ON THE EXISTENCE AND REPRESENTATION OF INTEGRALS

BY
James A. RENEKE

1. Introduction

Suppose that Q is a set, R is a non-empty collection of subsets of @, and D is
the collection of finite non-empty subsets of R to which M belongs only in case
M™, the union of all the members of J/, is in R and the members of M are rela-
tively prime in R, i.e., if A and B are in M/ then there is no non-empty member
of R which is contained in both A and B. We will assume that each non-empty
A in R contains a point = such that if M isin D and A4 is in M then no other
member of M contains x.

Let B(Q, R) denote the closure in the space of functions from Q to the
number-plane which have bounded final sets of the linear space spanned by the
characteristic functions of members of R with respect to the supremum norm
| - |. We will assume that B(Q, R) is an algebra. An ¢ntegralon B(Q,R) X R
is a function K from B(Q, B) X R to the number-plane such that (1) for each
(f,A)inB(Q,R) X R, K[ ,A]is a linear functional on B(Q, RB) and K[f, ]
is additive on R, i.e., K(f, M*) = X n i w K(f, H) for each M in D, and (2)
there is an additive function \ from R to the non-negative numbers such that
|K({f, A)| < |1af| MN(4), for each (f, A) in B(Q, R) X R. This paper is
concerned with the existence and representation of integrals on B(Q, B) X R.

2. Bounded variation

A finite subset M of R is said to partition a member A of R provided M™* = A.
If each of M, and M, is a finite subset of R then M is said to refine M, provided
that My = M5 and each member of M, is contained in some member of M; .
If (4, B)isin R X R then [4, B] will denote the collection of non-empty mem-
bers of R which are contained in both A and B. A subset 4 of Q is said to be
R-measurable if for each B in R there is a partition M/ of B in D such that each
H in M is either contained in 4 or [H, A] = @ and if [4, B] # 0 then the com-
mon part of A and B is the union of those members of M contained in 4.

TaeoreMm 2.1. If each member of R is R-measurable, each of M1 and M, is in
D, and MY = M3, then there is a member M of D which refines each of My and
M such that each A in M, 1s the union of those members of M contained in A.

Proof. Let {B,}1, be a reversible sequence with final set M,. There is a
sequence {N,}o with values in D such that Ny = M; and, for each integer p
in [1, n],

(1) N, is a refinement of N, such that each 4 in N, is the union of
those members of N, contained in A4, and
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(2) if A isin N, then either A is contained in B, or [4, B,] = @.

N, is a refinement of M; such that each A in M is the union of those mem-
bers of N, contained in A. Suppose that 4 is in N, and « is & member of A
which is not in (M — {A})¥, for any M in D which contains A. There is a
member of M, which contains x and hence a member of M, which contains A.
Therefore N, refines M, .

CoroLrLARY. If each of My and M is in D and M, refines My , then each A in
M s the union of those members of M, contained in A.

Proof. Let M be a member of D which refines each of M, and M, such that
each A in M, is the union of those members of M contained in 4. If A isin
M, then, since each member of M is contained in a member of M,, 4 is the
union of those members of M, contained in 4.

We will assume from this point that each member of R is B-measurable and
if (4, B)isin R X R then there is a member of D which contains a partition
of each of 4 and B.

A function W from R to the plane is said to have bounded variation on a
member A of R provided there is a number & such that Dz |WH)| < k,
for each member M of D which partitions A. If W has bounded variation on
A then we will denote the least such number by [, | W|. Let BV denote the
set of additive functions from R to the plane to which W belongs only in case
W has bounded variation on each member of R.

TraeoreM 2.2. If W is in BV then the set of ordered pairs \ to which (A, k)
belongs only in case A isin R and k = [, | W | is an additive function from R to
the non-negative numbers.

Proof. Supposethat M isinD and N isa function from M into D such that,
for each H in M, N (H ) partitions H. Then

> > w@ <[ 1wl
Hin M @G in N(H) M*

Hence D_rinu NH) < N(M™). Suppose that M’ is a member of D which
partitions M. There is a member M” of D which refines each of M/ and M.
Srinae |[W@G)| £ X amw 2omurnece | W@)|

= ZH in M Za in M” ,GCH | W(G) I
< ZH in M )\(H)
Hence A(M*) < 25 mu MN(H) and so A is additive.

