (1) is inherited by every
subgroup S of G. It is a consequence of Proposition 1.1, (1) and the Frattini
argument, that every epimorphic image of S meets requirement (1) too.
Hence

(1%) P 9 uy P for every primary subgroup P of every factor V of G.
Because of the minimality of G we deduce from (1*) that

(3) every proper factor of G is a soluble §-group.

But the group-theoretical property 8 meets the Iwasawa-Schmidt require-
ment. Hence we may deduce from (3) the solubility of G. Apply Corollary
3.6 to see that G is a f-group. This contradicts (2); and this contradiction
proves the validity of the special case (+).

Proof of Corollary 3.7. We have noted in Remark 3.5, B that the implica-
tions (iii) — (i) — (ii) are valid without the hypothesis that N be soluble.
Assume finally the validity of (ii). Then

P9ny P for every primary subgroup P of N,

since §-immersion is factor inherited. Since N isfinite, we may apply the spe-
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cial case (+). Hence N is a soluble f-group. Now we may apply Theorem
3.4 to show N 0 G, completing the proof.

4. If D is any factor inherited class of groups, then it will prove convenient
to define a D-formation as a class § of groups, meeting the following require-
ments:

(4.I) Every F-group is a D-group.

(4.I1) If H is an epimorphic image of an F-group, then H is an F-group.

(4.II1) If G is a D-group, if 1 is the intersection of all normal subgroups
X of G with §-quotient group G/X, then G is an §-group.

In other words: A D-formation is an epimorphism inherited subclass of ®
which is residually closed in D.

In our applications © may be the class of all groups or the class of all finite
groups; and in this latter case the concept of D-formation coincides with
Gaschiitz’s concept of formation.

If € is any group theoretical property, then GG is the intersection of all
normal subgroups X of G with E-quotient group G/X. This is a well de-
termined characteristic subgroup of G. Using this concept one may charac-
terize a D-formation as a subclass § of D, meeting the following requirement:

(4.IV) The epimorphism ¢ maps the ®-group G upon an F-group if, and
only if, (@)’ = 1.

ProrosiTioN 4.1. If D s a factor inherited class of groups and § is a D-
Sformation, then the following properties of the normal subgroup N of the ©-group
G are equivalent:

(i) N n 3G < HFG.

(ii) NoFG < HJG.

(i) If o 7s an eprmorphism of G upon H with N° 5 1, then there exists a
normal subgroup K of H with 1 € K C N” such that H/cy K is an F-group.

(iv)  [G/HTG1/ oz NHFG/HTG] is an F-group.

Proof. Since N and §G are normal subgroups of G, we have
NoJG S N n §G

so that (ii) is a consequence of (i).
We assume next the validity of (ii) and consider an epimorphism ¢ of G
upon H with N° = 1. If firstly (N o FG@)° = 1, then

1C (NoBG) S (bG) S H(FG)'.
It follows that
1# (NoFG) ny(FG) = K C N°.

Thus K is a normal subgroup, not 1, of H which is part of N°; and we have
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furthermore (FG)” C ¢z K. Apply property (4.IV) to see that H/cx K is
an §-group. —If secondly
1= (NoFG) = N"o(JG),

then N° and (FG)’ centralize each other. Hence (FG)" C cx(N’); and ap-
plication of property (4.1V) shews that H/cx(N") is an §-group. Thus we
see that (iil) is a consequence of (ii).

Assume now the validity of (iii); and assume by way of contradiction that
N n G $ hFGE. Then we denote by o the canonical epimorphism of G upon
H = @/HFG; and we see that by (4.IV)

1 C KGN n FG)/HFG = (N n FG)° S N°n (FG)° = N° n GH.

There exist normal subgroups X of H with X n (N n §G)” = 1; and among
these there exists a maximal one, say J. From

Jn(NngGF) =1c (NnFG)

we deduce 1 < JN°/J. Application of (iii) shows the existence of a normal
subgroup L of H with J € L & JN’ such that [H/J]/cas[L/J] is an §-group.
From the maximality of J we deduce
1cLnon(Nn§G) = KC N°n GH.
The element z in H belongs to (J:L) if, and only if, x o L & J; and this im-
plies
2o KC (zoL)n(NnFF)Y CJIn(NnFF) = 1.

Hence (J:L) € cx K so that H/cxz K is an epimorphic image of the §-group
H/(J:L) >~ [H/J)/[(J:L)/J] = [H/J/canlL/J].

Thus we have shown the existence of a normal subgroup K of H with
1 < K € N’ n §H such that H/cy K is an §-group. Denote by V and W the
uniquely determined normal subgroups of G such that

WG VoW, V/H§G =K, W/HFG = K.
From
G/W ~ [G/9TFG)/W/bFG] = H/cx K

we deduce that G/W is an F-group; and this implies
FGSwW
by the definition of FG. Furthermore

VoFG S VoW C HFG;
and this implies
1 C K = V/hFG < 3(TG/HTG) = 1,

a contradiction. Hence N n FG C hFE, showing that (i) is a consequence of
(iii) and that therefore (i)-(iii) are equivalent.
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It is clear that property (ii) is equivalent with
[NYFG/HEG] © [FG/HTG] = 1.
But this is equivalent to the statement
FG/HTG S carn ol NHFG/HTGI.

It is a consequence of (4.IV) that the last statement is equivalent to (iv),
showing the equivalence of (i)-(iv).

Remark 4.2. Condition (iii) of Proposition 4.1 asserts that N is (1, §)-
immersed in G.

The stabilizer 8¢ N of the normal subgroup N of the group G is the set of all
elements s in G' with the property:

(4.8) If U,V arenormal subgroupsof G with U € V C N, then there exists
a normal subgroup W of G with

se WS UCWCV.

The elements in the stabilizer of N induce consequently the 1-automorphism
in every principal factor of G which is part of N; but they need not induce the
l-automorphism in N nor are they subject to any requirements concerning
G/N. Thus the stabilizer should not be mixed up with the group of stability
of a normal subgroup; see Specht [p. 88].

LemMA 4.3. If N s a normal subgroup of G, then 8¢ N 7s a normal subgroup
of G.

Proof. It is clear that 1 belongs to 8¢ N. Consider elements z, y in 8¢ N
and a pair U, V of normal subgroups of G with U € V & N. Then there
exists a normal subgroup X of G with

2o XCUCXCV;
and there exists a normal subgroup Y of G with
yoYCSUCYCXCV.
From the first condition we deduce that
2o Y CzxoX C U.

Hence z and y both induce the l-automorphism in Y/U. But then zy™
likewise induces the 1-automorphism in Y/U; and this is equivalent to

zy e YCUCYCYV,

showing that 2y~ likewise belongs to 8¢ N. Hence 8¢ N is a subgroup of G;
and it is an immediate consequence of the defining condition (4.8) that it is a
normal subgroup of G.
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LrevMma 4.4. The following properties of the normal subgroups A and B of G
are equivalent, provided B is m-immersed in G:
(i) AnB C 4.
(ii) AoB C phA.
(ili) A C8¢B.

Proof. Since A and B are normal subgroups of G, we have AcB C A nB
so that (ii) is a consequence of (i).

Assume next the validity of (ii) and consider a pair of normal subgroups
U,Vof Gwith U € V © B. We distinguish two possibilities.

Casel. Vnbhd € U. Then we select W = V and obtain

AoW =AoVC (AoB)nVCHANVCUCY =W,

since V is a normal subgroup, so that W meets requirement (4.8) for every
element in 4.

Case2. Vnhd $ U. Then we note that the characteristic subgroup 94
of the normal subgroup A4 is a normal subgroup of G and that

1c U(Vnbhd)/U < Up4/U < h(UA/U),

since the canonical epimorphism of G upon G/U maps A upon UA/U and hA
upon UYA/U. Tt follows that

1#[U(Vnbd)/Ulns(UA/U).

If we denote by W the uniquely determined normal subgroup of G with
UCWandW/U = [U(VnYd)/U] n3z(UA/U), then we have

A-WCUCWCV

so that W meets the requirements of (4.8) for every element in 4.
Thus we have shown in both cases that A C 8¢ B and we have deduced (iii)
from (ii).
Assume finally the validity of (iii) and assume by way of contradiction that
AnB Q; hA. Then
Bnhd c BnA C B.

Since B is m-immersed in @, there exists [as is easily seen] a normal subgroup
W of G with the following properties:

BnpACW CCBnACB
and
W /(B n hA) is a minimal normal subgroup of G/(B n h4).

If a is an element in A € 8¢ B, then welet U = Bn )4 and V = W in the
defining property (4.8). Consequently there exists a normal subgroup J of
G with

acJ &S Bnhd CJ CW.
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But since W/(B n hA) is a minimal normal subgroup of G/(B n h4), we
conclude that J = W and that therefore a c W € BnhA. Hence

AW C BnpA CW S Bnd CA.
But this is equivalent to
1CW/(Bnbd) S 3[4/ (BnbA)] S HA/(BnbA)] = b4/ (Bnbhd).

Hence
BnhpA C W S Bnbhd,

a contradiction proving that (i) is a consequence of (iii) and that (i)-(iii)
are equivalent.

Remark 4.5. A. The hypothesis that B be m-immersed in G has been used
only when deriving (i) from (iii).

B. When deriving (iii) from (ii) we have proven (4.8) in the following
stronger form:

If A is a normal subgroup with A ¢ B C hA, and if U, V are normal sub-
groups of @ with U € V C B, then there exists a normal subgroup W of @
with

A WCUCWCYV.
C. Wemay let A = 8¢ B in Lemma 4.4 and we find consequently that
BngeB C I)@g B.

D. If we impose in Proposition 4.1 in addition to the other requirements
the further condition that the normal subgroup N of G be m-immersed, then
the conditions (i)-(iv) of Proposition 4.1 are, because of Lemma 4.4, equiva-
lent to

(V) %G C8eN.

CoroLLARY 4.6. The following properties of the m-immersed normal sub-
group N of G are equivalent:

(a) G = NggN.

(b) There exists a normal subgroup S of G withG = SN and So N CH8S.

Proof. Itisa consequence of Remark 4.5.C that N 08¢ N C §8¢ N. Hence
choosing S = 8¢ N we deduce (b) from (a).

If conversely S is a normal subgroup of G with @ = SN and So N C )8,
then we deduce S C 8¢ N from Lemma 4.4 so that G = NS = Ngg N.

