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1. Introduction

In this paper we consider symmetric, 1-dimensional stochastic processes with
stationary, independent increments, which, in addition, have no Brownian com-
ponent. The sample functions of such processes can be considered as functions
from [0, f] into (— «, 4 o). We shall do this and answer certain variational
questions about such functions.

2. Notation and standard facts

A text such as [2] or [6] is an appropriate reference for this section. As is
usual we let X be a real-valued function on [0, « ) X @ where Q is some prob-
ability space with a probability measure P. Moreover, for each w, we assume,
as is usual, that X (0, w) = 0, that X (-, w) has left limits everywhere, and that
X (-, w) is right continuous everywhere. We assume that X is a processas
described in the introduction. It is well known that there is a one-to-one
corrbspondence between such processes and so-called Levy measures » on
(—», + ) — {0} which are symmetirc and which have the property that

+o0
[ va+@™ @y < «.

If F (¢, -) is the distribution function of X (f, - ), this correspondence is ex-
pressed through the formula

It

4o ®
[— etua: d2 F(t, x) exp{_t[ (1 — COS uy)l’ (d?/)}

I

exp{—Qtf (1 — cos uy)» (dy)}.
0
Symmetry and the inversion formula imply that

1 1,. “
1—|_j(; - [sin ux] exp{—2tj; (1 — cos uy)» (dy)} du.

Il

F(t, z) —
Let

1
P

J@tow) =Xt o) — X({E—, o).
If A is a Borel subset of [0, © ) X [(— ®, ©) — {0}], we let N (4, w) equal the
number of ¢ such that (¢, J (¢, w)) e A. If {A,} is a family of disjoint subsets
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of [0, ©) X [(— o, ) — {0}], then {N (4., -)} is a family of independent
random variables. Furthermore, N (4, -) is Poisson distributed with expecta-
tion (A X »)(A4) [possibly + «] where N is Lebesgue measure. Finally

(1) X, ) = limeew

ly>1/

nyN([O, t] X dy’ ')

with probability one.

The comments in the last paragraph were stated for symmetric processes;
however many of them are also true for subordinators; i.e. for increasing proc-
esses with stationary independent increments having no deterministic linear
component. The differences can be summarized briefly. The measure » should
be concentrated on (0, « ) and should satisfy the condition

fo y1 4+ y) v (dy) < .
Also,

fo ¢ APt 7) = exp{—tf (1 — &™)y (dy)}, Re u > 0.
0

Of course, the inversion formula is more complicated.
Let h be a monotone increasing function from [0, « ) into [0, « ) with
h(0) = 0. We define

Xty 0) = [ By DN, X dy, ) = Tegs h(| T (r, ) .

If f(l, h(y)r(dy) = o, then the argument of [3, p. 32] shows that X» (¢, -) =
with probability 1 if £ > 0. On the other hand, if [3A(y)»(dy) < «, then
from (1) it follows that X, is the subordinator determined by ». where
m(B) = 2v (W (B)) [B a Borel subset of (0, «)].

Let f be a random function. Then we make the following definition of the
h-variation of f through time ¢.

DeriNiTION 1. Foreachnlet 0 =t 0 < thy < -+ < taimy = ¢ be a sub-
division of [0, #]. If 6(n) is the norm of this subdivision, assume that
liMp.e (@) = 0. Then we define, if it exists (possibly infinite),

@ f) () = P limnow 2558 B(| £ (tni) — Fn,i0)]).

Actually (vnf) (t) depends on the sequence of subdivisions used, but we sup-
press this dependence in our notation.

We shall sometimes omit w from our notation. Finally, for our theorem we
shall need more restrictions on % than those mentioned above. Therefore, we
have

DeriNiTioN 2. We let M be the class of all functions A from [0, ) into
[0, =) such that h(0) = 0, [+ (y)/y] 2 0, [+ (y)/y)" < O, [W (y)/y" = 0, and
» )/yl” < 0.
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3. Proof that n, X = X,
TaeoreEM. If he M and if X s symmetric, then
Pl X)) = Xu(®)} =

Proof. The theorem follows immediately from two facts:

(2) Xi(t) < liminfrse 26 h(| X (ni) — X (ti)]);
3) YD B X (i) — X (tarict)]) = Xa(t)

in distribution as n — o, if f oh()v(dy) < «. The first of these two facts
is obvious so we content ourselves with proving the second. We should note
that [oh(y)»(dy) < o is equivalent to [ovly, © )W (y)dy < .