3. An existence theorem

A choice function ¢ for R is a function from R into Q such that (1) ¢ (H) is
contained in H, for each H in R, and (2) if each of A and B isin R then there is
a member M of D which partitions B such that if H is a member of M/ which
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contains a point of A, G is a member of R contained in H, and @ contains a
point of A, then ¢(G) isin A only in case ¢(H) isin A. A member 4 of R
is said to be properly situated relative to a member B of R with respect to a
collection of choice functions ® on R provided either A and B are disjoint or
for each ¢ in ® and each member H of R which is contained in A and contains
a point of B we have ¢ (H ) isin B only in case ¢ (4 ) isin B.

TuroreM 3.1. There is a choice function for R.

Proof. There is a function ¢ from R into @ such that, for each 4 in R and
M in D which contains A, ¢ (4 ) is contained in A but no other member of M/,
Suppose that each of A and Bisin R and M is a member of D which partitions
B such that for each H in M either H is containedin 4 or [H, A] = . Suppose
that H is a member of M and G is a member of R which is contained in H and
contains a point of A. If ¢(G) isin A then G is contained in 4 and so H is
contained in A. Hence ¢(H)isin A. If ¢(H) isin A then, similarly, ¢ (G)
isin A. Therefore ¢ is a choice function for E.

THaEOREM 3.2. If ¢ is a choice function for R, (A, B) isin R X R, and W 1s
in BV then fB 14 [¢]W exists.

Lemma. For each positive number b there is a member M of D which parti-
ttons B such that

EH in M,HnAyAﬂZG in M’,6CH,GNA=g | W(G) | < b’
for each refinement M’ of M in D.

Proof of the lemma. Suppose that the lemma is false. Then there is a posi-
tive number b and a sequence M with values in D such that M (0)* = B and,
for each positive integer n, M (n) refines M (n — 1) and

Zx in M(n—1),HN A5g Za in M(n).agx,anA—al W(G) [ = b.

If » is a positive integer then

>
LlWl —HinM(O;HnA#ﬂLIWl

w
H in M(0),HNA#g @ in M(1),GEH,GN 4A=p j:; '

w
H in M(0),HNA#g G in M(1),GEH,GNAg j; | I

>o+ > [|w]
@ in M(1),6N 4%g Y@

> nb + > f |W|.
@ in M(n),eN 45g @
This contradicts the assumption that W is in BV.
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Proof of Theorem 3.2. If A and B are disjoint then we are through. Sup-
pose that A contains a point of B and b is a positive number. There is a
member M of D which partitions B with the property that if H is in M then
H is properly situated relative to A with respect to {¢}. There is a member
M’ of D which refines M such that

Za in M’ ,HN Ap Zo in M” ,GCEH,GN A=g l W(G) I < b:

for each M” in D which refines M’. Hence for each M” in D which refines M’
we have

| 2000 La [8IW — 2aer 1a [$]W |
= | D awmuec {1a(@H)) — L@ (@)} W (@) |
< X a i aNawg Do i u7,aSh,anamg | W(G) | < b.
Therefore [ 1.[¢]W exists.

CoroLLARY. If ¢ is a choice function, A is in B, W is in BV, and f is in
B(Q, R) then [ 4 fl¢)W exists.

An integral K on B(w, R) X R is called a refinement integral provided there
is a positive integer n» and a sequence {¢, , W,}1 , where, forp = 1,2, ... | n,
¢, is a choice function for R and W, is in BV, such that

K6, 4) = % [ 1o,

for each fin B(Q, B) and A in R. Mac Nerney [1] has provided a partial
answer to the question of what integrals are refinement integrals. In the next
section we will extend Mac Nerney’s representation theorem to give a better
but still incomplete answer.