Lemma 4.7. (I) If N is a hypercentral normal subgroup of G, then N C 8¢ N.
(II) The m-immersed normal subgroup N of G is hypercentral if, and only
if, N C g N.
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Proof. Assume firstly that N is a hypercentral normal subgroup of G.
Consider an element g in N and normal subgroups U, Vof G with U < V S N.
Then V/U is a normal subgroup, not 1, of the epimorphic image N/U of the
hypercentral group N. It follows that

1 [V/UlnjN/U] is anormal subgroup of G/U.

Denote by W the uniquely determined normal subgroup of G with U & W
and W/U = [V/Uln3N/Ul. ThengoWC NoW C UCWC V;and
g consequently belongs to 8¢ N so that N © 8¢ N.

Assume secondly that N is an m-immersed normal subgroup of G. If N is
hypercentral, then we deduce N C 8¢ N from (I). If conversely N C 8¢ N,
then

N = NnéeN Q_ bﬁaN

by Lemma 4.4 [or Remark 4.5. C]. But the hypercenter and its subgroups are
hypercentral so that N is hypercentral, proving (II).

CoroLLARY 4.8. The following properties of the m-immersed normal sub-
group N of G are equivalent:
(i) N CyG6.
(ii) N is hypercentral and G = N8g N.
(iii) @ =8¢N.

Proof. Assume first the validity of N € §G. Then
GaN =N C iG;

and we deduce G C 8¢ N from Lemma 4.4. Hence (iii) is a consequence of
1).

If (iii) is true, then G = NG = N3z N and N © G = 84 N implies the hy-
percentrality of N by Lemma 4.7 (II). Hence (ii) is & consequence of (iii).

Assume finally the validity of (ii). Then we deduce N & 8¢ N from Lemma
4.7 (1) and the hypercentrality of N so that G = N8s N = 8 N. Apply
Lemma 4.4 to see that

N =GnN CHG

Hence (i) is a consequence of (ii), proving the equivalence of (i)-(iii).

Remark 4.9. Combination of condition (ii) of Corollary 4.8 with Corollary
4.6 produces the condition

(ii*) N is hypercentral and there exists a normal subgroup S of G with
G = SN and So N C pS,

which is consequently likewise equivalent to the conditions (i)-(iii) of Cor-
ollary 4.8.

Prorosition 4.10. If D is a factor inherited class of groups and § is a -
formation, if N is an m-immersed normal subgroup of the ©-group G and N n FG
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18 an m-tmmersed normal subgroup of TG, then the following properties are
equivalent:
(i) N n gG@ C »3a.
(ii) NoFG S hFG.
(iii) If o 7s an epimorphism of G upon H and if M is a minimal normal sub-
group of H with M C N°, then H/cx M is an §-group.
(iv)  [G/5FC)/co/swal NHTG/HTG] is an F-group.
(v) §G S8 N.
(vi) N n §G is hyperceniral and FG = (N n FG)8ge(N n FG).
(vii) TG = &e(N n FG).

Proof. The equivalence of conditions (i), (ii) and (iv) is contained in
Proposition 4.1. Since N is an m-immersed normal subgroup of @, we deduce
from Proposition 2.2 the equivalence of our present condition (iii) and the
condition (iii) of Proposition 4.1. Thus (i)-(iv) are equivalent.

If we substitute in Lemma, 4.4 [use Remark 4.5, D] as follows

A | B

G | N
then we obtain the equivalence of conditions (i), (ii) and (v). Hence condi-
tions (i)-(v) are equivalent.

If we substitute in Corollary 4.8 as follows

N | @
N n G ] TG

and if we recall that N n G is an m-immersed normal subgroup of @G, then
we obtain the equivalence of conditions (i), (vi) and (vii), completing the
proof of the equivalence of conditions (i)—(vii).

Remark 4.11. 'The immersion requirements are certainly satisfied whenever
the minimum condition is satisfied by the subnormal subgroups of G which are
contained in N.

CoroLLARY 4.12. If D s a factor inherited class of groups and § is a D-
Sformation, if the D-group G is m-immersed in G and if FG is m-immersed in
TG, then the following properties of G are equivalent:

(1) TG s hypercentral.

(i) H/cg M s an §-group for every minimal normal subgroup M of every
epimorphic 1mage H of G.

(iii) [G/HFG)/3(G/HFG] 3s an F-group.

(iv) §G S 8¢ G-

(v) TG = 56 TG

This is easily deduced from Proposition 4.10 by letting N = G.
In case the property § under discussion is a property of [finite] soluble
groups, it is possible to connect §-immersion with properties of maximal sub-
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groups. With this in mind we prove the

Lemma 4.13. If M is a minimal normal subgroup of the finite group @, and
of G/ce M 1s soluble, then
(1) M 1s a primary elementary abelian group;
(2) there exists a subgroup S of G with M n S = 1 and G = Sce M;;
(3) 4fS isasubgroup of Gwith M n S C M andG = Scg M,then M n S =1
and S is a maximal subgroup of M S;
(4) if T is a maximal subgroup of G with M $ T, then
(a) MaT =1and G = MT,
(b) M = {m"} for every m = 1 in M,
(¢) o(M) = [G:T].

Proof. Since M is a minimal normal subgroup of G, we have either
M Cc¢gMorelse M ncg M = 1. In the first case M is abelian; and in the
second case

M = M/(M n CGM) ﬁMCgM/CGM C G/CGM

is soluble. Thus M is in either case a finite, soluble and characteristic simple
group; and such a group is primary elementary abelian. This proves (1).
Because of (1) and the solubility of G/¢c¢ M we may deduce (2) from Baer
{4, p. 650, Lemma 1, p. 656, Lemma 2 and p. 651, Proposition 2, (b)].
Assume next that S is a subgroup of G with M n S € M and G = Scg M.
Then 8 € MS = T. Let X be a subgroup with S € X < T.
Then G = Xco M and M & X, since otherwise 7 = MS & X. Hence

MnSCMnXCM.

Since M n X is normalized by X and centralized by c¢ M, it is normalized by
G; and we deduce 1 = M n X = M n 8 from the minimality of M. Apply
Dedekind’s Modular LawonSC X C T' = MStoseethat X = S(X n M) = 8§,
proving that S isa maximal subgroup of T = MS. Thus wehave verified (3).
(4) finally is an immediate consequence of (1) and Baer [3, p. 118, Lemma
1].
Remark 4.14. The requirement that G be finite is certainly too strong; but
it seems likely that it does not suffice to require only the finiteness of M.
Suppose that & is a set of positive integers, containing with any integer all
its positive divisors; and denote by A = A(Y) the class of all finite groups
whose orders belong to &. It is clear that this class ¥ is factor inherited.
Denote, furthermore, by 8 some factor inherited class of finite soluble groups
which is residually closed. It is a consequence of Proposition 1.5 that (A, B)-
immersion is factor inherited; and it is a consequence of Corollary 2.4, (B)
that (A, B)-immersion and strict (A, B)-immersion are equivalent properties
of finite normal subgroups. It is a consequence of Lemma 4.13 that every
finite (A, B)-group is soluble. Application of Gaschiitz [p. 302, Satz 3.1]
shows, therefore, that the class of finite (¥, B )-groups is a saturated formation.
These assumptions concerning ¥, B we retain throughout the remainder of §4.
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ProrosiTiON 4.15.  The following properties of the normal subgroup N of the
finite group G are equivalent:
(i) N (AQY),B)G
(a) If the normal subgroup K of G is part of N, and if the subgroup
(ii) S of G is a maximal subgroup of K S, then [KS: 8] belongs to S.
(b) N n 3G C HBGE.

Proof. We have noted already that (2, B)-immersion is factor inherited
and equivalent to strict (U, B)-immersion of finite normal subgroups. Hence
(1) is equivalent with

(i*) N (%, 8)G

Assume now the validity of (i*) and consider a subgroup S of G and a
normal subgroup K of G with K € N such that S is a maximal subgroup of
K8 = T. Then S C T so that K ¢ S. Denote by ¢ the canonical epi-
morphism of T upon H = T/Sz. Since the normal subgroup K of G is not
part of S, it is not part of Sy either and this implies K° £ 1. Consequently
there exists a minimal normal subgroup M of H with M C K°. From
8" = S/8r we deduce (8°)z = 1 so that the maximal subgroup S’ of H does
not contain M. Since (A, B)-immersion and strict (A, B)-immersion are

factor inherited, it follows from (i*) that K° (%, 8) H. Since M is a minimal
normal subgroup of H with M € K’, we conclude that

(a) M is an Y-group and
(b) H/cx M is a B-group.

From (a) and our definition of the class % = A(J) we deduce that
(a') o(M) belongs to .

Since B-groups are, by hypothesis, soluble, we deduce from (b) that
(b’) H/cg M is soluble.

Application of Lemma 4.13, (4.¢c) shows now that

(e) o(M) =[H:8] = [KS:8];

and thus we have derived (ii.a) from (i*).
The validity of (ii.b) is easily deduced from (i*) and Proposition 4.10.
Assume conversely the validity of (ii). Consider an epimorphism ¢ of G
upon H and a minimal normal subgroup M of H with M € N°. Then we
deduce from (ii.b) and Proposition 4.10 that

(d) H/cag M is a B-group.
But all B-groups are soluble so that
(d’) H/cyg M is soluble.
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Apply Lemma 4.13, (2)~(4) to show that
(e) there exists a subgroup S of H with the following properties:
MnS=1 H=S8wM, o(M) = [MS:8],
S is a maximal subgroup of MS.

The inverse images K = M° " and T = 8" ' contain both the kernel L of
o. Clearly K is a normal subgroup of G with L £ K € NL so that by Dede-
kind’s Modular Law K = L(N n K) with N n K a normal subgroup of G,
contained in N. Likewise T is a maximal subgroup of

KT = (NnK)LT = (NnK)T.
Application of (ii.a) shows now that
[(NnK)T:T) = [KT:T]
belongs to §. But
o(M) = [M8:8] = [((K/L)(T/L):(T/L)] = (KT/L):(T/L)] = [KT:T]
so that
(f) o(M) belongs to .
Reeall the definition of ¥ = A(J) and we have shown that

(f") M is an UA-group.

Combine (d) and (f') to see that N is strictly (%, B)-immersed in G.
Hence (ii) implies (i*), proving the equivalence of (i), (i*) and (ii).

CoroLLARY 4.16. The finite group G is an (A(), B)-group if, and only i,
(a) [G: 8] belongs to & for every maximal subgroup S of G and
(b) BG s nilpotent.