We use the central convergence criterion on page 311 of [6). A few easy
manipulations show us that we have only to prove that

@) MR F Ui — tayia, =B @)+ [ = F(tai — taia, B (z))]

—tm, ©) as n— o if >0 and wiz} = 0;
and

) B fch(lxl)sz(tn,i _ t,,,f_l,x)-»tf oo (dz)
. A

as n— o forsome ¢ > 0 suchthat w{c} =0.

We know that X () = D +% X (tns) — X (n,i1).
From this fact and the central convergence criterion we conclude that

SR F (tnyi — taica, ) > v (—», z)

as n— o if <0 and »{zx} = 0;
and

Zk(n) — F(tni — tnyia, )] > tv(x, +)

as n— o if >0 and »{z} = 0.
Clearly, (4) now follows.
Let

Yay) = toly, ©) — 2ED (1 — F(tai — taix, 9]
Integration by parts shows us that (5) is equivalent to

limyee [0 Ua()K (y) dy = 0.

Fatou’s lemma implies that

(6) lim SUpn-w fo Y (Y (y) dy < 0.
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Thus, we want to show that
(7 lim infyse f Ya(y)h' (y) dy > 0.
o

The key to the proof is to notice that the function 2a — 3sina + a cos a is
non-negative if @ > 0, that this function and its first three derivatives are zero
at zero, and that the third derivative is @ sin . The fact that we arranged so
that the third derivative turns out to equal a sin @ rather than the first or
second is only crucial because we need a non-negative function with which to
work. The fact that the third derivative is involved is the reason for the ap-
pearance of triple integrals in the following calculation:

k(n) x w0 .C

> fofo fo Yyl — Fltni — tn,im1, y)] dy de dw

=1

Kt 11
=Z E—;]; $(2ux—3sinux+uxcosux)

=1

-exp [—Z(t,,,,- — tni-1) ‘/: (1 — cos uz)v (dz)] du}

IA

k(n) $4 1 ) 1
2 f " (2uxz — 3 sin uz + ux cos ux)
0

S\ r

.[1 — 2(tas — o) [ " (1 = cos uz)» (dz)] du}

= tlzj;wlczv[z, © ) dz de dw;

where the two equalities both result in a straightforward manner fromseveral
tedious integrations by parts; and, in the case of the second equality, one easy
application of Fubini’s theorem. Thus, we have shown that ¢ (z) > 0, where

fofowfo YWa(y) dy dec dw = ¢(a).

We now perform a large number of integrations by parts. The facts that
heM and ﬂ, KW (y)vly, ©) dy < » enable us to conclude that terms evaluated
at the lower limits are zero We obtain, after these long but straightforward
caleulation, the formula

[ [ [ ¥ @t ay dedw = 0 @)/sls(z) = 3 [ (w)/ul p(w) du

+3 ’ [ I (©)/d'9() dodw — [ i | ’ I " ) S ey) dy de dw

which is non-negative since h e M. Hence, by Fatou’s lemma applied to a
sequence of functions bounded above by an integrable function we conclude
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that

8) limy e j f f Yuly)W () dy de duw = 0.

If (7) were not true, then it would not be true for ¢ in a set of positive
Lebesgue measure. Then it would be possible to introduce two more integra-
tions and maintain a strict inequality, contradicting (8)—the fact that we
maintain a strict inequality follows from (6) and still another application of
Fatou’s lemma.

Remark 1. Ifh(y) = o, then [¢h(y)v(dy) < w andhe M. Ifh(y) =y,
0<r< 2 thenheM.

Remark 2. The situation for Brownian motion is discussed beginning on page
205 of [5].

BIBLIOGRAPHY

1. R. M. BLuMNETHAL AND R. K. GETOOR, Some theorems on stable processes, Trans.
Amer. Math. Soc., vol. 95 (1960), pp. 263-273.
. J. L. Doos, Stochastic processes, Wiley, London, 1953.
. BerT, E. FristepT, Sample function behavior of increasing processes with stationary,
Izvestia, Ser. Math., Pacific J. Math., vol. 3 21 (1967), pp. 21-33.
4. A.KuiNcHIN, Sur la croissance locale des processus stochastiques homogénes & accroisse-
menis independants (Russian article and French resume), Akad. Nauk SSSR
Izvestia, Ser. Math. vol. 3 (1939), pp. 487-508.
5. PauL LEvy, Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris,
1948.
6. MicueL Loive, Probability theory, Van Nostrand, Princeton, 1960.

wW N

UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA



