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Introduction
Let A be an algebr over a field/c. One of the principal problems of the de-

formation theory for algebras is to obtain a manageable necessary and suffi-
cient condition for A o have only trivial deformations. Such an algebra is
said to be rigid. Since the vanishing of the second tIochschild cohomology
group of A, H (A, A ), is a sufficient condition for A to be rigid k-algebra
[7], it is of interest to determine when the converse is true. If A is an exten-
sion field of k or ff A is a complete semi-local noetherian/c-algebra such ha
Aim is a separable exCension of/c and depth (A) 0 for each maximal ideal
m of A, we shall show tha Che following conditions are equivalen (Corollary
3.8):

(1) H*(A, A) O.
(2) A is a rigid k-algebra.
(3) A II<<-K where each factor K is a separable extension field

of k and [2(K/k):K] _< 1 where 2(K/k) is the module of k-differentials
of K.
We show that a deformation of product of algebras (with 1 is equivalent

to a "product of deformations" of the factors (Proposition 2.3). It follows
that a product of algebras is rigid if and only if each of the factors is rigid.
Thus since complete semi-local noetherian k-algebra is isomorphic to a
product of local k-algebras, we may reduce the above problem to the local cse.
The separability hypothesis assures us that a complete noetherian local
k-algebra is isomorphic as a k-algebra to the semi-direct product of the residue
field and the maximal ideal of the local algebra.

Notalion. All rings will be assumed to have an identity nd ring homo-
morphism will preserve the identity. The expression "A is k-algebra" will
imply that k is a field.

1. Preliminary remarks
Let A be a k-algebra, M an A-bimodule, and C (A, M) the/c-module of all

n-linear maps over k of A into M. As usual [9], we define the coboundary
operator by

,.,f (a, a
axf(a,..., a.+) q- ’:,<_<. (-1)(a,,..., aa+,,..., a,+,)
-b (- 1)+f(a, a)a.+
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where if e C (A, M). The nth cohomology group of this complex is denoted by

H" (A, M) Z (A, M /B" (A, M)

and the elements of Z" (A, M) ker () and B" (A, M) im (,-1) are
called n-coeycles and n-eoboundaries respectively.

Let A[[t]] denote the formal power series ring in one variable over A. A
deformation of the k-algebra A [7] is an associative k[[t]]-bilinear map f on A[[t]]
which is expressible in the form

ft(a, b) ab + try(a, b) + tf2(a, b) +
where "ab" denotes the usual product in A[[t]] and where each f is a k-bilinear
map on A emended in the natural manner to a k[[t]]-bilinear map on A[[t]].
The associativity condition on ft is equivalent to the system of equations

(1) 0<v<,h(f-(a, b), c) h(a, h-(b, c)) f,(a, b, c)

for all a, b, c e A and each n 0, 1, 2, .... Following the notation of [5],
we shall denote the 3-coehain on the left hand side of (1) by

Hence if f is a 2-cocycle of A such that f o f 0, then f (a, b) ab + tf(a, b
is a deformation of A. We will say that such a deformation is a linear de-
jormation of A.

Let f and g be deformations of A. We say thatf is equivalent to gt if there
is a k[[t]]-linear automorphism t of A[[t]] of the form

/zt (a) a -t- tt (a) -4- tt (a) +...
where each g, is a k-linear map on A extended in the natural manner to a
kilt]l-linear map on A[[t]] such that

g, (g, (a, b) ft (g, (a), gt (b)) for all a, be A[[t]].

We may easily cheek that g f + m in this ease. A deformation ft of A is
said to be trivial if ft is equivalent to the deformation g of A defined
gt (a, b) ab. Thus if the coeyclef of the deformationft is not a coboundary,
it follows that ft is a non-trivial deformation. If every deformation of A is
trivial, we say that A is a rigid k-algebra. Gerstenhaber proved that if
H (A, A 0, then A is a rigid k-algebra [7, page 65]. In general, the con-
verse is not known. We refer the reader to [7] for a detailed discussion of the
deformation of an algebra.

2. Deformation of a product of algebras
We shall need the following lemm which is well known (see [6] but a proof

does not seem to be available.