Proof. If welet N = @ in Proposition 4.15, then our conditions (a) and
(b) are nothing but weak forms of conditions (ii.a) and (ii.b) respectively.

If there existed groups, meeting requirements (a) and (b) which are not
(%, B)-groups, then there would exist among these one, say G, of minimal
order. We note:

(1) Conditions (a) and (b) are satisfied by G.
(2) G is not an (¥, B)-group.

If ¢ is an epimorphism of G upon H, and if S is a maximal subgroup
of H, then the inverse image S = T is a maximal subgroup of G. Hence
[H:8] = [Q:T] belongs to &. Noting (4.IV) we conclude that BH = (B8G)"
is nilpotent. Thus conditions (a), (b) are satisfied by every epimorphic
image of G. Because of the minimality of G we conclude:

(3) Every proper epimorphic image of @ is an (¥, B)-group.
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G = 1 by (2). Consequently, there exist minimal normal subgroups of G.
If A > B are minimal normal subgroups of G, then G/A and G/B are, by (3),
both (9, B)-groups. Naturally, A n B = 1. Hence G is isomorphic to a
subgroup of the direct product (G/A) ® (G/B) of two (¥, B)-groups; and
this implies that @ itself is an (A, B)-group, contradicting (2). Thus we have
shown:

(4) There exists one and only one minimal normal subgroup M of G;
and G/M is an (YA, B)-group.

Assume by way of contradiction that the Frattini subgroup ®G # 1. Then
G/®G is, by (3), an (A, B)-group. But we noted before that the class of finite
(YA, B)-groups is a saturated formation. Hence G is an (¥, B)-group, con-
tradicting (2). It follows that

(5) &G = 1.

By (5), there exists a maximal subgroup S of G with M $ S. Application
of (b) and Corollary 4.12 shows that G/c¢ M is a B-group; and as such
G/c¢ M is soluble. Application of Lemma 4.13, (4.c) shows that o(M) =
[@: 8]; and the latter number is by (a) a number in & so that M/ is an A-group.
We have shown:

(6) M (¥, 93)a.

Combine (4), (6) with Proposition 1.4, (b) to see that G (¥, B) G, con-
tradicting (2); and this contradiction completes the proof.

Lemma 4.17.  Every finite minimal normal subgroup M of a group G has
the following properties:
(A) If the maximal subgroup S of G does not contain M, then

(a) Mn 8Se = 1,

(b) So = S n Cg M ;

(¢) ManS>~(MnaS8)eM/ce M.

(d) 8/8Sq and [G: 8] are finite.
(B) The following properties of M are equivalent:

(1) M is a primary elementary abelian group.

(i) M ds primary.

(iii) M 4s soluble.

(iv) If 8 7s a maximal subgroup of G, then M n S = 1 or M.

(v) If the maximal subgroup S of G does not contain M, then [G: 8] s a
power of a prime and M n S is nilpotent.

Proof. If the maximal subgroup S of G does not contain M, then
Mn S¢ € M;and M n Sg = 1is a consequence of the minimality of M. But
this implies that the normal subgroups M and S¢ of G centralize each other
so that S¢ € ¢¢ M. Hence S¢ € Snc¢gM. From the maximality of S and
M C Swededuce @ = MS. Since S n cg M is certainly normalized by S and
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centralized by M, it is normalized by M S = @, hence a normal subgroup of @
so that Sncg M € Se¢. This proves (b).

From (a) and (b) it follows that
(Mn8S)eM/ceM~(MnS8)/(ManSncgM)=MnS,
proving (¢). Next we note that
[G:8] = [MS:8] =[M:(Mn8)] < olM);
and the finiteness of M implies that of [G:S]. Applying (b) we see that
S/8¢=8/(8Snce M)~ 8cedM/ce M C G/eca M;

and the latter group is finite as a group of automorphisms of the finite group
M. This proves (d), showing the validity of (A).

Now we turn to the proof of (B). It is clear that (i) implies (ii) and that
(ii) implies (iii). If M is soluble, then M’ < M so that M’ = 1, since M is
characteristic simple. If p is a prime divisor of o(M ), then it follows likewise
that M? = 1. Hence (i) is a consequence of (iii), showing the equivalence of
(1)—(iil).

Assume next the validity of condition (i) and consider a maximal subgroup
S of G with M &€ 8. Then G = MS and

[G:8S] = [M:(M n 8)] isa divisor of o(M).

But o(M) is, by (i), a power of a prime so that [G: S] is a power of a prime.
Since M is abelian, so is M n 8; and thus we have deduced (v) from (i).

Assume now that condition (v) is satisfied by M and that the maximal sub-
group S of G does not contain M. Then M n S is nilpotent and [G: S] is a
prime power p”. Since G = M S, we have

p" = [G:8] = [M:(M n 8S)].

This implies that M is the product of the nilpotent group M n S and of a
p-Sylow subgroup of M. But such a [finite] product is soluble by the Theorem
of Kegel-Wielandt; see Scott [p. 381, 13.2.9]. Hence M is soluble. Since
(i)-(iii) have been shown to be equivalent, M is abelian. Thus M n S is
normalized by S and centralized by M so that M n S is a normal subgroup of
MS = @. Since M n S < M, we deduce M n S = 1 from the minimality of
M. We have deduced (iv) from (v).

Assume finally that M is not primary. From M = 1 we deduce the exist-
ence of a prime divisor p of o(M ). If P is a p-Sylow subgroup of M, then

lcPcCM.

From the minimality of M we deduce that P is not a normal subgroup of G.
Hence ng P © G. Since every subgroup, conjugate to P in G, is contained
in M, the number of subgroups, conjugate to P in G, is finite. Hence [G:1g P]
is finite [and not 1]. Consequently there exists a maximal subgroup T of G
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with ng P € T. By the Frattini argument we have G = Mng P; see Baer
[3, p- 117, Lemma 1]. This implies G = MT. Now we note that

lcPCMnnPCSCMnTCM

[by G = MT]. Hence (iv) is not satisfied by M, if (ii) is not satisfied by M.
Consequently (ii) follows from (iv), completing the proof of the equivalence
of (i)—(v).

Remark 4.18. A, If the finite minimal normal subgroup M of G is not
abelian, then we have shown among other things the existence of a maximal
subgroup of G which does not contain M ; see (iv). But the abelian groups of
type p” provide examples of groups with minimal normal subgroups and with-
out maximal subgroups.

B. It is easy to derive from Lemma 4.17, (B) a criterion for the solubility
of finite groups.

ProrosiTioN 4.19. If the property § of finite nilpotent groups is inherited
by factors and direct products, then the following properties of the finite group G
are equivalent:

(i) G s nilpotent.

(ii) If M s a minimal normal subgroup of the eptmorphic tmage H of G,
then H/cy M is an §-group.

(i) If S is a maximal subgroup of G, then S/S¢ is an F-group and [G: 8]
18 @ prime power.

Proof. If D is the class of finite nilpotent groups, then § is a D-formation.
Application of Corollary 4.12 shows, therefore, the equivalence of properties
(i) and (ii).

We assume next that G meets the equivalent requirements (i) and (ii).
Since §@ is nilpotent and G/FG is an F-group [as (4.IV) may be applied on
the ©D-formation §], it follows that G is an extension of the nilpotent group
F@ by the nilpotent group G/FG. Hence @ is soluble. Consider a maximal
subgroup S of G. Then [G: 8] is a prime power, as G is soluble; see, for in-
stance, Lemma 4.17, (B.v). Let H = G/S¢and T = S/S¢. Then T is a
maximal subgroup of H with Ty = 1. Since H 5 1, there exists a minimal
normal subgroup M of H. Since @ is soluble, so is M. Hence M is abelian
[Lemma 4.17, (B)] so that M C ¢z M. Since Ty = 1, we have M & T.
Since 7' is a maximal subgroup of H, application of Lemma 5.12, (A.b) shows
that 1 = T nca M. Hence

T=T/[TacaMl~TcyM/cau M & H/cg M.
Hence T is, by (ii), isomorphic to a subgroup of an §-group; and as such
8/8¢ = T is an §-group, proving (iii).

Since § is a D-formation, and since the groups with property (ii) are [finite
and] soluble, they form a saturated formation by Gaschiitz [p. 302, Satz 3.1].
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Assume now that G meets requirement (iii). Consider an epimorphism
o of G upon H and a maximal subgroup Sof H. Then T = 8°"" is a maximal
subgroup of G which contains the kernel K of ¢ so that K & Ts and
(Te¢)” = Se¢. Hence[H:S] = [G:T] and

S/ S @ = T/ Tg
is an -group by (iii); and we have shown:
(1) Every epimorphic image of G meets requirement (iii).

Assume now by way of contradiction that (i) and (ii) are not satisfied by
G. Since @ is finite, there exists consequently an epimorphic image H of G
with the following properties:

(2) The equivalent conditions (i) and (ii) are not satisfied by H; but
they are satisfied by every proper epimorphic image of H.

If the Frattini subgroup ®H were not 1, then H/®H would satisfy (ii).
But the class of finite groups with property (ii) is a saturated formation.
Thus this would imply that H meets requirement (ii), contradicting (2).
Consequently

(3) ®H = 1.

Since H = 1 by (2), there exists a minimal normal subgroup M of H.
If A were a minimal normal subgroup of H with M % A, then M n A = 1.
But H/M and H/A meet requirement (ii) by (2). Property (ii) is asaturated
formation. Hence H = H/(M n A) satisfies (ii), contradicting (2). We
have shown:

(4) There exists one and only one minimal normal subgroup M of H.

Suppose that there exists a maximal subgroup Sof HwithlCc M nScC M.
Then M ¢ Sz so that Sz = 1 by (4). Apply (1) to see that S = S/Sx
is an §-group. Hence M n S is an §-group and consequently nilpotent.
Apply (1) to see that

[M:Mn 8] =[MS:8] = [H:S]

is a prime power. Apply Lemma 4.17, (B) to see that M n S = 1
orM nS = M, a contradiction. Hence

(5) M n S = 1or M for every maximal subgroup S of H.
A second application of Lemma 4.17, (B) shows that
(5*) M is a primary elementary abelian group.