4. A representation theorem

A choice function ¢, for R is said to precede a choice function ¢, for R pro-
vided that if each of A and B is in R and A is properly situated relative to B
with respect to {¢1, ¢2} then 15(¢1(4)) < 1z(¢2(4)). Suppose that & is a
collection of choice functions for R. For each ¢ in & let f; denote the set of
ordered pairs to which (z, k) belongs only in case  is an ordered pair (4, B)
in B X R such that A is properly situated relative to B with respect to ® and &
is the least non-negative number m such that 1z (¢ (4)) < m, for each ¢ in ®
different from ¢ which precedes ¢. The collection ® is said to be complete
provided (1) if each of ¢; and ¢. is in ®, ¢, precedes ¢» , and ¢, precedes ¢, then
&1 = ¢ ; (2) if each of 4, B, and C is in R, C is properly situated relative to
each of A and B with respect to ®, ¢ is a member of ®, and

1a(@(C)) — fo(C, A) = 1 = 13(¢(C)) — f4(C, B)
then [4, B] 5 @ and the common part of A and C is the common part of B and
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C; and (3) if each of A and B is in R, A is properly situated relative to B
with respect to ®, and A contains a point of B, then there is only one member
¢ of ® such that 15 (¢(4)) — f4(4, B) = 1.

Furthermore, for each ¢ in ®, let I (¢) denote the subset of ® to which A
belongs only in case N 5 ¢, ¢ precedes A, and if N is in ® and ¢ precedes N’ and
N precedes A then either N’ = Aor N = ¢. Let I°(¢) denote the set {¢} and
if » is a positive integer let I"™ (¢) denote the subset of ® to which A belongs
only in case there is a member N\ of I"(¢) such that I (\’) contains \. The
collection @ is said to be coherent provided if each of p and ¢ is a non-negative
number and F is a function from & to the plane then

Flp) = p"‘q) F(»).
)\in;(¢)ni§()\) (“) ( q vinIPZ'l(tﬁ) )

TaEOREM 4.1. If K s an integral on B(Q, R) X R, and ® s a finite com-
plete collection of choice functions for R which is coherent then there is a function
W from ® into BV such that

K, 4) = X [ flaw,,
¢ind® J4
for each (f, A) in B(Q, R) X R.

Our proof of Theorem 4.1 follows in outline Mac Nerney’s proof of Theorem
1[1, p. 322] and requires the introduction as an intermediate step of a function
V from ® into BV from which W will be constructed. If each of M and M’
is in D then M’ is called a proper refinement of M with respect to & provided
that M’ is a refinement of M and if (4, B) isin M’ X M then A is properly
situated relative to B with respect to ®. Let V (¢), for each ¢ in ®, denote the
set of ordered pairs to which (4, k) belongs only in case A isin R, k is a com-
plex number, and for each positive number b there is a member M of D which
contains a partition of A such that

|k — ZHinM’ Demumeca K{12(0(@)) — f5(G, H)}lg, G)| < b,

for each member M’ of D which contains a refinement of M and each member
M” of D which is a proper refinement of M’ with respect to ®.

TaEOREM 4.2. V s a function from ® into BV,

Proof. Suppose that ¢ is a member of ® and 4 isa member of B. If M is
a member of D which contains a partition of A and M” is a proper refinement of
M with respect to ® then

ZH in M ZG in M’ ,GCA lK({IH‘(d’(G)) - f¢(G7 H)}IH ’ G)I
< 2rinu Demueca {1a(@(@)) — fo(G, H)ING) < M(4).

Suppose that each of M, M’, and M” is a member of D, M contains a partition
of A, M’ contains a refinement of M, and M” contains a proper refinement of
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M with respect to ® and a proper refinement of M’ with respect to ®. For
each F in M, let N (F) denote the subset of M” to which H belongs only in
case H is contained in 4 and 1,(¢p (H)) — fs(H, F) = 1 and N’ (F) the subset
of M” to which H belongs only in case H is contained in A and le(¢(H))
- fo(H,G) = 1, for some G in M’ which is contained in F. N (F') is contained
in N’ (F), for each F in M.