LEMMA 2.1. Ifft is a deformation of a k-algebra A (with 1 ), then the deformed
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algebra has an identity. Furthermore, ft is equivalent to a deformation g such
that 1 is the identity of the deformed algebra with multiplication gt.

Proof. The second statement implies the first statement by the definition
of the equivalence relation on the set of deformations of A.
We shall define a map

-" A[[t]] A[[t]]

of the form rt (a) a + tr (a) A- by

where s is such that

n s(s-t- 1)/2 or s(sA- 1)/2 < n < (s-4- 1)(sA-2)/2
and

{(i,...,i)lil > > i > 0, i + + i n}.

The are defined inductively as follows. Let g be such that

(fx -t- $) (a, b) 0

whenever a or b is 1. gx always exists since fa is a cocycle [9]. Let

M(a) a - t(a) and MS(a) MsM-I... Ml(a).

Suppose we have ckosen us, i < n, such that the deformation

(M’- )-If (M"- (a ) M"- (b ab + tga (a, b) +
has the property that g (a, b) 0 whenever a or b is 1 and i < n. Then

ig, (a, 1, 1) <s<, g, g,_,(a, 1, 1,) 0

ag,,(1, 1) g,,(a, 1) + g,(a, 1) g,(a, 1).

Thus ag,,(1, 1) g,(a, 1). Similarly, g,(1, 1)a g,(1, a). Define
g,(a) -ag,(1, 1). We may easily check that (g, -4- #)(a, b) 0 when-
ever a or b is 1. The deformation rt-ft(rt(a), rt (b)) clearly has the desired
property.

DEFINITION 2.2. Let A 1-L_<_<,, A be a k-algebra and let ft be a deforma-
tion of A. We say that ft is a product of deformations of the factors A if
$. (a, b 0 for each n > 0 whenever a eA and b eA with i j.

PROPOSITIO 2.3. If ft is a deformation of the k-algebra A II<<,, A,
then ft is equivalent to a deformation g which is a product of deformations of the
Ai.

Proof. We may assume that n 2. We will use the notation "a" to indi-
cate the it component of a e A except that we set 1 (a, e). We shall de-
fine a map rt’A[[t]] A[[t]] by the same formula as in the proof of Lemma 2.1
where the g are now defined inductively as follows.



DAVID W. KUDSON

By Lemma 2 of [9], there is a 1-cochain 1 such that

(fl A- i}l)(a, b) 0

whenever a or b is el or e2. Thus suppose we have chosen , i < n, such that

(M,-l )-lf (M,,-1 (a Mn- (b ab -t- tgl (a, b) -f-
where g (a, b) 0 whenever a or b is el or e. for i < n. For then we have that

gm(a, e, b.) 0<,<m g o gm_(a, e, bj) 0

a g (e, b) g (a, b) -t- 0 g (a, e)b

if i j and m __< n. Hence g (al, b) 0 if i j and m < n. Thus it will
suffice to define . A --. A such that

(gn -t- 8)(a, b) 0

whenever a or b is el or e2. We may assume that gn (a, b) 0 whenever a or
b is 1 by Lemma 2.1 and so we need only consider el.

Define a" A --. A by
a (a) (al g (el, el), a g (e2, e2)).

As in the proof of Proposition 2, by considering gn A- a we may assume that
eg,,(e, b) 0 (consider the cochain egn" A X A Ai). I-Ience we may
assume that ei gn (ej, b) 0 since e gn (1, b) 0. Similarly, e g (b, e) 0.
Thus using this reduction, we have that

g (el, b) (el g (el, 52), e2 g (el, bl)),
g. (e, b, el) "0<<, g g,.- (e, bl, el) 0

e gn (b, el) g,, (b, el) A- g,, (el, bl) g, (el, 51

Hence gn (el, bl) gn (bl, el). Similarly, g. (e2, b2) g (b2, e2) and so
g (e, b.) g (b., e). Thus

ign (el, 51, el) el g, (b, el) g (51, el) -t- g. (el, b) g. (e, b)e 0

implies that el g, (b, el) el g, (el, b). Similarly e g (b, e2) e2 g (e., b)
and so g (el, b) g (b, el) since g (1, b) 0 g, (b, 1 ).