By (3) there exists a maximal subgroup S of H with M ¢ S. We deduce
MnS = 1from (5) and Sz = 1 from (4). Hence S is an F-group by (1).
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Application of Lemma 4.17, (A.b) shows that S n ¢z M = 1. From (5%)
we deduce
MC M and H=SM = Seg M

because of the maximality of S. Consequently
H/caM = Sca M/ca M ~S/[SncgM] =8
is an §-group. We note:
(6) H/cg M is an §-group.

Combine (6), (4) and (2) to see that H meets requirement (ii). This
contradicts (2); and this contradiction shows that (i) and (ii) are satisfied
by @, proving the equivalence of (i)-(iii).

6. The considerations of this section are based on the following lemma
which is a collection of more or less well known results. The proof, obtained
essentially by application of Schur’s Lemma and the theory of finite fields,
is included for the convenience of the reader.

Lemma 5.1. If the minimal normal subgroup M of G is finile, and if
Mo@ = 1,then M and T = G/ce M have the following properties:

(1) M 4s a primary elementary abelian group.

(2) T s cyclic [and finite].

(8) If the order o(M) = p', then r is both the minimum and the greatest
common divisor of all the positive integers n with p™ = 1 modulo o(T').

Proof. By hypothesis M and G’ centralize each other. Hence G’ C c¢ M
so that

(2') T is abelian.

But I is essentially the same as the group of automorphisms, induced in
M by G. Hence M induces an abelian group of automorphisms in M so that
M/iM is abelian. But M is characteristic simple. In particular therefore
3M = lor3M = M. Ineither case M is abelian. Since M is a characteristic
simple, finite, and abelian group, M” = 1 for every prime divisor p of o(M ).
This proves (1).

Let o(M) = p" [for p a prime and r a positive integer]. Identify I' with
the group of automorphisms, induced in M by G. Since M is abelian, the
endomorphisms of M form a ring. Hence a ring A of endomorphisms is
spanned by T'. Since I' is abelian, A is a commutative ring; and the group
identity of T is the ring identity of A. Since M is finite, so is A.

If ¢ 5 0 is an endomorphism in A, then M7 5 1 and the kernel K(o) of ¢
is different from M. Furthermore

K(s)* = K(¢"*) = K(¢) forevery \inT.

Hence K(¢) is a normal subgroup of G and we deduce K(o) = 1
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from K(¢) € M and the minimality of M. But M is finite so that ¢ is an
automorphism of M. Since A is a finite ring and every element, not 0, in
A is an automorphism of M,

(4) A is a finite field.

The multiplicative group of a finite field is cyclic. Since I is a subgroup
of the multiplicative group of A, we conclude that T is cyclic, proving (2).

Every element ¢ 1 in M defines a mapping ¢ — ¢’ of A into M. This
mapping is single-valued and additive. Since every ¢ # 0 in A is an auto-
morphism of M, this mapping is a monomorphism of the additive group
Ay of A into M. Clearly t* is a subgroup of M which contains ' = ¢ = 1.
But T C A so that ¢* isa normal subgroup, not 1, of G. Apply the minimality
of M to see that t* = M. Hence M =~ A, ; and this implies in particular

(5) o(M) = p"is the number of elements in the field A.

If we denote by A* the multiplicative group of the field A, then we deduce
from (5) that

(6) o(A*) =p — 1.

Noting that T is a subgroup of A¥, it follows that o(T') is a divisor of p” — 1.
Hence

(7) p" = 1 modulo o(T).

The field A contains, by (5), exactly p” elements. Mapping every element
in A upon its p-th power produces an automorphism 8 of A whose order is r.
This automorphism 8 induces in the subgroup I' of A* an automorphism
of order s < r. The elements in A, fixed by 8, form a subfield of A which
contains exactly p° elements. But A is spanned by T so that T is not part
of a proper subfield of A. Hence s = r and we have shown:

(8) Raising every element in T' into its p-th power is an automorphism
of order r of I.

Consequently 7 is both the minimum and the greatest common divisor
of all the positive integers n with

w?" = w for every element win T.
Since T is, by (2), a finite c¢yclic group, this condition is equivalent to
p" =1 modulo o(T);

and this proves (3).

If N is a normal subgroup of G, if ¢ is an epimorphism of G upon H, and if
M is a minimal normal subgroup of H with M C N°, then we say that M
18 a principal factor of G, contained in [or covered by] N. The group H/cg M
is essentially the same as the group of automorphisms, induced in M by H;
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and we term it the group of automorphism, induced by G in its principal factor
M. If M happens to be an elementary abelian group of [finite] order
o(M) = p", then we term p the characteristic and r the rank of M.

LemMA 5.2, If P s a finite normal p-subgroup of the group G, iof G induces
in every principal factor, contained in P, an abelian group of automorphisms,
if k is a common multiple of all the ranks of principal factors of G, contained in
P, then

(a) the groups of automorphisms, induced by G i the principal factors
contained m P, are cyclic groups of orders dividing p* — 1 and

(b) 2* o P = 1 for every x in G with (o(zcg P), p) = 1.

Proof. Suppose that o is an epimorphism of G upon H and that M is a
minimal normal subgroup of H with M C P°. By hypothesis H/cx M is
abelian and this is equivalent to H' & ¢y M and hence to M o« H' = 1. Natu-
rally M is an elementary abelian p-group so that o(M ) = p". By hypothesis
k is a multiple of 7. An immediate application of Lemma 5.1 shows that

(1) H/eg M is cyclic [and finite] and r is the greatest common divisor
of all the positive integers n with

p" =1 modulo o(H/cx M).
Since k is a multiple of 7, it follows in particular that
(2) p*=1 modulo o(H/cx M).

Consider an element z in H. Therkl z induces in M an automorphism A;
and it is a consequence of (2) that \» ' = 1. If y is an element in M, then
y =y = T =
and consequently
(3) yo 2% = 1 for every z in H and every y in M.

Consider now an element z in G with (o(zce P), p) = 1. There exist
normal subgroups N (%) of G with

1=N(0), N#)CNGE+1), Ny =P,
N(i 4+ 1)/N(%) is 2 minimal normal subgroup of G/N(%).

The element x induces in every N + 1)/N (z) an automorphism whose
order is, by (3), a divisor of p* — 1. Hence z” ~* induces the 1-automorphism
in every N (z + 1)/N(z). It is well known and easily verified that conse-
quently z” * induces in P a p-automorphism. But z induces in P an auto-
morphism of order prime to p. The automorphism, induced by 2 in P,
has consequently at the same time order a power of p and order prime to p
so that z*" " induces the 1-automorphism in P. Thus we have shown:

(4) 2™ o P = 1 for every z in G with (o(zcs P), p) = 1.
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This proves (b); and (a) is contained in (1), (2).

TureoreM 5.3. If e(p) is, for every prime p, a positive inieger, then the
following properties of the finite normal subgroup N of G are equivalent:
(a) @ induces in every principal factor, contained in N, an abelian
(i) 4 group of automorphisms.
(b) If a principal factor of G, contained in N, is a primary elementary
abelian group of characteristic p and rank r, then e(p) s a multiple of r.
f(a) G induces in every principal factor, contained in N, an abelian
(i) group efp?ﬁtomorphisms.
(b) 2° oy = 1 for every prime p, every p-element y in N n G’
>and every « i G with (o(xce(N nG'), p) = 1.
(a) N s soluble.
(i) (b) If the principal factor M of G is contained in N n G, if M s an
elementary abelian p-group, then the group of automorphisms, induced
in M by G, is cyclic of order dividing p°® — 1.

Note. Because of Proposition 4.10 [(iii), (vi)] we may substitute for
conditions (i.a) and (ii.a) the requirement:

NnG isnilpotentand G = (Nn @ )e(Nn@G).

Proof. Noting that N is finite and that the property & of being abelian
meets all the desired requirements we deduce from Proposition 4.10, [(i),
(iii )] that the conditions (i.a) and (ii.a) are equivalent to

(A) NnG CHG).
If (A) is satisfied, then we have clearly:
(A’) N is soluble.

(A”) Every principal factor of G which is contained in N is a primary
elementary abelian group.

(A”) N n @ is nilpotent [and consequently a direct product of primary
groups].

Assume now the validity of (i). It is a consequence of (A”) that the
set P of all the p-elements in N n @ is a characteristic subgroup of the normal
subgroup N n G’. Thus P is a normal p-subgroup of G. If a principal
factor of G is contained in P, then it is likewise contained in N and enjoys
consequently property (i.a). We may apply Lemma 5.2, (b) to show that

(B) 2P o P = 1 for every z in G with (o(xcg P), p) = 1.

It is clear now that (ii) is a consequence of (i).

Assume next the validity of (ii). We have already deduced (iii.a) [= (4')]
from (ii.a). Consider an epimorphism ¢ of G upon H and a minimal normal
subgroup M of H with M C N° n H’. We noted already that N is soluble.
Hence M is a finite, soluble, characteristic simple group and consequently an
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elementary abelian p-group. Every element of order a power of p in M
is the o-image of an element of order a power of p in N n G’; and every element
of order prime to p in H/cg M is the o-image of an element of order prime to
pin G/¢cg(N n G’). Apply (ii.b) to show that

2P oM =1 forevery z in H with (o (zex M), p) = 1.
It is a consequence of (ii.a) and Lemma 5.2, (a) that
H/cy M is eyclic of order prime to p.
Combine these two results to see that
H/cx M is cyclic of an order dividing p*® — 1.

This shows that (iii) is a consequence of (ii).

Assume finally the validity of (iii). If the principal factor M of @ is
contained in N, then M is finite, soluble, characteristic simple; and this
implies:

(+) Every principal factor of G which is contained in N is a primary
elementary abelian group.

Consider now an epimorphism ¢ of G upon H and a-minimal normal sub-
group M of H with M C N°. 1If firstly M n H' = 1, then

MeHCMnH =1

so that M and H centralize each other; and this implies M C 3H so that M
because of its minimality is cyeclic of order a prime. If secondly M n H' # 1,
then we deduce M C H’ from the minimality of M. Hence M € N° n H'.
The principal factor M of @ is consequently contained in N n G’. Because
of (+) the principal factor M of G is a primary elementary abelian p-group
and thus its [finite] order is o(M) = p". We may apply (iii.b) to see that
H/cg M is cyclic of order dividing p*® — 1. But then Lemma 5.1, (3) shows
that r is a divisor of e(p). This shows that (i) is a consequence of (iii),
completing the proof of the equivalence of (i)-(iii).

