3-MANIFOLDS WITH DISJOINT SPINES ARE PRODUCTS

BY
JosErPH MARTIN!

It is the purpose of this note to show that those 3-manifolds which are
products of 2-manifolds and the unit interval, are characterized by the
property of having a pair of disjoint spines.

Definitions and Terminology

The statement that M is an n-manifold means that M is a compact, con-
nected metric space, each of whose points has a neighborhood which is homeo-
morphic with E”, euclidean n-dimensional space, or with EZ , the closed upper
half of euclidean n-dimensional space. As is usual, the boundary of M, denoted
@M is the set of all points of M which do not have neighborhoods homeomor-
phic with E", and the ¢nterior of M, denoted int M, is M — oM. If M is an
n-manifold, and S < M, then 8 is a spine of M if and only if (i) 8 C int M,
and (ii) M — 8 is homeomorphic with dM X [0, 1). We note for future
reference that if S is a spine of M and h is a homeomorphism of M X [0, 1)
onto M — 8, then h(dM) = 0M, and also that S, as the intersection of a
decreasing sequence of compact connected sets, is connected.

THEOREM. Suppose that M is a 3-manifold which has two disjoint spines.
Then there is a 2-manifold N such that M is homeomorphic with N X [0, 1].

Before proceeding with the proof of the theorem, we collect some lemmas.
In what follow it is assumed that M is a 3-manifold with two disjoint spines.

Lemma 1. M has at most two boundary components.

Proof. Let S; and S, be disjoint spines of M. Let Cy, C;, --- C, be the
boundary components of M. Then M — §S; is homeomorphic with
i= [Ci: X [0, 1)]. We assume that the notation is chosen so that

S, < C1 X [0,1).

Now 8; u[Ui— C; X [0, 1)] is a connected set in the complement of S, which
contains each of Cy, C3, -+ C,. This set is connected because S; is con-
nected (as the intersection of a decreasing sequence of compact connected
sets), and each of C; X [0, 1) (¢ = 2, --- n) has a limit point on S;. But
since S; is a spine, S, separates each pair of boundary components of M.
This implies » < 2 and establishes Lemma 1.

LemMma 2. If C ¢s a boundary component of M, and U is an open set con-
taining C, then U contains a spine of M.
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Proof. Let C and U be as in the hypothesis, and let S; and S, be disjoint
spines of M.

Case 1. Suppose dM = C. Then there is a homeomorphism 4 from
C X [0,1) onto M — S;. Let# be a number such that & (C X [0, 4]) < U,
and let & be a number such that S; < h(C X [0, &]). Now there is a homeo-
morphism g of C X [0, 1) onto itself which carries C X [0, &;] onto C X [0, #]
and which is the identity on C X [8, 1) for some 8 < 1. Then A(g(S:))
is a spine of M, and lies in U.

Case 2. Suppose that 8M = Cu K. Then there is a homeomorphism A
fromC X [0,1) u K X [0,1) onto M — S,. If S, < h(K X [0,1)) then
the component of M — S; containing C contains S;, and so, without loss of
generality, we may assume that S, € A(C X [0,1)). Asin Case 1 we choose
numbers ¢ and ¢; such that

h(CX[0,4]) CU and S CC X[0,t).

Now let g be a homeomorphism of C X [0, 1) onto itself which
carries C X [0, &) onto C' X [0, #) and which is the identity on C X [S, 1)
for some S < 1. Then h(g(S:)) is a spine of M and is contained in U.
This establishes Lemma 2.

Lemma 3. Suppose that S is a spine of M and U is an open set in M con-
tamning S. Then M can be embedded in U.

Proof. Let h be a homeomorphism of M X [0, 1) onto M — S;. Now
there is a number ¢ such that h(@8M X [t, 1)) lies in U. Then
M — h(eM X [0, ¢)) is homeomorphic with M and lies in U.

LemMa 4. If C is a compact contractible 3-manifold in M, then C is a 3-cell.

