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1. Introduction

In this paper we consider symmetric, 1-dimensional stochastic processes with
stationary, independent increments, which, in addition, have no Brownian com-
ponent. The sample functions of such processes can be considered as functions
from [0, t] into (- , -t- ). We shall do this and answer certainvariational
questions about such functions.

2. Notation and standard facts
A text such as [2] or [6] is an appropriate reference for this section. As is

usual we let X be a real-valued function on [0, ) X t where 2 is some prob-
ability space with a probability measure P. Moreover, for each o, we assume,
as is usual, that X (0, ) 0, that X (-, ) has left limits everywhere, and that
X (., o) is right continuous everywhere. We assume that X is a process as
described in the introduction. It is well known that there is a one-to-one
corrbspondence between such processes and so-called Levy measures on
(-- , -t- {01 which are symmetirc and which have the property that

y(1 + y ,(dy) <: .
If F (t, is the distribution function of X (t, ), this correspondence is ex-
pressed through the formula

eux dF(t, x) exp --t (1 cos uy), (dy)

exp --2t (1 cosuy),(dy)

Symmetry and. the inversion formula imply that

{ 1 }I I fj0 1 [sin ux] exp 2t cos uy), (dy) du.F(t, x) - r u

Let
J(t, ) X(t, ) X(t-, ).

If A is Borel subset of [0, X (- , /0} ], we let N (A, ) equal the
number of such that (t, J (t, )) e A. If/A} is fmily of disioint subsets
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of [0, [(- , {0}], then N(A, )} is a family of independent
random variables. Furthermore, N (A, is Poisson distributed with expecta-
tion (k ,) (A) [possibly - ] where k is Lebesgue measure. Finally

(1) X(t, lim,- ] yN([0, t] X dy,
yl>lln

with probability one.
The comments in the last paragraph were stated for symmetric processes;

however mny of them re also true for subordinators; i.e. for increasing proc-
esses with stationary independent increments having no deterministic linear
component. The differences can be summarized briefly. The mesure should
be concentrated on (0, and should satisfy the condition

Also,
f0 y(1 -t-y)-lv (dy) < .
_ox { o }e-ux d2F(t, x) --t (1 e-U) (dy) Re >_ 0.U

Of course, the inversion formula is more complicated.
Let h be a monotone increasing function from [0, into [0, th

h(0) 0. Wedefine

If h () (d) , hen he argumeng of [a, p. a2] shows ghaX (,
wih probability 1 if > 0. On ghe oher hand, if h () (dg) < , ghen

from (1) ig follows hag X is ghe subordinaor degerned by where
(B) 2 (h- (B)) [B a Borel subseg of (0, )].
Let f be a random function. Then we make the folloMng deflation of the

h-vrition of f through time t.

DEFINITION 1. For ech n let 0 t,0 < t. < < t.() be sub-
division of [0, t]. If (n) is the norm of this subdivision, ssume that
lim, (n) 0. Then we define, if it exists (possibly infinite),

(f) (t) m(,= h(f(t,.) f(t,)]).

Actually (vf)(t) depends on the sequence of subdivisions used, b. we sup-
press this dependence in our notation.

We shll sometimes ot from our notation. Finally, for our theorem we
shll need more restrictions on h thn those mentioned bove. Therefore, we
hve

Do 2. We let M be the class of 11 functions h from [0, into
[0, such that h (0) O, [h’ (y)/y] O, [h’ (y)/y]’ O, [h’ (y)/yy’ O, nd
[h’ (y)/y]" O.
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THEOREM.

(2)

(3)

3. Proof that vX X
If h e M and if X is symmetric, then

P{ (vX)(t) X(t)} 1.

The theorem follows immediately from two facts"

X(t)

_
liminf_, h(! X(t,) X(t,_)]);

,=1 h ([ X (t.,) X (t.,_l)[) ---+ X (t)

in distribution as n --+ , if fo h (y), (dy) < . The first of these two facts
is obvious so we content ourselves with proving the second. We should note
that f h (y ), (dy < is equivalent to

We use the central convergence criterion on page 311 of [6]. A few easy
manipulations show us that we have only to prove that

(4) ’’(,]) [F (t.,, t.,,-1, h-1 (x))] -t- [1 F (t., t.,_,

--.t(x, ) s n--* if x> 0 nd {x} 0;

f(5) h (I z I) d. F (t,, t,, x) ---+ xua (dx)

as n for some c> 0 suehthat {c} =0.

We know that X(t) = X(t.) X(t,.).
From this fact and the centrM convergence criterion we conclude that

() F (t.,, t.,, x) tu (-- , x)

if x< 0 and {x} 0;

ss n- oo

Clearly, (4) now follows.
Let

p, (y) t,[y, ,= [1 F (t.,, t.,, y)].

Integration by parts shows us that (5) is eqvalent to

lim. f .(y)h’ (y) dy O.
o

Fatou’s lemm implies thut

(6) lim sup. f .(y)h’(y) dy O.
a0

if x>0 and u{x} 0.
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Thus, we want to show that

(7) lim infn f0 ,,(y)h’(y) dy >_ O.

The key to the proof is to notice that the function 2a 3 sin a -t- a cos a is
non-negative if a >_ 0, that this function and its first three derivatives are zero
at zero, and that the third derivative is a sin a. The fact that we arranged so
that the third derivative turns out to equal a sin a rather than the first or
second is only crucial because we need a non-negative function with which to
work. The fact that the third derivative is involved is the reason for the ap-
pearance of triple integrals in the following calculation"

)= fofo"fo y[1- F(t.,- t,-l,y)]dydcdw

k) { x4 7I’l fo(R) l
2ux 3 sin ux "- ux cos ux

exp --2(t, t,-) (1 cos uz) (dz) d

(2ux- 3sinux+uxcosux)
i1

(t.,, t.,_,) ( cos uz). (az)

where the two equalities both result in a straightforward manner fromseveral
tedious integrations by parts; and, in the case of the second equality, one easy
application of Fubini’s theorem. Thus, we have shown that (x) >_ 0, where

We now perform a large number of integrations by parts. The facts that
h e M and f0 h’ (y)[y, oo dy < o enable us to conclude that terms evaluated
at the lower limits are zero We obtain, after these long but straightforward
calculation, the formula

which is non-negative since h e M. Hence, by Fatou’s lemma applied to a
sequence of functions bounded above by an integrable function we conclude
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that

If (7) were not true, then it would not be true for c in a set of positive
Lebesgue measure. Then it would be possible to introduce two more integra-
tions nd mintin strict inequality, contradicting (8)the fct that we
maintain a strict inequality follows from (6) and still another application of
Fatou’s lemma.

Remarlc 1. If h (y) y, then f h (y), (dy) < and h M. If h (y) y,
0 <_r <_ 2, thenheM.

Remar 2. The situation for Brownian motion is discussed beginning on page
2o5 of [5].
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