Define A --* A by

/n (a) -el gn (el, a) A- e2 g, (el, al).

tt (a, b) -al g (el, b2) -t- a gn (el, bl) A- e g (e, a b2) e2 g. (e, a bl)
gn (el, a)bl -t- gn (el, al)b2

tt. (el, b) -e g. (el gn (el, 52) e2 g (el, 51)
-g (e, b)

tn (a, el) --e2 gn (el, a) el g (el, a)
--el gn (a2, el) e2 gn (al, e)
--g, (a,

Hence g is the required cochain.
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COROLLAar 2.4. The k-algebra A II<<_,, A is a rigid k-algebra if and
only if each factor A is a rigid k-algebra.

Proof. Let f be a deformation of A. We may assume that f is a product
of deformations of the A. It is clear that a product of deformations is trivial
if and only if each of the deformations of the product is trivial.

3. Deformation of semi-local algebras
Let M be a module over a commutative ring A and let T (M) and A (M)

denote the tensor algebra and the exterior algebra on M respectively. We re-
call that h, (M) --- T, (M)/I, (M) where I (M) is the ideal generated by
elements of the form a (R) a where a e M [4]. We refer the reader to [1] for
the elementary properties of the direct limit of modules.

LEptA 3.1. Let (Aa), (M,)l,,s be a filtered direct system of modules over a

filtered direct system of commutative rings. If A inj lira A, and
M inj lim Ma, then A, (M) --- inj lim A, (M).

Proof. We have that Ta (M) --- inj lira Ta (M,) since the corresponding
statement for the direct limit of tensor products of modules is true.

Let A Aa (M) _. Ta (M)/I (M) T/I and similarly for the pair
(Aa, Ma). Thus we have the following commutative diagram with exact
rows and columns since inj lira is an exact functor.

0 0

T A ------ 0

0 --* inj lira Ia -, inj lim Ta -, inj lim ha -- 0

0 0

It will suffice to show that is surjective. But since T inj lim Ta, every
element of T can be represented in the direct limit by an element of Ta for some

e S. It follows immediately that is surjective.

DEFINITION 3.2. Let A be a commutative k-algebra (]c need not be a field).
The module of k-differentials of A is an A-module 2 (A/k) and a k-derivation
d: A -- (A/k) which is universal with respect to k-derivations of A into A-
modules. Hence we have a natural isomorphism

Hom((A/k ), M) -- Derk (A, M)

where M is an A-module [8].
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DEFINITION 3.3. An extension field L of k is said to be a separable extension
if every finitely generated subfield of L is separable generated over/c. We refer
the reader to [3] for the properties of separable extensions. One may show
that an extension field L of k is a rigid/c-algebra in the commutative deforma-
tion theory if and only if L is a separable extension of/c [12].
The following lemma removes the finite generation hypothesis of [1O,

Theorem 5.3].

LEMM& 3.4.
then

If A is a separable extension field of k and if M is an A-module,

H* (A, M) Hom (A ([2 (A/k)), M).

Proof. We recall that H* (A, M) --- Hom (Tor’ (A, A ), M) [10, Lemma
4.1]. By [10], Tor" (L, L)

_
Az ([2 (L/k)) if L is a finitely generated separable

extension of/. Since A is the direct limit of such subfields L, we may apply
Lemma 3.1 since 2 (A/k) inj lim 2(L/k) [8].

Remark 3.5. Let A be a commutative k-algebra with two distinct commut-
ing/c-derivations D and E. If char (It) 0, Gerstenhaber has shown that the
k[[t]]-bilinear map fi on A[[t]] defined by

f (a, b) ab -C tD (a)E (b) -C tD (a)E (b)/2! W

is a non-trivial deformation of A [6]. If char (k) p 0 and if in addition
D 0 E, then the map g defined by

g (a, b) ab -4- tD (a)E (b) -C -C tV-lD-1 (a)E- (b)/(p 1)!

is a non-trivial deformation of A [6].
If [2 (A/k) is a free A-module such that [2 (A/k) :A] > 1, then such deriva-

tions always exist. We recall that if A is an extension field of k with
char (k) 0, then the cardinality of a transcendence base for A over k is
[2(A/k):A]. If char (k) p 0, then the cardinality of a p-basis for A
over k is [2 (A/k) A].