If F is in M then
Demw,acr 2minve K({le(¢(H)) — fo(H, A)}1q, H)
=D purm Qe wecr K({le(¢(H)) — fo(H, Mile, H)

= ZH in N(F) K(lp ) H)
Hence
| Y rmu{dgmve K(lr, H) — ZGinM'.GgF SanwmK({le(@H))
— fo(H, G)}1e, H)}|

= | 2rtanm 2iemu.ocr 2mmnwm-vo K({le(@H)) — fo(H, G)}le, H)|
< Drinn Dewmuocr 2mimnvm-nwm {La(@H) — fo(H, G)INH)
= Damw 2rmuaca{le@H)) — fo(H, G)INH)

— Drinu nmuraca {1r (6 (H)) — fo(H, F)INH).

Therefore A is in the initial set of V(¢). It is easily seen that V(¢) is ad-
ditive on R.

Turorem 4.3. If each of A and B is in R, A s properly situated relative to B
with respect to ®, ¢ s in ®, and 1z(¢(4)) — fs (4, B) = 1, then

K(ls,A) = L13[¢]V¢-

Proof. Suppose that b is a positive number. There is a member N of D
which partitions A such that

L L8Vs — 3 1a(8(H))V,(H)

inN’

< b/3,

for each member N < of D which refines N. There is a member M of D which
refines N such that if 4’ is a member of D which refines M then

Do# in M,ENBrg DG in ur,ecm,ane=p M(@) < b/3.

There is a member M’ of D which contains a refinement of each of {B} and
M such that

D win manseg | Vo (H)
— Drmw Do inur,acr K({1r(8(G)) — f5(G, F)}1r, @)| < /3,
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for each member M” of D which is a proper refinement of M’ with respect to .

If M" is a member of D which is a proper refinement of M’ with respect to &
then

K1, 4) — [ 1lal7,

< ] [ 1V, — 3 1(m) V)

+ ZHinM,HnB;éﬂ l Vd)(H) - ZF inM’ ZGinM".GEH K({IF(¢(G))

— fo(G, F)}1r, @) |
+ D ninamNs Drinu Deinur,acmans—g | K({12(¢(@))

— f6(G, F)}1,, @) |
+ | K(1p, A) = Xainu,ansmg 2orinu Do inur,ack.ana=s K({L($(@))

— fo(G, F)}1p, @) |

< 2b/3 + Zx in M,HNB>4p > in u7,acr,aNz=g N(G)
+ | K(13,4) — ZGinM",GgA,GnB#ﬂ ZFinM’ K({1:,((®))

— fs(G, F)}15,@) | < b.
Therefore we have the theorem.

TuroreMm 4.4. If (A, B) isin B X R, A 1is properly situated relative to B
with respect to ®, and ® contains n elements then

K, 4) = 2, [ule{ve+ 5 - 2 v}

#(p) inIP(¢)

Proof. Suppose that Nisin ® and 1, (A(4)) — A(4, B) = 1. Then

> L 1B[¢]{V¢+:2;1(—1)” > V(Mp)}

¢ in @ #(p) inIP(o)

n

=3 T o0 {E -0 = o))

2=0 #(p) in IP(\) »(q) in I9(u(p))

n

(- [ LNV G(@)

p+g=0 p(p) in IP(N) »(g) in I¢(u(p))

n a +
p-l-zq;-o (=1) (p q q) uin;G()\) L LNV,

L LINVa = K(1,, A).



106 JAMES A. RENEKE

Proof of Theorem 4.1. Suppose that ® contains n elements. Let W denote
the function from ® into BV defined by

Wo = Vst 201 (=1)" 2uor mn 1oy V (tp).

If each of A and B is in R and M is a refinement of 4 in D such that each
member of M is properly situated relative to B with respect to ® then

K(IB,A) = ZHinM K(lx, H)
= > Z@Lla[fi’]w'p

Hin M ¢ in

Z@ L 1:[61W,.

¢ in

Hence we have the theorem.

5. Some examples

Suppose that R is a field and F is a continuous linear function from B (2, R)
to the plane. Let K denote the function from B(w, B) X R to the plane de-
fined by K(f, A) = F(1,f). K is an integral and any complete set of choice
functions is degenerate. Hence

K(f, 4) = [ flglKlla, ]

for each choice function ¢ for R.

Suppose that n is a positive integer and Q is the space of n-tuples of real
numbers. A subset A of Q is called a rectangular interval provided that there
is an ordered pair (z, 2) in @ X Q@ such that 2(p) < z(p)(p = 1,2, -+, n)
and a member w of Q is in A only in case

x(p) Swp) Lz2@)p=1,2---,n).

