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Introduction
Subgroups of the modular group 1 SL (2, Z) may effectively be con-

structed by means of such representations as have been known through F.
Klein, E. Hecke and B. Schoeneberg (cf. [3]). This is also true for represen-
tations which so far do not seem to occur in the literature and whose kernel is
not a congruence subgroup of I’. Any coset decomposition of 1 relative to a
subgroup 1 of finite index gives rise to u permutation representation. The case
of cycloidal subgroups r, which were introduced in H. Petersson [2], is par-
ticularly simple and will be treated in detail. Thereby, for any positive in-
teger n, a one-to-one correspondence results between the set of cycloidal sub-
groups of index n in 1 and a certain set of permutations, each of order at most
2, of n elements.

In a particular case with n 9 the intersection of all the conjugates of 1 is
a normal subgroup A of index 504 in 1, and the factor group turns out to
be isomorphic to the simple group PSL (2, 8) over the Galois-field GF (8).

Another example concerns a congruence cycloidal subgroup of index 7 in
1. The method here leds to a characterization of the matrices of that group.
The idea of associating permutations with modular subgroups has recently

also been treated in M. H. Millington [1].
Using Hecke’s notation, U (1 1 0 1) and T (0 -1 1 0) with

T (TU) -I generate the modular group. All modular subgroups will
be supposed to contain the matrix -I (-1 0 0 -1).

Let 1 be a cycloidal subgroup of index n in r and N {0, 1, 2, ..., n 1}
the set of integers 0 through n 1. The cosets in

r U. FU

are permuted by right-hand multiplication by any matrix L e I’. If the cosets
be numbered by the corresponding exponents j, a permutation rL of the ele-
ments of N is obtained. EachL is an element of the symmetric permutation
group S operating on N, and r 1 --S is a representation of 1 by permuta-
tions. In particular we have rU , where (012 (n- 1)) denotes
the cyclic permutation changing j into j W 1 (mod n).

Abbreviating r vT, from T -I we have r , the identity element of
S,. We shall let rL operate on N from the right-hand side, using exponent
notation. Thus r, as an element of S,, is characteri,ed by

UTU-" r (j N),
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and therefore r describes the correspondence between the sides of a funda-
mental domain of I’, which may be taken to be a connected set of n modular
triangles in the upper half-plane with common cusp . The relations in 11
now imply r (ro)8

2
We have associated with each cycloidal subgroup 1 of index n in 11 a per-

mutation eS satisfying r (re0) . This map may be reversed by means
of the following

LEMMA. Let n be a positive integer and S, the symmetric group of permuta-
tions of the elements of N 0, 1, 2, n 1} with identity element and

(012..- (n-l)). Then, ifreS,withr ,ifG (, r) isthesub-
group of S, generated by and r, and if

H=

denotes the subgroup of all in G which fix 0 N, we have
(1) G operates transitively on N,
(2) G admits a coset decomposition G (J.,u H’,
(3) H is generated by elements wJr- (j N),
(4) the intersection of all conjugates of H in G is trivial.

Proof. (1) is clear and y H (j e N) easily verified. Let , e G and so

[ OjalToa2T TO0
aS

with numbers av e N (1 -< <- t). Choosing j e N (1 -< _-< t) according to
jl a, jv+ --- a+ W j" mod n (1 =< < t)we may write

i.e. , , with 1-I: . H and j j, e N. As e H unless k 0
mod n this establishes (2). If now , " H, then e H and so j 0.
This proves (3). Finally, as -H is the subgroup of all elements of G
fixing k e N, (4) is also proved.

3
Letn be a positive integer and r e S r (r)8 . There is a representa-

tion I’ -o S with rU and rT r. The image of r is the subgroup
G of S occurring in the lemma. By (2) then the inverse image 1 r-lH of
H under r affords lr (J., rU and so is cycloidal of index n in I’. It is
clear that 1 induces the representation in the sense of Section 1. Thus we
have the following

THEOREM. To each cycloidal subgroup of an index n in F there corresponds
through

UTU- r (j N)

a permutation r e S, with ’ (ro)8 and vice versa.
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The generators 7/. (j e N) of H satisfy certain relations easily read off from
and re0, if these permutations are written in cycles. If (j) is a cycle oc-

curring in r or in , 7/ or 7/ holds, respectively. To each cycle (j])
of r a relation 7" 7 corresponds, and each cycle (jkl) of similarly implies

By the lemma, (4), the kernel A of the representation r is the intersection
of the conjugates of r in lr. Therefore G is isomorphic to the factor group
1F/A, and H to
Both groups I’ and A are of the same level in lr as defined in [4], and if one

of them is a congruence subgroup of 1I’ so is the other.

We now take up the particular case n 9, r (14)(26)(37)(58). As
a r (015) (274) (386) is of order 3, r indeed corresponds to some cycloidal
subgroup F of index 9 in 1F.

