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1. Introduction
Let m >_ 3 be a cardinal number and let S (x, r) denote the cell

{y: [Ix- Yll -<r}

in a real normed linear space N. The space N is said to be m-hyperconvex [1]
if every paise-inersecting family ff of cells in N th card ff ( m has non-
empty intersection. The m-hyperconvex normed spaces are exactly those
spaces N for which the continuous linear operator T in the diagram

TL N

has a norm-preserving extension to M whenever dim M < m.
In the case m card N the m-hyperconvex normed spaces were charac-

tefise in [6] as the spaces C (S) consisting of all continuous real-valued func-
tions on un extremally disconnected compact Hausdorff space S. It was sho
further in [1], for a general m, that the m-hyperconvex spaces which are of the
form C (X) for some compact Huusdo space X are those for which X has the
topological property Q (m, m). This is the case m u of the following:

DEFINITIONS. Let X be a topological space, and let m and be cardinal
numbers with m 3 and 3.

(a) A pir (, ) of disjoint non-empty open subsets of X is (m, )-
pair if : ieI} and O{:jeJ},

where , are open for all i and j, el for all i, cl for all j,
card I < m and card J < .

(b) The space X bus property Q (, ) if euch (m, u)-pair (, satisfies
clncl .
The present pper considers m-hyperconvex Banach spaces with m 5,

nd the spaces are required to have at least one extreme point on their unit
cells. The main result is that every such spce is isometriclly isomorphic
to a normed spce of the form A (K), consisting of all real continuous ane
functions on Choquet simplex K with the property that the set EK of ex-
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treme points of K satisfies Q (m, m) in its structure topology. This topology,
introduced by Effros in [4], has for its non-trivial closed sets the intersections
with EK of the closed faces of K.
We recall from [1] that every m-hyperconvex normed space with m > 0 is

complete.

2. Interpolation properties in partially ordered spaces

(2.1) DEFiNiTiONS. Let V be a partially ordered vector space.
(a) V has the (m, )-interpolation property, (m, n)-Int, if for every two

non-empty subsets A and B of V with card A < m, card B < and a _< b for
all a in A and b in B, there exists v in V with a _< v _< b for all a in A and b in B.

(b) When V has an order unit, V will satisfy the bounded (m, )-interpola-
tion property B (m, )-Int if the property in (a) holds when the sets A and B
are bounded in the order-unit norm of V.

In the above, will denote ’% cardinal number strictly greater than card
V". It is clear that (u, m)-Int is equivalent to (m, a)-Int. If V has an order
unit and m and n are finite, then B (m, n)-Int and (m, )-Int are equivalent.
Also V is a lattice if and only if it has (3, )-Int and V has the Riesz de-
composition property if and only if it has (3, 3)-Int.

(2.2) LEMMA. Let V be a partially ordered space with order-unit e and the
order-unit norm. Let m >_. 3 and 1t >_ 3 be cardinal numbers.

(a) If V is (m 1)-hyperconvex, then it has the bounded (m, )-
interpolation property.

(b) If V has the (m, n)-interpolation property, then it is (m/ n)-hyper-
convex.

Proof. (a) Let V be (m - 11 1)-hyperconvex. Let A and B be bounded
subsets of V with card A < m, card B < and a _< b for all a in A and b in B,
and put

sup{I]x-- yl[’x, yeAuB}.

Consider the family

{S(a - te, t)’aeA} u {S(b re, t)’beB}.

We have in all cases that card ff m -t- n 1
From 0 <_ b a <_ te we obtain

-2re

_
(b re) (a - re)

_
-re

which shows that

(b te) (a - te) 2t and S (a - re, t)n S (b re, t) 0.

Also if a and c are in A, then

II (a + te) (c- te) [[a- c ll - t,
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showing that

Similarly
S(a -t- te, t) n S(c -- re, t) 0.

S (b te, t) n S (d re, t)

when b and d are points of B.
Since V is (m + n 1)-hyperconvex there exists

ve {S(a + te, t)’aeA} n {S(b te, t)’bB}.