Briefly. A = [z;2]. Let R denote the set of all rectangular intervals contained
in Q.

TaEOREM 5.1. Suppose that each of [x; y] and [w; 2] is in R and [z; y] con-
tains a point of [w; 2]. For each inieger p in [1, n], let

u(p) = 3@(@) +w) + |20 — wk)l)

and
v(@) = 3@ @) + 2() — ly@) — 2(@))).

[x; y] is relatively prime to [w; 2] only in case w(p) = v(p) for some integer p in
[1, n].

Proof. One way is clear. Suppose that [¢; b] is a member of B contained
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in each of [z; y] and [w;2]. Thenu(p) < a(p) < b(p) < v(p) for each integer
pin [1,n]. Thus we have the theorem.

Suppose that [z; y]isin B, w(p) = $(@(p) + y(p)forp =1,2,--- ,n, M
is a member of D which contains [z; ] and [u; v] is a member of M which con-
tains w. For each integer p in [1, n], let

a(p) = 3@®) + ulp) + |z®) — ulp)|)

and

i(p) = 3@®) +vlp) — [y®) — o).
There is an integer p in [1, n] such that @(p) = 7(p). But then

z(p) < 3@@) +2()) = alp) =ulp) =5@) =ulp) = 2(p)

and this is a contradiction. Hence no member of M other than [z; y] con-
tains w.

TuEOREM 5.2. FEach member of R is R-measurable.

Proof. Suppose that each of [z; y] and [w; 2] is in R and [z; y] contains a
point of [w; 2]. Let {N,}r denote the sequence of sets defined as follows:
N, is the set to which u belongs only in case either v = z(p) or u = y(p) or
u=w()andz(p) < w(p) < y()oru ==z(p)andz(®) < z2(p) < yp).
Let M denote the collection of subsets of R to which [u; v] belongs only in
case, for each integer p in [1, 2], u(p) and v(p) are in N, and there is no
member of N, between w(p) and v(p). M partitions [x; y]. Suppose that
each of [u; v] and [#; 7] is in M and [u; v] is not relatively prime to [@; 2] with
respect to R. Then for each integer p in [1, n]

@) +a@) +lu@) —a@)]) <3e®)+1@) —|v@) —5@))),

and sou(p) = u(p) andv(p) = 7(p). Thus M isin D. Similarly, suppose
that [u; v] is in M and [u; v] is not relatively prime to [w; 2] with respect to R.
Then [u; v] is contained in [w; 2]. Therefore each member of R is R-measur-
able.

Clearly each pair of elements in R is contained in a third member of R.
Theorem 2.1 shows that if (4, B) isin B X R then thereis a member M of D
which contains a refinement of each of A and B.

Let 8 denote the class of ordered pairs to which (S, T') belongs only in
case each of S and T is a subset of the first # positive integers and S contains
no member of 7. For each member (S, T') of 8 let Pg,r denote the class of
functions from R into © to which ¢ belongs only in case, for each [z; y] in R and
integer p in [1, 7], ¢ ([z; y])p = z(p) f pisin S, ¢([z; y])s = y(@) if pisin T,
and z(p) < ¢([z; y])» < y(p) otherwise.

Tueorem 5.3. If (S, T') is in S and ¢ s in Pg,r then ¢ 18 a choice function
for R.
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Proof. Suppose that each of [z; y] and [w; 2] is in B and [z; y] contains a
point of [w;2]. Let {N,}i and M be as in the proof of Theorem 5.2. Suppose
that [u; v] is a member of M which contains a point of [w; 2], [@; 7] is a member
of R contained in [u; v] and [4; 7] contains a point of [w; 2]. If ¢ ([a; 7]) is in
[w; 2] and p is in S then

¢ ([u; 1])p = u(@) < a(p) < v(p).

o ([u; 9])p = v(p) 2 9(p) = u(p).

Since, for each integer p in the union of Sand T, w(p) < 4 (p) and 9 (p) < z(p)
we have u(p) = 4 (p) and v(p) = #(p). If p is an integer in [1, n] and p is
in neither S nor T then

u®) < ¢([u; 0]); < v(p).