If I’ were a congruence subgroup of 1I’, because its level is 9, it would have to
contain the principal congruence group 9F (cf. [4]), and 9I’ c A would follow.
Now (TU3) -I mod 9, while re03 (0317652) is not of order 6, so
(TUa) A, and F is not a congruence subgroup of 11".
By the relations

2
7/0 7174 72 7/6 7/a77 7/7/8 7o7/17/ 7/2 7/7 7/4 7/3 7/87e

t is seen that 70,72 and 77 suffice to generate H and satisfy
2 --1 --1

7/0 7/0 7/2 7/7 7/2 7/ .
This shows--as does already the permutation r--that the Riemann surface
belonging to F has genus 1. A.O.L. Atkin has computed the coefficients of
the algebraic equation between two generating functions belonging to F. He
found essentially (unpublished)

y2 4.x + 225.x + 3840.x W 16384.

If this is put into Weierstrass normal form,
y2 4.X3- g.X- ga,

then g2 1515, g3 23053 and so

g.a 27. ga2 227" 3,
j 12. g23.- 2-. 32. 53.1013.

The absolute invariant j not being an integer it may be concluded that the
function field of genus i belonging to I’ has no complex multiplication.

5
Continuing with the particular case of Section 4, besides
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there ought to be other relations in the group H.
verified, and elimination of 7 then leads to

Indeed, 7 72 r is easily

This may be used to show that ." rn ( mod 7), all of order 2, together with
form an abelian subgroup K, normal in H, of order 8. The factor group is
generated by n2 K and so is cyclic or order 7. Therefore, H has order 56 and
then G has order 504.

Transformation of n. (0) (1) (2456873) by powers of n7 (0) (8) (1267543)
leads to permutations in H which fix any j 1, 2, ..., 7 besides 0 while
changing the rest of N cyclically. The case j 8 is covered by n. There-
fore H is doubly transitive as a permutation group on N’ {1, 2, 8}.
G is then a triply transitive permutation group of degree 9, and so its order,
504, is a product of the form 9,8.7.q, with q the order of any subgroup of G
whose operations fix 3 elements of N. This gives q 1, therefore is the only
permutation in G fixing more than 2 elements of N..It is not difficult to show
now that G is isomorphic to the well-known simple group PSL (2, 8) of 2 2-
matrices of determinant 1 with elements in the Galois-field GF (8).

The Galois-field GF (8) is an extension of degree 3 of the prime field of char-
acteristic 2, and the elements of this field different from zero form a cyclic
group of order 7.

There is a generator e of this group with e -+- 1 = 0, and so we may write
GF(8) {0,1,,e, ...,e6},and

5
The matrices

give B (BA )3 I, thereforethere is a representation

D 1F -- PSL (2, 8)

with DU A and DT B. That D essentially is the representation
v iF --. G is seen as follows" Introducing the projective line of nine points
with homogeneous coordinates , e GF (8) we take -1 as a projective
scale with values in GF (8) u }. Any L (a/ 8) in PSL (2, 8) in-
duces a permutation of these values by

t---, L-It (St + ) (,t -t- a)-.
In particular, DU, DT and D (TU), respectively, induce

o (o
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and
( 0 1 (e e e) (e* e e’).

If the values of the t-scale are suitably labelled by the elements of N, the 3
permutations above, respectively, exactly correspond to , r and . This
proves the assertion made at the end of Section 5.

7
Another application of the theorem in section 3 arises in the case n 7,

r (12) (36). Here r (013) (456) is of order 3 and so r determines a
cycloidal subgroup Z of index 7 in 11".
Z is a congruence subgroup of level 7. Indeed, a system of defining relations

for the factor group iI/qF, with ql the principal congruence group of prime
level q, is

U =. T (TU) (TUTU’) =- ::l=.I mod q

(jk --- 2 mod q) (cf. [3]), and the assertion made then follows from (r) e.

As a consequence G (r. ) is isomorphic to the simple group ,r/,r of order
168 and H (y. J mod 7) has order 24.
Now from

0 (12)(36), (1534)(26), and (26)(45)

it will be found that K (n, n,) is an abelian (non-cyclic) group of order 4,
Klein’s "Vierergruppe", and normal in (0, y, ,). As K is of index 2 in
(, m) and the latter group does not contain 0 , (124)(365) of order 3
as an element, the order of the group generated by n0, n, and n, is at least 24.
Therefore that group is H and of octahedral type, and K is its unique normal
subgroup of order 4. As G is simple, K is not normal in G and H must be the
normalizer with respect to G of K. This fact will be used to describe the
matrices L Z.

Let A be the inverse image of K under the permutation representation
r 1F --* G defined by rU- , rT r. A is, of course, a congruence sub-
group of level 7 in 1. Because n, *r-* is in K, A will contain all modular
matrices which up to a sign are congruent mod 7 to U*TU-. Taking regard
of the other elements of K in the same way it is found that A consists of all
L 1F satisfying

:t:L ( 01),(41 ),(42 )or ( 13)modT.
But Z is the inverse image under r of the group H and, because of what has
been said above, will be the normalizer of A with respect to 1I. Therefore Z
consists of all modular matrices L such that
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are congruent mod 7 to matrices

Evaluating congruences leads to this

Toa,. A certain cycloidal subgroup of index 7 in consists of all
L (a b]c d), r satisfying

a d* (4d’ c) mod 7 (7 4 c),

b- c(3c-- da) mod7 (7 4 d).

Remark. Similar descriptions may be obtained for cycloidal subgroups of
indices 5 or 11 in
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