For all a in A and b in B, we have

--re

_
v-- a-- te and v- b-- te

_
te,

showing that a _< v _< b. Hence V has the bounded (m, n)-interpolation
property.

(b) Suppose V has the (m, n)-interpolation property and let

{S(x, r)’ieI, card

be a pairwise-intersecting family of cells in V. Consider the sets

A {xi-re’ieI} and B {x- re’jeI}.

For each i and j, x r e

_
x - r e.

there exists v in V with
Since card A < m and card B < n

x-re_<v_<xWre for alliandj.
This shows that

{S(x,r):ieI, cardI < m/n} 0,
and that V is (m/ u)-hyperconvex.

(2.3) CooLLxRY. The following are equivalent:
(a) V. is 5-hyperconvex,
(b) V has (3, a)-Int,
(c) V has (m, )-Int for all m and with 3 <= m <- No and 3

_ _
o

(d) V is m-hyperconvex for all m with 5

_
m

_
o.

Proof. By Lemma 2.2 (a), (a) (b). We may show by induction that
for all finite m, n _> 3

(m, n)-Int (m, -t- 1)-Int.
This shows (b) (c). That (c) (d) now follows from Lemma 2.2 (b)
and the implication (d) (a) is trivial.

(2.4) COOL.ARY. Let V be a partially ordered normed space with order-unit
and the order-unit norm. Then for any cardinal m >_ 5,

V has the (m, m)-interpolation property

V is m-hyperconvex

has the bounded (m, m)-interpolation property.
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Proof. The first implication is consequence of Lemmu 2.2(b). The
second implication follows in the case of finite m from Corollary 2.3. In the
case m >_ R0,weobservetht2m 1 m and use Lemm 2.2(a).
The following result, part of [7, Theorem 4.7], relates the above to our as

yet un-ordered 5-hyperconvex normed spaces.

(2.5) PROPOSITION. Let N be a 4-hyperconvex normed space whose unit
cell U has an extreme point e. When N is partially ordered by the cone
R+ (e W U), the order-unit norm derived from e coincides with the original norm.

3. The property Q(m, u)
Let m and be cardinal numbers with m >_ 3 and >_ 3. We shall prove

that if a Choquet simplex is such that A (K) has the bounded (m, n)-inter-
polation property, thenEK has the property Q (m, ) in the structure topology.
This then gives a representation theorem for m-hyperconvex Banach spaces
whose unit cells possess an extreme point.
The following known results (3.1)-(3.5) concerning Choquet simplexes

will be required. For further details see [2], [4], [8].

(3.1) TttEOREM (Edwards [3]). Let K be a compact convex set in a locally
convex Hausdorff space, and let C be the set of lower semicontinuous concave
real functions on K.

The following are equivalent"
(i) K is a Choquet simplex;
(ii) For all f and g with -f, g in C and f

_
g, there exists a in A (K) with

(iii) A (g has (3, 3)-Int;
(iv) A (K) has the Riesz decomposition property.

(3.2) COROLLaRiES. Let F and G be closed faces of a Choquet simplex K.
(a) (Urysohn’s Lemma for simplexes) If F G , there exists a in

A (K) with
0 <_ a <_ e, alF 0 and a[G 1.

(b) The set H co (F u G) is a closed face of K and

H EK (F u G a EK.

Proof. (a) Apply Edwards’ Theorem with f xa and g e x,
where xa and x ure the churacteristic functions of F und G.

(b) The last assertion and the fact that H is closed follow by elementary
rguments.

It remains to show that H is a face of K. Suppose k is a point inEK \ (F u G).
By prt (u), there exist f and g in A(K) with 0 <_ f _< e, 0 _< g <_ e,
f(k) g(k) 1 andf(F) g(G) {0}.
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Now let be the function with

(x) 0 (x ), ik(k) 1.

The functions f k and g %/ gk satisfy the conditions of Theorem 3.1,
and so there exists hk in A (K) with

h(k) 1, hl(FuG) 0 and 0_< h_< e.
The sets

H. {xeK:h(x) 0} and H’ f’l{H:keEK\(Ft G)}

are closed faces of K containing H. But H’ n EK H EK, and so H H
and H is a face of K.