Again u(p) < a(p) < ¢([4;7]), < 9(p) = v(p). Hence
w(p) < ¢([u;v]), < 2(p).

Therefore ¢ ([u; v]) is in [w; 2].

Suppose that ¢ ([u; v]) is in [w; 2]. Let @ be a point of [i; 7] in [w; 2]. If p
is in S than w(p) < 4(@) < u(p) < a@®) < 2(p). If pisin T then
wp) <alp) <il) <v@p) < z(). If pisan integer in [1, n] and p is in
neither S nor 7 then u (p) < ¢([u;v]), < v(p). Hence

w(p) S ulp) <a@) < ¢(a;9]), < 2(p) < o(p) < 2(p).

Therefore ¢ ([iZ; 3] ) is in [w; 2] and so ¢ is a choice function for R.

If pisin T then

TrEOREM 5.4. Let ® be a collection of choice functions for R with the property
that, for each (S, T) in 8, ® contains exactly one member of Psr. ® is a finile
complete collection of choice functions for R which is coherent.

Lemma 5.1. Suppose that each of [x; y] and [w; 2] is in R. If there is a
member (S, T) of § such that a member u of [x; y] s in [w; 2] only in case
u(p) = x(p) for each p in S and w(p) = y(p) for each p in T then [x; y] 75
properly situated relative to [w; 2] with respect to ®.

Proof. Suppose that [u; v] is a member of R contained in [x; y] which con-
tains a member of [w; 2], (S, T’) is a member of 8, and ¢ is the member of
in Pgr,pr . If ¢([u;v]) is in [w; 2] and p is in S then

z(@) < ulp) < o(lw;v])p = z(p).

Hence S is contained in S’. Similarly, T is contained in T’. Therefore
¢ ([x; y]) isin [w; 2]. Suppose that ¢ ([x; y]) is contained in [w;2]. Let a be a
member of [u;v]in [w;2]. IfpisinSthenz(p) < u(p) < a(p) = z(p) and
if pisin T then y(p) = a(p) < v(p) < y(p). Hence ¢ ([u; v] is in [w; 2].
Therefore [z; y] is properly situated relative to [w; 2] with respect to ®.
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Lemma 5.2, If each of (S, T) and (S’, T') is contained in S, ¢, is the member
of ® in Pg,r, and ¢, 1s the member of ® in Pg 1 , then these are equivalent:

(1) &1 precedes ¢»
(2) 8 7s contained in S’ and T is contained in T'

Proof. Suppose that (1) holds and [z; y] is a member of B. Let (w, z) be
an ordered pair in @ X @ such that [w; 2] isin B, if p isin S then 2 (p) = z(p),
if pisin T then w(p) = y(p),and w(p) < (@) < y(p) < 2(p) otherwise.
[x; y] is properly situated relative to [w; 2] with respect to ®. Since

L (61 (25 1)) < lpwa (42 (25 911)),

S is contained in 8’, and T is contained in 7.
Suppose that (2) holds, each of [z; y] and [w; 2] is in R, [z; y] is properly
situated relative to [w; 2] with respect to {1, ¢»} and

Loy (@1 ([75 91)) > Lpwsa (92 ([25 91])).
There is an integer p in [1, n] such that either

o2 ([z;9])r < w@) or ¢(lz;y])p > 2(p).

Suppose the former. For each integer ¢ in [1, n], let v(q) = w(q) if ¢ = p and
v(g) = y(q) otherwise. [z;¢] is a member of R contained in [z; y] and [z, ]
contains a member of [w;2]. Hence ¢1 ([z;v]) isin [w; 2] and sopisin T. But
pisnot in 7. We have a similar situation if ¢:([z; y])» > 2(p). Therefore
(2) implies (1).

The proof of the second part of Lemma 2 also shows that if

T (B (x5 9])) = 1
and p is an integer in [1, n] which is in neither S nor T then

wp) < z() <yp) < 2(p).