To obtain a formulation of Theorem 5.3 which is more in accord with the
terminology employed in Section 3, let e(p) be for every prime p a non-nega-
tive integer. Then

Ao (p) = class of finite elementary abelian p-groups with rank dividing e(p),
B.(p) = 8 [= class of abelian groups],
6, = family of pairs (e(p), B.(p));
A (p) = class of elementary abelian p-groups,
PB. (p) = class of eyclic groups of order dividing p*® — 1,

6. = family of pairs (2. (p), B (p)).
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If e(p) = O for some prime p, then N, (p) is the class of all finite elementary
abelian p-groups and B, (p) is the class of all eyclic groups.

CoOROLLARY 5.4. Assume that N is a finite normal subgroup of G.

(a) N .G, N ¢, G and N §. G are equivalent properties.

(b) N 8, G implies N 6, G.

(¢) Ife(p) < 2forevery p,then N 8 G and N 8, G are equivalent properties.

Proof. It is an immediate consequence of the equivalence of conditions
(i) and (iii) of Theorem 5.3 that N 6, G and N 8; G are equivalent properties.
Since A, (p) and B, (p) are factor inherited properties, we deduce from. Propo-
sition 1.5 that 6, -immersion is factor inherited; and it follows therefore from
Corollary 2.4, (B) that N 6, G and N 6, @ are equivalent properties. This
completes the proof of (a); and (b) is an immediate consequence of Corollary
2.4, (A). —If finally e(p) < 2 for every p, then the properties %s(p) and
B.(p) are likewise factor inherited: it is a consequence of Proposition 1.5
that 6,-immersion is factor inherited and hence it is a consequence of Corol-
lary 2.4, (B) that N 6, G and N 6, @ are equivalent properties.

Discussion 5.5. A. Corollary 5.4 shows that a certain class of immersions
may be defined in two essentially different ways. We shall consequently
say 0, instead of 6, and 6,. In short,

0, = 8, = 6..
If e(p) < 2 for every prime p, then we have
4
03 = Be

too. Itis a consequence of Remark 2.3 that the latter equality does not hold
true without the hypothesis e(p) < 2.

B. Condition (ii.b) of Theorem 5.3 is a “conditional identity”.

C. If G happens to be a torsion group, then condition (ii.b) of Theorem
5.3 is equivalent to the following more elegant property:

&” ™ oy = 1 for every prime p, every p-element y in N n &' and every

p’-element z in G.

COROLLARY 5.6. The following properties of the finite, soluble, normal
subgroup N of G are equivalent:
(i) N G.
(i) 8 6, neS for every primary subgroup S of N.
(iii) If S 4s a p-subgroup of N and if x is an element in ne S
with (0(engs 8), p) = 1, then 2”7 o 8 = 1; and ns S induces in every
principal factor, contained in S, an abelian group of automorphisms.

Proof. We noted before that f,-immersion is the same as 9, -immersion
and that the latter is factor inherited [Remark 5.5, A]. Consequently we
may apply Theorem 3.4 to prove the equivalence of (i) and (ii). It is a
consequence of Lemma 5.2, (b) that (iii) is a consequence of (ii). If finally
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(iii) is satisfied, then condition (ii) of Theorem 5.3 is satisfied by the normal
and finite p-subgroup S of 1e S so that S 6, ng S for every primary subgroup
S of N. Thus (ii) and (iii) are likewise equivalent.

CoroLLARY 5.7. The following properties of the finite group G are equivalent:
(i) @ is a o-group.

(i) @ is a 6:-group.

(iii) G induces in every principal factor an abelian group of automorphisms
and

xpe(P)—-l oy = 1

for every prime p, every p-element y in G’ and every p’-element x in G.

(iv) G 4s soluble and S 6, ng S for every primary subgroup S of G.

This is easily deduced from Corollary 5.4 and Corollary 5.6.

, CoROLLARY 5.7%. If e(p) < 2 for every prime p, then the finite group G is a
8.-group if, and only if, G is a 6, -group.

This is an immediate consequence of Corollary 5.7 and Corollary 5.4, (c).
ProposrTioN 5.8. The classes 6, of finite groups are saturated formations.
Proof. Let

GC.(p) be the class of finite elementary abelian p-groups,
D.(p) be the class of finite abelian groups D with D** ¥~ = 1,
A, the family of pairs (C.(p), Ds(p)).

All the classes €,(p) and D.(p) are factor inherited and residual so that
in particular they are formations in the sense of Gaschiitz. According to
Gaschiitz [p. 302, Satz 3.1] the class A, is a saturated formation. But it is
easily deduced from Lemma 5.1 that A, = 0,.

Remark 5.9. Naturally 6, = 9, = §, and the second definition involves
classes of groups that are not factor inherited.

CoroLLARY 5.10. If0 < e(p) £ 2, and #f N s a finite normal subgroup of
G, then N e if, and only if, the following three conditions are satisfied:

(a) @ =(Na@)8s(Nn@).

(b) z* @5y = 1 for every prime p, every p-element y in N n G and
every x in G with (o(xce(Nn @), p) = 1.

(¢) Ife(2) = 2,then x oy = 1 for every 2-element x in N n G’ and every
3-element y in N n @'

Proof. The properties
N6, @ N6.G and N, @

of the finite normal subgroup N of @ are equivalent because of 0 < e(p) < 2
and Corollary 5.4, (a) and (c).
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If firstly N 8, G, then we deduce the validity of (b) from Theorem 5.3,
(ii.b). From Theorem 5.3, (ii.2) and Proposition 4.10, [(iii), (vi)] we deduce

Na@ C &,
Nn@ isnilpotent and G’ = (N n @ )ée(N n G');

note that finite hypercentral groups are nilpotent. Our conditions (a) and
(¢) are immediate consequences.

Assume conversely the validity of conditions (a)-(c¢). To prove the
nilpotency of N n G’ consider a pair of different primes p, ¢ and a p-element
z and a g-element y, bothin N n’.  'We may assume without loss of generality
that p < q. We have certainly zy = yz [because of (¢)] if we have at the
same time p = 2, ¢ = 3, ¢(2) = 2. Assume next that we do not have si-
multaneously p = 2, ¢ = 3, e(2) = 2. If ¢ were a divisor of p*® — 1, then
we recall that ¢ is certainly not a divisor of p — 1 < p < ¢ and that
0 < e(p) < 3. It would follow that e(p) = 2 and that ¢ is a divisor of
p +1<q. Hencep + 1 = gso that [as p and ¢ are primes]p = 2, ¢ = 3,
e(2) = 2, the case we excluded. Consequently ¢ is prime to p*® — 1; and
this implies that o(y) and p*® — 1 are relatively prime. Hence

W = (="

But z and y commute by (b) so that we have again xy = yz. Primary
elements of relatively prime order in N n G’ commute consequently; and this
is well known to be equivalent with the nilpotency of the finite group N n @.
Combine this with condition (a) and it follows from Corollary 4.8 that

NnG CHa'.

pe (P)—1

Combine this with Proposition 4.1 and Proposition 2.2 to see that

G induces in every principal factor, contained in N, an abelian group of
automorphisms.

Because of (b) condition (ii) of Theorem 5.3 is consequently satisfied by
the finite normal subgroup N of @. Hence N §, G as we wanted to show.

Remark 5.11. Let ¢(2) = 2 and e(p) = 1 for odd primes p. Then the
symmetric group of degree 4 is an example of a group G with the properties
(a), (b) for N = @, though N n G’ = @’ is not nilpotent. This shows that
condition (c¢) is indispensable.

ProrosiTiON 5.12. If e(p) is for every prime p a non-negative integer, then
the following properties of the finite normal subgroup N of the group G are equiva-
lent:

(1) If o is an epimorphism of G upon H and if the minimal normal subgroup
M of H is part of N, then M s an elementary abelian group of prime power
order p" with r a divisor of e(p) and H/cy M 1is abelian.
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(a) If K is a normal subgroup of G and K © N, if 8 s a maximal
(i) subgroup of K8, then [KS:8] is [finite and] a prime power p" with r

a divisor of e(p).

(b) Nn@ C K@

(a) If K s a normal subgroup of G and K C N, if 8 is a maximal

subgroup of K8, then [KS:8] s [finite and] a prime power p" with r
(i) a divisor of e(p) and S/Sks s abelian.

(b) If o is an epimorphism of G upon H, if the minimal normal sub-

group M of H s part of N°, then there exists a subgroup S of H with

MnS=1andH = Scg M.

Proof. In t%xe notation used throughout this section condition (i) is equiva-
lent to strict 6,-immersion of N in @; in short: (i) is equivalent with

(i*) Né G,
and it is a consequence of Corollary 5.4, (a) that (i*) is equivalent with
(i**) N6/ G

Assume first the wvalidity of (i). Then (ii.b) may be deduced from
Proposition 4.10. Next we note that 6, -immersion is factor inherited [Prop-
osition 1.5]. Suppose now that K is a normal subgroup of G with K C N
and that the subgroup S of G is a maximal subgroup of KS = T. Denote by
o the canonical epimorphism of 7' upon H = KS/Sr. Then S is a maxi-
mal subgroup of H = K°S’ so that K” = 1. Consequentlry there exists a
minimal normal subgroup M of H with M C K’. Since f,-immersion and
6. -immersion are equivalent properties of finite normal subgroups [Corollary
5.4], and since 6, -immersion is factor inherited, it follows that M is an ele-
mentary abelian group of prime power order p” with r a divisor of e(p).
From (8°)z = 1 we deduce that M ¢ S°. Application of Lemma 4.17,
(B) shows now that M n 8 = 1. Hence

pi=0oM)=[M:(MnS8")] =[MS8:8]=[H:8]=[T:8],

since M is not part of the maximal subgroup S° of H. This shows the validity
of (ii.a); and we have derived (ii) from (i).

Assume next the validity of (ii). Consider a normal subgroup K of G
with K € N and a subgroup S of G which is a maximal subgroup of T = KS.
Then it is a consequence of (ii.a) that [T:S] = p" with r a divisor of e(p).
Denote by ¢ the canonical epimorphism of T upon 7/Sry = H. Then S°is a
maximal subgroup of H and H = K°S8” so that 1 © K°. Consequently there
exists a minimal normal subgroup M of H with M € K°. Next we note that
the property:

(+) the group X induces an abelian group of automorphism in every
principal factor, contained in its finite normal subgroup Y,

is factor inherited by Proposition 1.5; and that this property is equivalent with
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Y n X’ C pX’ by Proposition 4.10. Consequently it follows from (ii.b)
that H/cy M is abelian. We note that (S°)z = 1 and that therefore
M & S°. Apply Lemma 4.17, (A.b) to see that

1= (SU)H = SanHM.
Hence
S7 = S"/[S”ncHM]’zS” CHM/CHM _(—: .H/CHM

is abelian; and this implies the commutativity of S/Sr. Thus we have de-
rived (iii.a) from (ii).