Corollary 3.2 (b) gives directly the non-trivial part of the proof that the
structure topology is a topology. We recall that with the structure topology
EK is compact, but may not be Hausdorff. With the relative topology as
a subset of K, EK is a Hausdorff space.

(3.3
lent:

(i)
(ii)
(iii)
(iv)
(v)

PROPOSITION. Let K be a Choquet simplex. The following are equiva-

EK is closed in K;
EK is a Hausdorff space in the structure topology;
the relative topology and the structure topology of K coincide;
A (K) is a lattice;
A (K) . C (EK).

The following is a consequence of Lemma 4.3 of [5].

(3.4) PROPOSITION. Let V be a partially ordered vector space with order-unit
e and the order-unit norm. Let K be the positive face of the unit cell in the dual
space V*. If V is complete, then it is isometrically isomorphic to A (K), where
K is taken with the relative weak*-topology.

(3.5) THEOREM. Let N be a 5-hyperconvex Banach space whose unit cell
has an extreme point e. Then N is isometrically isomorphic to a space A (K)
where K is a Choquet simplex.

Proof. Since N is 4-hyperconvex, Proposition 2.5 shows that it may be
regarded as a partially ordered normed space with order-unit e and with the
order unit norm coinciding with the original norm. By Proposition 3.4,
using the completeness of N, N is isometrically isomorphic to A (K), where K
is the positive face of the unit cell in N*, with the relative weak*-topology.
By Corollary 2.3, N has the (3, 3)-Int property, so by Theorem 3.1 K is a

simplex.

(3.6) TEOEM. Let K be a Choquet simplex. If A (K) has the bounded
(m, n)-interpolation property m >_ 3 and n >_ 3, then the set EK has property
Q (m, n) in the structure topology.



158 Do K. OATES

Proof. Let
(J/t’ieI} and x) [J{’jeJ}

be (m, n)-pair in the structure topology of EK.
Since cl

_
t for all i in I, the sets cl t and EK \ are disjoint closed

sets. By Corollary 3.2 (a) there exist functions f in A (K) with

0_f_ e, flclt 1 and f! (EK\t) O.

Similarly, for each j in J, there exists g. in A (K) with

0_ g._ e, giclX)" 0 and gI(EK\) 1.

The sets A {f’ieI} and B {g’jeJ} satisfy the requirements of
property B (m, )-Int, since f

_
g for all i in I and j in J, card A m,

cardB < , and A B S(0, 1). Thus there exists hin. A(K) with
f _< h

_
g. for all i in I and j in J.

Now h (u) 1 for u in t and h (v) 0 for v in X), so that the sets h- ({ 1}
and h- ({0}) are disjoint closed faces of K containing t and respectively.
This shows that in the structure topology the closures cl t and cl x) are dis-
joint and EK has property Q (m, ).

(3.7) TEOEM. Let m >_ 5. If N is a m-hyperconvex Banach space
whose unit cell has an extreme point, then N is isometrically isomorphic to a
space A (K), where K is a Choquet simplex such that EK satisfies Q (m, m) in
the structure topology.

Proof. By Theorem 3.5, N is of the form A (K) for a suitable Choquet
simplex K. By Corollary 2.4 it has property B (m, m)-Int and the result
now follows from Theorem 3.6.

(3.8) Paoe.osTO. Let m >_ 5 and suppose that N is a m-hyperconvex
Banach space whose unit cell has an extreme point e.
( IfN is isometrically isomorphic to C (X ) where X is a compact Hausdorff

space, then X satisfies Q (m, m).
(b) If N is a lattice under the natural ordering given by e, then the set EK is

closed in K and satisfies Q(m, m).

Proof. Let K be the simplex given by Theorem 3.7. In case (b), A (K)
is a lattice and by Proposition 3.3, A (K) ._ C (EK), where EK is closed in K.
In case (u), X is homeomorphic to EK with the relative topology. Using
Proposition 3.3 again, the two topologies on EK coincide. So since EK
satisifies Q (m, m) ints structure topology, EK and hence X satisfy Q (m, m)
in their induced topologies.
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