Lemma 5.3. Suppose that each of [x; y] and [w; 2] 7s in R, [x; y] is properly
sttuated relative to [w; 2] with respect to ®, (S, T') 18 in 8, ¢ is the member of ® in
Ps,q' ) a'nd

Liwa (@ (25 9]1)) — fo(lz; 9, lw 2]) = 1,

then for each member u of [x; y] these are equivalent:

(1) wisin [w;z],
2) u(p) = z(p) for each p in S and u(p) = y(p) for each p in T.

Proof. Suppose that (1) holds, p is a member of S, and u(p) > z(p).
Let S’ denote S — {p} and ¢’ the member of Py rin ®. For each integer ¢
in{l,n],letv(g) = u(g) if ¢ = pand v(q) = y(q) otherwise. Then [z;v]isa
member of R contained in [z; y] and [z; v] contains a member of [w;2]. Fur-
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thermore, ¢’ ([z;v]) isin [w; 2] and so ¢’ ([x; y]) isin [w; 2]. A similar situation
holds if p is a member of T and 4 (p) < y(p). Hence

Liwar (¢ ([2; 91)) — fo(l2; 9], [w; 2]) = O.

This is a contradiction and so (1) implies (2).

Suppose that (2) holds and « is not in [w; 2]. There is an integer p in [1, n]
such that either u(p) < w(p) or u(p) > 2(p). Suppose the former. For
each integer ¢ in [1,n], let v(g) = w(g) if ¢ = p and v(p) = y(g) otherwise.
Then [z; v] is a member of R contained in [z; y] and [z; v] contains a member of
[w; 2]. Hence ¢([z; v]) is in [w; 2]. But this is impossible. A similar situ-
ation holds if u(p) > 2(p). Hence u is in [w; 2] or (2) implies (1).

LemMa 5.4. If each of [x; y] and [w; 2] is in R, [x; y] ¢s properly situated rela-
tive to [w; 2] with respect to ®, and [x; y] contains a point of [w; 2], then there is a
member ¢ of ® such that ¢ ([z; y]) ©s in [w; 2].

Proof. Let a be a member of [x; y] in [w; 2]. For each integer p in [1, n],
letu(p) = z(p) if a(p) = 2(p) and

ulp) = 3@@@) +wp) + z@) — wp)])
otherwise and v(p) = y(p)if a(p) = w(p) and
v(@) =3@®) +20) — ly®) — wp)l)

otherwise. [u; 9] isin R and is contained in [x; y]. Furthermore, [u; v] con-
tains a member of [w; z]. Let S be the set of integers in [1, n] to which p
belongs only in case a(p) = 2(p). Let T be the set of integers in [1, n] to
which p belongs only in case a(p) = w(p). Let ¢ be the member of Pg,rin
&, Then ¢ ([u;v]) is in [w; 2] and so ¢ ([z; y]) is in [w; 2].

Proof of Theorem 5.4. Clearly ® is finite. Suppose that each of (S, T') and
(', T') is in 8, ¢1 is the member of & in Pg,r, ¢» is the member of & in Py 1 ,
¢1 precedes ¢, and ¢; precedes ¢;. Then by Lemma 5.2 we have S = §’
and T — T’. Hence ¢ = ¢2.

Suppose that each of [z; y], [w; 2], and [u; v] is in B, [u; v] is properly situated
relative to each of [z; y] and [w; 2], (S, T') is a member of 8, ¢ is the member of
P 8,T in q’, and

Lz (0 ([w; 0])) — fo([u; o], [=5 y])

=1 = Ly (¢ ([w; 0])) — fo(u; o], [w; 2]).
Again by Lemma 5.2 a member o of [u; v] is in [z; y] only in case a (p) = u(p)
for each p in S and a(p) = v(p) for each p in 7. The same holds for [w; 2].

Hence the common part of [z; y] and [u; v] is the common part of [w; 2] and
[u;v]. Foreachintegerpin[1,n],letb(p) = v(p)if pisin Tand b(p) = u(p)

otherwise and
c(p) = 3@y) +2m) — ly®) — @)

c(p) = $@@) +wlp) + |z() — 2(p)])

fpisin T and
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otherwise. [b; c] is a member of R,

Suppose that each of [z; y] and [w; 2] is in R, [z; y] is properly situated rela-
tive to [w; 2] with respect to ®, and [z; y] contains a point of [w;2]. By Lemma
5.4 and the finiteness of ® there is a least member ¢ of ® such that

liwa (0 ([z; 91)) = 1.