DEFINITION 3.6. Let A be a noetherian local ring with maximal ideal m.
We say that A has depth n, depth (A) n, if there is an A-sequence of ele-
ments of m of length n but no such sequence of length n +- 1. For details, we
refer the reader to [8, 16.4].

Note that depth (A) 0 if and only if m consists only of zero divisors.
We may also show that depth (A) 0 if and only if the annihilator of m is
non-zero [11, page 21].

THEOREM 3.7. Let A be a noetherian local k-algebra such that depth (A) 0.
Assume that A is It-isomorphic to the semi-direct product Aim @ m where m is the
maximal ideal of A. The following conditions are equivalent"
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(i) H*(A, A) O.
(ii) A is a rigid k-algebra.
(iii) A is a separable extension of tc and [ (A/k)" A] <_ 1.

Proof. By [7], (i) implies (ii), and (iii) implies (i) by Lemma 3.4. Thus
assume that A is a rigid k-algebra. We first show that m must be zero.

If m is generated by one element, then A is a local complete intersection.
By applying the results of [12], we see that A is not rigid since A is not a regular
local ring if m 0. Thus we may assume that there are at least two elements
in a minimal set of generators for m. We shall construct a k-bilinear map f
on A such that the k[[t]]-bilinear map f on A[[t]] defined by f(a, b)

ab - tf(a, b) is a nontrivial linear deformation of A. Thus we must show
that f o f 0, f 0, and f g where g is a k-linear map on A. It will
clearly suffice to define f on a basis for the L-module L m.
Let (O’m) {a e A am 0} be the annihilator of m and assume that

m 0. Let X (x),r be a basis for the L-module L m such that

leX, x,e (0"m) nm and xa,xem-m.
Assume that the remaining elements of X belong to m. Define f(x, x) x,
and f(x, x) 0 if (x, x) (x, x).
We first show that

/ o (x,, x, ) f(f(,, ), x ( f(,, (, )) o.

Since f vanishes on the element xa, we certainly have that f o f 0. Since
f(x, xx) f(xx, x), f is not a coboundary. We now consider

f(xi, xl, xk) xi.f(x, xk) f(xi xl, x) - f(xi, xl x) f(xi, xl)x.

If x, x- or x is 1, we certainly obtain 0 for this expression. Hence we may
assume that the basis elements belong o m. But f vanishes on elements in
m and takes values in (0"m) and so we easily check that 3f 0.
Thus we are reduced to the case m 0. We now let X be a basis for the

L-module L m such that 1 e X and such that the remaining elements of X
belong to m. Let xa e X n m. Define f(x, x,) x, and f(xi, x.) 0 if
(xi, x) (x, x). The same reasoning as above shows that f 0 and
that f o f 0.

Suppose that f g where g is a k-linear map on A. Then f(x, xa) x
Sg (x, x) 2x g (x) since x, 0. We may assume that char (k) # 2.

It will suffice to show that g (xa) em. Let xa e X n m with xa # x. Then

f(x, x) 0 ig (x, x) 2xa g (xa)

and so g (x) e m. But then

](x, ) 0 g(, ) g (x) + g (x) x g ().

Hence g (x) e m and so f g.
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Thus assume that A is a field which is a rigid/c-algebra. Since A is rigid
in the commutative deformation theory, we have that A is a separable exten-
sion of ]c [12]. Suppose that [(A/k):A] > 1. By Remark 3.5, we see that
A has a non-trivial deformation and so we must have [2 (A/k) :A] _< 1.

COROLLARY 3.8. Let A be a complete noetherian semi-local k-algebra such
that A/m is a separable extension of and depth (A) 0 for each maximal
ideal m of A. The following conditions are equivalent:

(i) H(A,A) =0.
(ii) A is a rigid k-algebra
(iii) A --- L<_<_, K where each factor K is an extension field of k (neces-

sarily separable) such that [ (K/k :K] _< 1.

Proof. It will suffice to show that (ii) implies (iii). Since A is complete,
A _-- lIA where the product is over the setof maximal ideals m of A. Thus
by Corollary 2.4, we may assume that A is local. Since Aim is a separable ex-
tension of k, A is k-isomorphic to the semi-direct product A/m m and so we
may apply Theorem 3.7.
The reader should note that the hypotheses of Corollary 3.8 are satisfied if A

is a commutative artinian k-algebra with k a perfect field.
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