Consider next an epimorphism 8 of G upon B and a minimal normal sub-
group C of B with ¢ € N’. We deduce from (ii.b) and Proposition 4.10
that B/cz C is abelian; and this implies by Lemma 5.1 that B/cs C is cyclic.
There exists therefore a cyclic subgroup E of B with B = Ec¢z C. If the cyclic
group E is infinite, then E n C' = 1, since C is finite. If F is finite, then one
recalls that by Lemma 5.1 the orders o(C) and o(B/cp C) are relatively
prime. It follows that the finite cyclic group E possesses a direct factor F
whose order is prime to o(C) with B = Fez C. Clearly F n ¢ = 1. This
shows that (iii.b) likewise is a consequence of (ii).

Assume now the validity of (iii) and consider an epimorphism ¢ of G upon
H and a minimal normal subgroup M of H with M € N°. By (iii.b) there
exists a subgroup S of H with

MnS=1 and H = Sz M.

Then the same automorphisms are induced by H and S in M, so that M is a
minimal normal subgroup of SM. Furthermore, m® = m” for every m in
M and M = {m®% for m % 1in M. Suppose that X is a subgroup with
S € X € SM. Then we deduce from Dedekind’s Modular Law that
X = 8(X n M) and that X n M 5 1. It follows that {(X n M)%} = M;
and this implies

X=8XnM)= 8{(Xn M) =8M.

This shows that S is a maximal subgroup of SM. Let T = 87" and
K = NnaM°". Then K is a normal subgroup of @, since N and M " are
normal subgroups of G; and clearly K € N. If J is the kernel of ¢, then
JC Tn M and KJ = M° " because of M C N° so that K = M.
Assume that X is a subgroup with 7 € X € TK. Then S = 7° € X",
since the kernel J of ¢ is part of 7. But § € X° € T°K" = SM implies
X° = 8SM, since S is a maximal subgroup of SM. From J € X € TK
we deduce now X = TK so that T is a maximal subgroup of TK. Appli-
cation of (iii.a) shows now that [KT:T] is a prime power p” with r a divisor
of e(p) and T/Txr is abelian. Since the kernel J of ¢ is part of 7, it is also
part of Txkr. Hence

(KT)V = SM’ T = S) (TKT)V = Ssu.
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Consequently
oM)=[M:(SnM)] =[SM:8] = [KT:T] = p',
T/Txr >~ T°/[Txzl” = S/8su = S/[8 0 csar M] = Scsu M /csu M
by Lemma 4.17, (A.b). But
H/caM = Sca M/cg M ~ S/[S n ¢cg M)
is an epimorphic image of the abelian group S/[S n ¢sx M] >~ T/Txr. Hence
H/cg M is abelian.

Since the minimal normal subgroup M is a finite p-group, it is likewise abelian
[Lemma 4.17, (B)]. Thus, we have derived (i) from (iii) and proven the
equivalence of (i)—(iii).

CoroLLARY 5.13. If e(p) s for every prime p a non-negative integer, then
the following properties of the finite group G are equivalent:
(1) @G 1s a O.-group.
(a) If S is a maximal subgroup of G, then [G:S] = p" with p a
(ii) | prime and r a divisor of e(p).
(b) @ us nilpotent.
(ii1) If S 7s a maximal subgroup of G, then
(a) [G:8] = p"with p @ prime and r a divisor of e(p) and
(b) S/8¢ is abelian.

Proof. We recall that as a consequence of Corollary 5.4 [and the definition
of 6, in Discussion 5.5, A] condition (i) is equivalent to either of the following
conditions:

(i*) @isa §.-group;
(i**) @ is a 6, -group.

Restatement of (i*) in explicit form gives:

(i.4+) If M is a minimal normal subgroup of the epimorphic image H
of @, then M is a primary elementary abelian group, o(M) = p" with p a
prime and 7 a divisor of e(p) and H/cxg M is abelian.

If we let @ = N in Proposition 5.12, then we see that either of the condi-
tions (ii) and (iii) is a consequence of (i.+)—as a matter of fact they are
very weak forms of the specializations obtained in this fashion.

If we choose next in Proposition 4.19 for { the class of finite abelian groups,
then we have §G@ = @'; and we see the equivalence of our condition (ii.b)
with (iii.b) together with the requirement that maximal subgroups have
prime power index. It follows that our conditions (ii) and (iii) are equiva-
lent.

Assume next the validity of the equivalent conditions (ii) and (iii). It
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is evident that
(1) conditions (ii) and (iii) are satisfied by every epimorphic image of G.

Assume now by way of contradiction that G is not a 6.-group. Then there
exist epimorphic images of G which are not 8.-groups; and among these there
exists one of minimal order, say H. We note:

(2) H is not a f.-group.
(3) Every proper epimorphic image of H is a 6,-group.

If the Frattini subgroup ®H of H were not 1, then H/®H is by (3) a 6,-
group. But 6, is by Proposition 5.8 a saturated formation. Hence H would
be a 6,-group, contradicting (2). Consequently

(4) @H = 1.

Since H # 1 by (2), there exists a minimal normal subgroup M of H.
If N is a minimal normal subgroup of H with M = N, then M n N = 1.
It is a consequence of (3) that H/M and H/N are f,-groups. Since 6, is a
formation, this implies that H = H/(M n N ) is a 6.-group, contradicting (2).
Consequently

(5) there exists one and only one minimal normal subgroup M of H.

It is a consequence of (1), (ii.b) and Proposition 4.10 that H/cx M is
abelian. Since H is [by (1) and (ii.b)] soluble, the minimal normal subgroup
M of H is soluble. Apply Lemma 4.17, (B) to see that M is a primary ele-
mentary abelian group and that M n 8 = 1 or M for every maximal sub-
group S of H. By (4) there exists a maximal subgroup T of H with M & T
sothat M n T = 1. Clearly H = MT so that

oM)y=M:MnT]l=[MT:T] = [H:T}.

Apply [(1) and] (ii.a) to see that o(M ) = [H:T] = p” with p a prime and r a
divisor of e(p). We note that

(6) o(M) = p for p a prime and r a divisor of e(p) and H/¢x M is abelian.

Combine (3), (5) and (6) to see that H is a 6.-group, contradicting (2).
This contradiction completes the proof of the equivalence of conditions

(i)-(iid).

6. A group is termed supersoluble [= hypercyclic] if every epimorphic
image, not 1, possesses a cyclic normal subgroup, not 1. It is well known
that the class of finite supersoluble groups is factor inherited, residual and
enjoys both the saturation and the Iwasawa-Schmidt requirement; see Hup-
pert.

Likewise we term the normal subgroup N of G supersolubly immersed in G,
if to every epimorphism ¢ of G upon H with N° s 1 there exists a cyclic
normal subgroup C of H with 1 € C € N°.
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TueoreM 6.1. The following properties of the finite normal subgroup N

of G are equivalent:
(1) N is supersolubly immersed in G.

(ii) Every principal factor of G, contained in N, is cyclic of order a prime.

(iii) N 4s soluble; and if the principal factor F of G, contained in N n G/,
is an elementary abelian p-group, then the group of automorphisms, induced in
F by G, s cyclic of order dividing p — 1.

(iv) Every primary subgroup P of N s supersolubly tmmersed in its nor-
malizer ng P.

(v) @ induces in every principal factor, contained in N, an abelian group
of automorphisms; and

"oy =1

for every prime p, every p-element y in N n G’ and every element x in G with

(o(xce(N nG')),p) = 1.
(vi)
& =(NnG@)$a(Nn@)
and

oy =1

for every prime p, every p-element y in N n G’ and every element x in G with
(o(zce(N nG")), p) = L.

Proof. The equivalence of conditions (i) and (ii) is contained in Proposi-
tion 2.2. The group of automorphisms of a cyelic group of order p is cyclic
of order p — 1. Consequently (iii) is a consequence of (ii).

Denote by 1 the function, defined on the primes with constant value 1.
Then condition (iii) is equivalent to the formula

N 6. G;

and application of Theorem 5.3 shows that the principal factors of G, con-
tained in N, are elementary .abelian groups of rank 1. Hence N is super-
solubly immersed in @ and we have verified the equivalence of (i)-(iii).

We noted before that supersolubility meets the Iwasawa-Schmidt require-
ment; and that supersoluble immersion is factor inherited, may be deduced
from Proposition 1.5. Thus we may apply Corollary 3.7 to show the equiva-
lence of conditions (iv) and (i)-—(iii).

That (v) is equivalent to (i)-(iv) is contained in Theorem 5.3, [(ii),
(iii)] and the equivalence of (i) and (vi) may be deduced from Corollary
5.10 [both with e = 1].

Remark 6.2. A. Denote by E a simple, finite, non abelian group and de-
note by e the least common multiple of the orders of the elementsin E. Apply
Dirichlet’s Prime Number Theorem to show the existence of an infinity of
primes p with

= 1 modulo e.
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If p is any such prime, then there exist finite elementary abelian p-groups
N, possessing groups of automorphisms, isomorphic to E. Consequently
there exist extensions G of [their normal subgroup] N by E [= G/N] with
N = ¢ N. From E° = 1 we deduce (G/N)*™ = 1. Since N is commuta-
tive, this implies

"oy =1

for every y in N and every element z in G. Noting again that N is an abelian
p-group, we see that the second half of condition (v) is satisfied by N. But
this abelian normal p-subgroup N is not supersolubly immersed in @, since
the group of automorphisms, induced in N by @, is not even soluble. This
shows the impossibility of omitting [or essentially weakening] the first half of
condition (v).

B. Suppose that N is a finite normal subgroup of G' and that principal
factors of G which are contained in N are never abelian. Then the second
half of condition (iii) is trivially satisfied [by default]; and this puts in evi-
dence the impossibility of omitting in (iii) the requirement that N be soluble.

C. For further criteria for supersoluble immersion see Baer [1].

CoroLLARY 6.3. The following properties of the finite group G are equivalent:
(1) @ s supersoluble.

(ii) Every principal factor of G is cyclic of order a prime.