But this means that 1., (¢ ([x; y])) — fe(z; yl, [w; 2]) = 1. Lemma 5.3
shows that there is no more than one such ¢ in ®.

Suppose that (S, T') isin 8, ¢ is the member of Py r in ®; each of p and gisa
non-negative integer, and F is a function from ® to the number plane. If
I"%(¢) is empty then

Dnimre Lpimmn F) =0 = (P39 2, inmrapF ).

Clearly the proposition holds if either p or ¢ is 0. Suppose that I?*%(¢) is not
empty and p 5% 0 5% ¢. Then there are at least p + ¢ integers in [1, n] which
are in neither S nor 7. Suppose that (S’, T”) is in S, » is the member of ® in
(8, T"), and v is in I?"%(¢). Let H denote the set of integers in the union of
S’ and T” which are not in the union of S8 and T. H contains exactly p+ ¢
elements and there are (*49) subsets of H which contain p elements. Hence

> o n rwm=(TY 3 Fo)
NinIP(¢) pinTa(N) q vin IP¥E(¢)

Hence we have Theorem 5.4.
TreoREM 5.5. B(Q, R) is an algebra.

Proof. A function f from € to the number-plane is said to be quasicon-
tenuous provided if z is a point in Q; [w; 2] is a member of R which contains z in
its interior; for each integer p in [1, n], N, is the set of numbers to which »
belongs only in case 4 = w(p) oru = z(p) oru = 2(p); M is the collection of
subsets of B to which [u; v] belongs only in case, for each integer p in [1, n]
each of u(p) and v(p) is in N, and no member of N, lies between % (p) and
v(p); (S, T)isin §; [u;v] isin M ; and z is a sequence with values in [u; v] such
that for each integer p in [1, n] and positive integer g, 2,(p) = z(p) if p isin
either S or T and 2,(p) is between u(p) and v(p) and z(p) has limit z(p)
otherwise; then f[z] has a limit. The set M is the partition of [w; 2] in D which
contains both [w; z] and [z; 2] with the fewest members. Let 9 denote the
space of functions from € to the number-plane which are quasi-continuous and
have compact support.

Suppose that f is in I, [z; y] is a member of B which contains the support
of f, and b is a positive number. Let F denote the set of ordered pairs to which
(a, A) belongs only in case a is in [z; y]; A = [w; 2] is a member of R which
contains ¢ in its interior; and if M is the partition of [z; 2] in D which contains
[x; a] and [a; 2] with the fewest members, (S, T') is in 8, [u; v] is in M, each of r
and sis in [u; v], and, for each integer pin [1, n],r (p) = s(p) = a(p) if pisin
either S or T and each of r(p) and s(p) is between u(p) and v (p) otherwise;
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then |f(s) — f(r)| < b. There is a finite subset A of [z; y] such that the
interiors of the elements of the final set of the contraction of f to A covers
[z; .

For each integer p in [1, n], let N, denote the set to which « belongs only in
case there is an @ in A such that either v = a(p) oru = w(p) oru = z(p),
where F (a) = [w; 2]. Let M denote the subset of B to which [u; v] belongs
only in case, for each integer p in [1, n], u (p) and v (p) are in N, and no member
of N, lies between u (p) and v(p). Let M’ denote the collection of subsets of
© to which B belongs only in case there is a member [u; v] of M and a member
(S, T) of 8 such that a point a of @ is in B only in case, for each integer fin
[1,7n],a(p) = u()ifpisin S, a(p) = v(p)ispisin T, and u(p) < a(p)
< v(p) otherwise. There is a function ¢ from M’ into @ such that ¢ (B)
is in B for each B in M’. Let g denote the function from Q@ to the plane de-
fined by

9= 2simwf@B);s.

gisin B(Q, R) and |f — g| < b. Since 91 is an algebra the closure of 9,
which is B(Q, R), in the space of functions from @ to the plane which have
bounded final sets with respect to |-| is an algebra.
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