Proof. It follows from Lemmas 2 and 3 that C can be embedded in the
product of a 2-manifold and the unit interval. Since C is contractible, it
can be embedded in the universal covering space of the product of a 2-manifold
and the unit interval. Since these spaces are all embeddable in E3, it follows
that C can be embedded in E®. Then Cisa 3-cell. This establishes Lemma 4.

LemMmA 5. Let C be a boundary component of M. Then the homomorphism
’l:* . 1I'1(C) —> 1l'1(M),
induced by inclusion, is onto. If M has two boundary components, then is is
one-to-one.

Proof. We first consider the case where M has two boundary components
Cand K. Let p eC, and let [ be a loop in M based at p. Then since K has
a product neighborhood in M, ! is homotopic to a loop , in M — K. Now by
Lemma, 2, there exists a spine S of M such that the image of [; misses S. Then
the image of [y lies in a subset of M that is homeomorphic with C X [0, 1]
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and hence l; is homotopic in M to a loop L in C. This shows that
1% : m(C) — m(M) is onto. A similar argument shows that in this case
%% i8 one-to-one.

Now suppose that C is the only boundary component of M. Let X be a
product neighborhood of C in M, and using Lemma 2 let S be a spine of M
in int X. Now let p e C, and let ! be a p-based loop in M. Now [ is homo-
topic in M to a loop I, whose image intersects X only in the fiber of X from
p X {0} = ptop X {1}. Now since S does not separate M, S does not sepa-
rate the boundary components of X and so there is a path fin X from p X {0}
to p X {1}, whose image misses S. Now let g be the projection of the path f
onto the boundary component of X distinct from C. Now the loop obtained
by traversing f then g~ then the part of /in M — X, then g, then f~ ! is homo-
topic to l; and misses the spine S. Since this loop misses S, it is homotopie,
in M, to a loop in C. Hence [ is homotopic to a loop in C. This shows that
4 is onto.

Proof of the theorem. We first assume that M has one boundary component
C. Now since 7 : m1(C) — m (M) is onto, we may use the loop theorem and
Dehn’s lemma [3] to find a disk D in M such that D n dM = 0D and 4D is
not homotopic to 0in 8. We then cut M along D. If 4D does not separate
dM we obtain a manifold M’ with connected boundary C’ such that the
genus of €’ is less than the genus of C. An application of the Tietze exten-
sion theorem shows that 74 : m(C’) — m(M') is onto. If dD separates oM
we obtain manifolds M; and M, with boundaries C; and C, respectively such
that the genus of C; is less than the genus of C and 24 : m(C;) — m (M) is
onto. A repeated application of this argument and the fact that each com-
pact contractible 3-manifold in M is a 3-cell shows that M is homeomorphic
to a 3-cell with solid handles (some of these handles may be non-orientable).
Hence in this case M is homeomorphic to the product of a 2-manifold and the
unit interval. It is well known that the factorization is not unique.

If M has two boundary components C' and D, then it follows from Lemma
5 that these boundary components are homeomorphic. Now if these bound-
ary components are not projective planes, then it follows from Lemma 4,
Lemma, 5, and Theorem 3.1 of [1] or [4] that M is homeomorphic with C' X I.
In the case that C is a projective plane we must make a special argument.
Let 1 be the universal covering space of M and let P : i — M be the covering
map. Since i : m(C) — m(M) is onto, M has two boundary components,
each of which is a 2-sphere. Let S be a spine of M. The M — 8§ is homeo-
morphic with ¢ X [0, 1) uD X [0, 1). Then P~(C X [0, 1)) is the uni-
versal covering space of C X [0, 1) and P™(D X [0, 1)) is the universal
covering space of D X [0,1). Hence P™(S) is a spine of M. It follows that
M has two disjoint spines and by what we have already shown that i is
homeomorphic with §* X [0, 1]. Now the covering translation

r: 8 X011 -8 X]0,1]
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is a fixed point free involution which leaves boundary components invariant
and it follows from [2] that M is homeomorphic with C X [0, 1]. This com-
pletes the proof of the theorem.

It should be noted that the product of a 2-manifold and an interval does
have two disjoint spines, and also that the assumption of the connectivity of
Mwas not necessary since M has two disjoint spines if and only if each compo-
nent of M does.
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