(iil) G s soluble; and if the principal factor F of G [is contained in G’
and] is an elementary abelian p-group, then the group of automorphisms, in-
duced in F by G, 1s cyclic of order dividing p — 1.

(iv) Every primary subgroup of G is supersolubly immersed in its normalizer.

(v) 2" oy = 1 for every prime p, every p-element y in G’ and every p’-
element x in Q.

This is the special case of Theorem 6.1, obtained by letting N = G; note
that the first half of Theorem 6.1, (vi) reduces to the trivial condition G’ = @'.
—TFor the equivalence of conditions (i) and (iv) of this corollary see earlier
Baer [1, p. 366, Theorem 4.1] and Berkovié.

7. Denote by & a partial order of the primes. If the prime p is, under this
partial order 8, a predecessor of the prime g, then we say p é ¢; and this rela-
tion 8 is subject to the rules

pép, péq and ¢dér imply pér.

It will be convenient to term the set 8 of primes a §-segment, if x belongs to 8
whenever there exists a prime y ing with 2 § y.

The finite group G is termed &-dispersed, if for every d-segment & the set
G, of 8-elements in @ is a characteristic subgroup of G.

Furthermore for every prime p

As(p) = the class of all finite elementary abelian p-groups,
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Bs(p) = the class of all finite groups whose orders are divisible only by p
and the primes z with p 6 z.

Finally let A; be the family of pairs (2:(p), Bs(p)).
Since the properties Ws(p) and Bi(p) are inherited by subgroups, epimor-
phic images and direct products, we deduce from Proposition 1.5 that

(7.1) As-immersion is factor inherited
and it is a consequence of Gaschiitz [p. 302, Satz 3.1] that
(7.2) the class of finite As-groups is a saturated formation.

Next we note the

ProposiTioN 7.3. The finite group G is a As-group if, and only if, G 1is
d-dispersed.

For a proof ep. Baer [2, p. 3, Satz 1.1].
COROLLARY 7.4. A; meets the Twasawa-Schmidt requirement.

This is, by Proposition 7.3, equivalent to the theorem that a finite group is

soluble, if its proper subgroups are §-dispersed; see Baer [2, p. 6, Bemerkung
2.2].

ProrosrTiON 7.5. The following properties of the finite normal subgroup N of
G are equivalent:

(i) N A;G.
(ii) If o is an epimorphism of the subgroup S of G upon a finite group H,
if H/[S n NY s a finite 5-dispersed group, then H s 5-dispersed.
(iii) N A; {N, g} for every g in G.
(iv) If P s a primary subgroup of N, then P A; ngP.

This is a slight extension of Baer [2, p. 21/22, Zusatz 4.5 and p. 17, Satz
4.1]. Note that here G need not be finite.

Proof. Assume first that N A; G. Then we deduce from (7.1) that
[SnNJ A H,

whenever ¢ is an epimorphism of the subgroup S of G upon H. If further-
more H/[S n N]° is a finite §-dispersed group, then H is finite, since N is
finite, and H/[S n N]" is a A;-group by Proposition 7.3. From

[SAN)"A;H and H/[SnN]" A H/[Sn NJ°
and (7.1) together with Proposition 1.4, (b) we deduce
HAH.

Since H is finite, we may apply Proposition 7.3 to prove that H is é-dispersed.
Hence (ii) is a consequence of (i).
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Assume next the validity of (ii). Consider an element g in G. Since N
is finite, ¢ induces in N an automorphism of positive order n. Then ¢" is
centralized by N and ¢ so that ¢" belongs to 3{N, g}. Since N is finite, there
exists a positive multiple m of » such that

{g"} nN =1 and {g"} C3{N,g}.

Denote by o the canonical epimorphism of {N, g} upon H = {N, g}/{g™}.
Since m is positive, H is finite and

H/N° = [{N, ¢}/{g™}]/l{N, g™} /{g™}] =~ {N, g} /{N, ¢"} = Ni{g}/Nig"}

= {g}/l{g} n N{g™}]

is a finite cyclic group and hence §-dispersed. Application of condition (ii)
shows that H is §-dispersed; and this is equivalent to H A; H by Proposition
7.3. Application of (7.1) shows N° A; H. From {g"} C 3{N, g} we deduce
{g™ As{N,g}. By a combination of (7.1) and Proposition 1.4, (b) we ob-
tain {N, g} A; {N, g}; and this implies N A; {N, g} by (7.1). Hence (iii) is a
consequence of (ii).

That (i) is a consequence of (iii), is easily [and directly] verified. Hence
(i)-(iii) are equivalent. —Because of Corollary 7.4 we may apply Corollary
3.7 to prove the equivalence of (i) and (iv), completing the proof.

Remark 7.6. A. Condition (ii) implies in particular that N itself is &-
dispersed and hence soluble.

B. Noting that NS/N ~ 8/(8 n N) is é-dispersed whenever S is &-
dispersed one deduces from (ii) the prima facie weaker condition:

(ii*) If S is a finite §-dispersed subgroup of G, then NS is 5-dispersed.

In case G is a torsion group, (iii) is an immediate consequence of (ii*).
Hence (ii*) is equivalent to (i)-(iv), provided G is a. torsion group. But
without this condition it is very easy to construct examples showing that (ii*)
is actually weaker.

C. Denote by E a finite, non-abelian, simple group and by p a prime, not
dividing o(E). Let § be any partial ordering of the primes such that p 6 z
for every prime divisor z of o(E). There exists a finite elementary abelian
p-group N such that E is [isomorphic to] a group of automorphisms of N.
Form G = EN in the holomorph of N. Then N is a normal subgroup of G
and clearly N A; G. But G/¢¢ N >~ E is simple, non-abelian and therefore
certainly not é-dispersed.

D. The remark C suggests the following variation of A;. Let

As(p) = Us(p) for every prime p,
Bi(p) = class of s-dispersed Bs(p)-groups for every prime p;

and let A; be the family of pairs (%3(p), Bs(p)). Then N As G implies
N A; G, though the converse is, by C, in general false. A;-immersion is,
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by Proposition 1.5, factor inherited. From Proposition 7.3 one deduces easily
that a finite group G is é-dispersed if, and only if, @ is a As-group. Using
Proposition 1.4, (b) one may prove that the finite normal subgroup N of @ is
As-immersed in @ if, and only if, 3N A; G and G/cs N is s-dispersed.

Thus we see that the following three classes of finite groups are identical:

As-groups; As-groups; d-dispersed groups.

But in general A;-immersion and A;-immersion of finite normal subgroups are
different relations. In other words: different immersion concepts may define
the same class of finite groups.

8. The following considerations shall provide an extension of the methods
of §b, suitable for application in the situation considered in §4. The basis of
this discussion is the following

LemMA 8.1.  If the property § of finite groups is eptmorphism inherited, and
if G is a group, meeting the requirement:

(8.1.%) H/FH s an F-group for every epimorphic image H of G,

then G has the following properties:

(A) (§G) = F(G), for every homomorphism o of G.

(B) The following properties of the prime p and the finite normal subgroup
N of G are equivalent:

(i) If o is an epimorphism of G upon H, if M is a minimal normal subgroup
of H with M C N’ and p a divisor of the order o(M ), then H/cx M s an F-group.

(ii) If 8 5 11s a p-subgroup of N n FG, then S & {S o FG}.

(iii) If A, B are normal subgroups of G with A € B € N n G, «f B/A
is a minimal normal subgroup of G/A, and if p is a divisor of [B:A], then
FG < (A:B).

(iv) If A, B are normal subgroups of G with A < B S N, if B/A is a
mintmal normal subgroup of G/A, and if p s a divisor of [B:Al, then
FG@ C (A:B).

(a) N n FG s p-soluble.

(v) <(b) If o s an epimorphism of G upon H, if P is a normal p-subgroup

of H with P © N° n §H, then P C hTH.

Terminological reminder. The finite group X is p-soluble for p a prime,
if every principal factor of X is either a p-group or a p’-group.

Proof. 1If o is an epimorphism of G upon H, then o induces an epimorphism
of the F-group G/FG upon H/(FG)’. Since F is epimorphism inherited,
H/(FG)’ is likewise an §-group; and this implies FH & (FG)°. _

By (8.1.%), the group H/§H is an F-group. Let J = (FH)’ " be the
inverse image of FH. This is a normal subgroup of G with G/J ~ H/FH.
Hence G/J is an §-group so that FG < J. Consequently (FG)' S J° = H,
completing the proof of (A).
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The following well known auxiliary proposition will be needed below:

(8.1.1) If X 4s a subgroup of the group Y, then {X o Y} = { {X"} oY} isa
normal subgroup of Y.

The proof may be indicated for the convenience of the reader. If x is an
element in X and a, b are elements in Y, then

toa = (xob) Nzod 'b)

belongs to {X o Y}; see, for instance M. Hall [p. 150, (10.2.1.3)]. It follows
that {X o ¥} = {{X"} o Y}; and this is a normal subgroup of Y, since {X"} is a
normal subgroup of Y.

To prove (B), consider a prime p and a finite normal subgroup N of G.
Assume the validity of (i) and suppose that S is a p-subgroup with1 € S C N.
Let B = {8°. Thisis anormal subgroup of G witht € SC BC N. Among
the normal subgroups X of G with X C B there exists a maximal one, say 4,
since B C N is finite. Then B/A is a minimal normal subgroup of G/A.
Clearly B/A C N/A. If S were contained in 4, then {S°} € 4 c B = {89,
a contradiction. Hence S $ A and this is equivalent to 1 € AS/A C B/A.
But AS/A ~ S/(A n S) is a p-group. Hence p is a divisor of [B:4]. Ap-
plication of (i) [with ¢ the canonical epimorphism of G upon G/A] shows that
[G/A]/ce 4B/ A]is an §-group. It follows that B/A is centralized by §(G/A ).
Apply (A) to see that

F(G/A) = AFG/A
and it follows that

SoFGF C BoFG C A.

Hence {S°FG < A. We noted and used before that S ¢ 4. Hence a
fortiori S & {S o §G}. This proves (ii) in the slightly stronger form:

(ii*) If S 5 14s a p-subgroup of N, then S & {S o FG}.

Assume next the validity of (ii) and consider normal subgroups 4, B of G
with the following properties:

A C BC N n {6,
B/A is a minimal normal subgroup of G/A,
p is a divisor of [B:4].

There exist normal subgroups X of G with B = AX [like X = B] and among
these there exists a minimal one, say L, since B & N is finite. From

B/A = ALJA ~L/(AnL)

we deduce that [L:4 n L] = [B:A]is a multiple of p. If S is a p-Sylow sub-
group of L, then (A n L)S/(A n L) is a p-Sylow subgroup of L/ (A n L) which
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is different from 1. Hence S € 4 n L. Clearly {S°} € L < B. Since
SEAnL,but S L, wehave S €4 50{S% €4and 4 c 4{8% C B.
From the minimality of B/A we deduce B = A{S° and from the mini-
mality of L combined with {8° € L we deduce L = {S8%. Since
S C L € B C N n {G, application of (ii) gives

S E(SeFG = {{8% 0 FG} = {LoFH

by (8.1.1). It follows that {L o G} does not contain L. But L is a normal
subgroup. Hence {Lo §G} < L. Because of the minimality of L and the
normality of {L o FG} we have

A C A{L-§G} c B = AL;

and this implies A = A{L o G} because of the minimality of B/A. Hence
Lo G € A; and this implies

BofG = (AL)oFG C A(L-FG) = A

so that FG C (A:B): we have deduced (iii) from (ii).
Assume next the validity of (iii) and consider normal subgroups A, B of

@ with the properties:
ACBCN,

B/A is a minimal normal subgroup of G/A4,
p is a divisor of [B:A4].
Case 1. BC AFGE. Then U = A n §FG and V = B n §G are normal sub-

groups of G with U € V € N n §G. Application of Dedekind’s Modular
Law shows B = A[Bn §G] = AV and

B/A = AV/A>~V/(Vnd)=V/U

so that in particular p is a divisor of [V: U] = [B:4]. If X is a normal sub-
groupof Gwith U € X C V,then 4 € AX C AV = B. We deduce from
the minimality of B/A that A = AX or B = AX. In the first case we have
X C A sothat X = U;and in the second case we have [by Dedekind’s Modu-
lar Law]

V=Bn3G=AXnFGF = X(AnFGF) = XU = X.

Consequently V/U is a minimal normal subgroup of G/U with
UcV C Nn §G. Thus (iii) is applicable, proving G € (U:V). This
is equivalent to V o §G &€ U. Consequently

Bo{G = AVoFA C A(VoFG) T AU = A
so that §G@ < (4A:B).

Case2. B & AFG. We have A € B n AFG < B and because of the
minimality of B/A we have A = Bn A%G or B = B n AFGE. The second
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alternative is ruled out in our Case 2. Hence
A =BnAfFG = A(Bn FG)
by Dedekind’s Modular Law. Consequently
BoFE@C Bn{FG C A and hence $G & (A:B).

This completes the derivation of (iv) from (iii).
Assume next the validity of (iv). In order to derive (i) we consider normal
subgroups J, L of G with the following properties:

Jc LCJN,
L/J is a minimal normal subgroup of G/J,

p is a divisor of [L:J].

Let A =JnNand B= LnN. These are normal subgroups of G with the
following properties:
A C BCN;

L = JB,
B/A = (LnN)/(JaN)~J(LaN)/J =L/J
by Dedekind’s Modular Law. Hence
p isadivisor of [B:A] = [L:J] sothat A C B;
and one verifies as usual that
B/A is a minimal normal subgroup of G/A.
Consequently (iv) is applicable so that FG@ & (A:B); and this is equivalent to

BoFG C A.
Hence
LoFG = JBoFG C J(BoFG) S JA = J
so that by (A)
§(G/T) = JFG/J S coa(L/J).

Hence [G/J])/ce;s[L/J] is an F-group by (8.1.F) and the fact that § is epi-
morphism inherited. Thus (i) is a consequence of (iv); and we have proven
the equivalence of conditions (i)-(iv).

Assume next the validity of the equivalent conditions (i)-(iv). Consider
normal subgroups 4, B of G such that

ACBCNnngG
B/A is a minimal normal subgroup of G/A,

p is a divisor of [B:4].



PRINCIPAL FACTORS OF FINITE GROUPS 49

Apply (iii) to see that FG & (A:B). Hence
BoeBC BoFGC A

so that B/A is abelian. Since B/A is characteristic simple, finite, abelian,
and the order of B/4 is divisible by p, it follows that B/A is an elementary
abelian p-group. Thus we have shown that a principal factor of G which is
contained in N n §G is either a p-group or of order prime to p; and the p-
solubility of N n §@ is an easy consequence.

Consider next an epimorphism ¢ of G upon H and a normal p-subgroup P
of H with P & N° n FH. We note that property (i) is, mutatis mutandis,
inherited by all epimorphic images of G. It follows that (ii) is satisfied by
the finite normal subgroup N° of H. Define inductively P; by

P-‘=Po, {P£0%H}=Pi+1.

Since P is a normal subgroup of H, all the P; are normal subgroups of H and
we have
P=P2P2 ---2P;2P;in2 -

Since P is finite, this chain terminates after a finite number of steps. Hence
there exists a positive integer k such that

Pk=Pk+1={Pk°%H}.

Since P}, is a p-group and N meets requirement (ii ), since P, C P C N°n §H,
it follows that Pr = 1. We deduce by complete induction that P,_; C 3; FH.
Hence P = Py € 3 §H C H)FH. Thus we have deduced (v) from (i)-(iv).
Assume the validity of (v) and consider normal subgroups 4, B of G with
the properties:
A C BC Nn {G,

B/A is a minimal normal subgroup of G/A,
p is a divisor of [B:A4).

Since N n G is p-soluble by (v.a), it follows that B/A is a p-group. We
deduce B/A C HF(G/A) from (v.b). Since B/A = 1, this implies
1 C (B/A) n3F(G/A); and because of the minimality of B/A we obtain

B/A C 3(G/4).
This is, by (A), equivalent to
AFG/A = F(G/A) S caa(B/A),
BoFG@ C Bo AFG C A and hence FG C (A:B).

Thus we have derived (iii) from (v) and proven the equivalence of (i)-(v).
Discussion 8.2 [of Lemma 8.1]. A. It is clear that (iv) is just a weak form
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of (1) and (iii) a weak form of (iv). Hence condition (iv) could be dispensed
with; it has been inserted mainly for convenience during the proof.

B. The requirement (8.1.§) is certainly satisfied by G, if

(a) G/(X nY)isan F-group whenever G/X and G/Y are §-groups and if

(b) the minimum condition is satisfied by the normal subgroups of G.

C. For the purposes.of our proof we could substitute for (8.1.F ) the follow
ing weaker requirement:

If H is an epimorphic image of G, if 7 H is the intersection of all normal sub-
groups X of H with H/X a finite §-group, then H/§; H is an F-group.

D. To put condition (ii) into a more striking form, define inductively
&8 for S a subgroup of G by

%(O)S — S, %(i+1)s — %(i)S n {%(i)s ° %G}.

The F?8 form a descending chain of subgroups of S.
Now one sees without any difficulty that condition (ii) is by (ii*) equivalent
to the following requirement:

(ii*™*)  F8 = 1 for almost all i whenever S is a p-subgroup of N.

E. If ¢is an epimorphism of G upon H, and if the kernel of ¢ is contained
in N, then

(82.E) (NnS8) = N°n § for every subgroup S of G.

This is easily verified, since an element in N n S8” has the formd = n’ = &
with # and s in N and S respectively, and since s = (sn™")n with sn™" in the
kernel of ¢ and hence in N. Combine (8.2.E) and Lemma 8.1, (A) to find

(N n§G) = N°n §H.

After these preparations one sees the identity of condition (iii) with the fol-
lowing property:

(iii*) If o is an epimorphism of G upon H, if the kernel of o is part of N, if
M s a minimal normal subgroup of H with M © N° n §H, and if o(M) is a
multiple of p, then H/ca M is an §-group.

F. Conditions (iv) and (iii) put into evidence the fact that the finite
normal subgroup N of G meets the equivalent requirements (i)-(v) if, and
only if, these conditions (i)-(v) are satisfied by N n §G.

ProposrTIiON 8.3. Assume that A, and B, are for every prime p properties of
finite groups, that W,-groups, not 1, are of order a multiple of p, and that every
B, ts epimorphism inherited. Assume furthermore that the group G meets the
following requirement:

(8.3 +) If H is an epimorphic image of G, and if p is a prime, then H/B, H
is a By-group.
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Then the following properties of the finite normal subgroup N of G are equiva-
lent:

(1) If o is an epimorphism of G upon H, if M is a minimal normal subgroup
of H with M C N° and if p is a divisor of o(M ), then M is an Uy-group and
H/cg M is a By-group.

(a) If the principal factor M of G is contained in N, and if p is a

(ii) < dwisor of o(M ), then M is an ,-group.

(b) IfSisap-groupwithl €SS Nn®B,Gq, then S E{SoB,G}
(a) If the principal factor M of G is contained in N, and if p is a
dwvisor of o(M ), then M s an A,-group.

(iii) < (b) If the kernel of the epimorphism o of G upon H s conlained in
N, and if M is a minimal normal subgroup of H with M € N°n 8, H
and if o(M ) is a multiple of p, then H/cx M s a Bp-group.

(a) If the principal factor M of G is contained in N, and if p is a
divisor of o(M), then M is an A, ,-group.

(iv) <(b) N n B, is p-soluble for every prime p.

(e¢) If o is an epvmorphism of G upon H, if P is a normal p-subgroup
\of H with P & N° n B, H, then P C B, H.

This is immediately deduced from Lemma 8.1, (B) and Discussion 8.2, E.

If we denote by 8 the family of ordered pairs (U, , B,), then condition (i)
of Lemma 8.1, (B) implies N 6 G, though the converse cannot be expected to
be true in general. Thus we shall say that N is prime directed 8-immersed in G
whenever the equivalent conditions (i)-(iv) of Proposition 8.3 are satisfied
by N. If, however, N is soluble, then f-immersion in the strict sense and
prime directed §-immersion are identical properties of N. By application of
Theorem 3.4 one obtains the

CoroLLARY 8.4. Assume that U, and B, are for every prime p properties of
finite groups and that every B, is epimorphism inherited. Assume furthermore
that 6 is the family of ordered pairs (A, B,) and that 9-immersion is factor
inherited. If the group G meets requirements (8.3.4), then the following prop-
erties of the soluble finite normal subgroup N of G are equivalent:

(i) NéaG.

(ii) If B s a p-subgroup of N, then

(a) every principal factor of neg P which is contained in P is an A,-group and

(b) P CH8B,G.
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