ON SOME REPRESENTATIONS OF $S L(2, Z)$

BY
Klaus Wohlfahrt
\section*{Introduction}

Subgroups of the modular group ${ }_{1} \Gamma=S L(2, Z)$ may effectively be constructed by means of such representations as have been known through F . Klein, E. Hecke and B. Schoeneberg (cf. [3]). This is also true for representations which so far do not seem to occur in the literature and whose kernel is not a congruence subgroup of ${ }_{1} \Gamma$. Any coset decomposition of ${ }_{1} \Gamma$ relative to a subgroup Γ of finite index gives rise to a permutation representation. The case of cycloidal subgroups Γ, which were introduced in H. Petersson [2], is particularly simple and will be treated in detail. Thereby, for any positive integer n, a one-to-one correspondence results between the set of cycloidal subgroups of index n in ${ }_{1} \Gamma$ and a certain set of permutations, each of order at most 2 , of n elements.

In a particular case with $n=9$ the intersection of all the conjugates of Γ is a normal subgroup Δ of index 504 in ${ }_{1} \Gamma$, and the factor group turns out to be isomorphic to the simple group $\operatorname{PSL}(2,8)$ over the Galois-field $G F(8)$.

Another example concerns a congruence cycloidal subgroup of index 7 in ${ }_{1} \Gamma$. The method here leads to a characterization of the matrices of that group.

The idea of associating permutations with modular subgroups has recently also been treated in M. H. Millington [1].

Using Hecke's notation, $U=\left(\begin{array}{ll|l}1 & 1 \mid & 1\end{array}\right)$ and $T=(0-1 \mid 10)$ with $T^{2}=(T U)^{3}=-I$ generate the modular group. All modular subgroups will be supposed to contain the matrix $-I=(-10 \mid 0-1)$.

Let Γ be a cycloidal subgroup of index n in ${ }_{1} \Gamma$ and $N=\{0,1,2, \cdots, n-1\}$ the set of integers 0 through $n-1$. The cosets in

$$
{ }_{1} \Gamma=U_{j \epsilon N} \Gamma U^{j}
$$

are permuted by right-hand multiplication by any matrix $L \epsilon_{1} \Gamma$. If the cosets be numbered by the corresponding exponents j, a permutation πL of the elements of N is obtained. Each πL is an element of the symmetric permutation group S_{n} operating on N, and $\pi:{ }_{1} \Gamma \rightarrow S_{n}$ is a representation of ${ }_{1} \Gamma$ by permutations. In particular we have $\pi U=\omega$, where $\omega=(012 \cdots(n-1))$ denotes the cyclic permutation changing j into $j+1(\bmod n)$.

Abbreviating $\tau=\pi T$, from $T^{2}=-I$ we have $\tau^{2}=\iota$, the identity element of S_{n}. We shall let πL operate on N from the right-hand side, using exponent notation. Thus τ, as an element of S_{n}, is characterized by

$$
U^{j} T U^{-j \tau} \in \Gamma
$$

Received October 8, 1968.
and therefore τ describes the correspondence between the sides of a fundamental domain of Γ, which may be taken to be a connected set of n modular triangles in the upper half-plane with common cusp ∞. The relations in ${ }_{1} \Gamma$ now imply $\tau^{2}=(\tau \omega)^{3}=\iota$.

2

We have associated with each cycloidal subgroup Γ of index n in ${ }_{1} \Gamma$ a permutation $\tau \epsilon S_{n}$ satisfying $\tau^{2}=(\tau \omega)^{3}=\iota$. This map may be reversed by means of the following

Lemma. Let n be a positive integer and S_{n} the symmetric group of permutations of the elements of $N=\{0,1,2, \cdots, n-1\}$ with identity element ı and $\omega=(012 \cdots(n-1))$. Then, if $\tau \epsilon S_{n}$ with $\tau^{2}=\iota$, if $G=\langle\omega, \tau\rangle$ is the subgroup of S_{n} generated by ω and τ, and if

$$
H=\left\{\eta \mid \eta \in G, 0^{\eta}=0\right\}
$$

denotes the subgroup of all η in G which fix $0 \epsilon N$, we have
(1) G operates transitively on N,
(2) G admits a coset decomposition $G=\bigcup_{j \epsilon N} H \omega^{j}$,
(3) H is generated by elements $\eta_{j}=\omega^{j} \tau \omega^{-j \tau}(j \in N)$,
(4) the intersection of all conjugates of H in G is trivial.

Proof. (1) is clear and $\eta_{j} \in H(j \in N)$ easily verified. Let $\gamma \in G$ and so

$$
\gamma=\omega^{a_{1}} \tau \omega^{a_{2}} \tau \cdots \tau \omega^{a_{t}}
$$

with numbers $a_{\nu} \in N(1 \leqq \nu \leqq t)$. Choosing $j_{\nu} \in N(1 \leqq \nu \leqq t)$ according to $j_{1}=a_{1}, j_{\nu+1} \equiv a_{\nu+1}+j_{\nu}{ }^{\tau} \bmod n(1 \leqq \nu<t)$ we may write

$$
\gamma=\omega^{a_{1}} \prod_{\nu=1}^{t-1}\left(\omega^{-j_{\nu}} \eta_{j_{\nu}} \omega^{j_{v} \tau+a_{\nu+1}}\right)=\prod_{\nu=1}^{t-1}\left(\eta_{j_{\nu}} \omega^{j_{\nu}^{\tau}+a_{v+1}-j_{\nu+1}}\right) \omega^{j_{t}},
$$

i.e. $\gamma=\eta \omega^{j}$, with $\eta=\prod_{\nu=1}^{t-1} \eta_{j_{\nu}} \in H$ and $j=j_{t} \in N$. As $\omega^{k} \notin H$ unless $k \equiv 0$ $\bmod n$ this establishes (2). If now $\gamma=\eta \omega^{j} \in H$, then $\omega^{j} \in H$ and so $j=0$. This proves (3). Finally, as $\omega^{-k} H \omega^{k}$ is the subgroup of all elements of G fixing $k \epsilon N$, (4) is also proved.

3

Let n be a positive integer and $\tau \epsilon S_{n}, \tau^{2}=(\tau \omega)^{3}=\iota$. There is a representation $\pi:{ }_{1} \Gamma \rightarrow S_{n}$ with $\pi U=\omega$ and $\pi T=\tau$. The image of π is the subgroup G of S_{n} occurring in the lemma. By (2) then the inverse image $\Gamma=\pi^{-1} H$ of H under π affords ${ }_{1} \Gamma=\bigcup_{j e N} \Gamma U^{j}$ and so is cycloidal of index n in ${ }_{1} \Gamma$. It is clear that Γ induces the representation π in the sense of Section 1. Thus we have the following

Theorem. To each cycloidal subgroup Γ of an index n in ${ }_{1} \Gamma$ there corresponds through

$$
U^{j} T U^{-j \tau} \in \Gamma
$$

a permutation $\tau \in S_{n}$ with $\tau^{2}=(\tau \omega)^{3}=\iota$ and vice versa.

The generators $\eta_{j}(j \in N)$ of H satisfy certain relations easily read off from τ and $\sigma=\tau \omega$, if these permutations are written in cycles. If (j) is a cycle occurring in τ or in $\sigma, \eta_{j}^{2}=\iota$ or $\eta_{j}^{3}=\iota$ holds, respectively. To each cycle ($j k$) of τ a relation $\eta_{j} \eta_{k}=\iota$ corresponds, and each cycle ($j k l$) of σ similarly implies $\eta_{j} \eta_{k} \eta_{l}=\iota$.

By the lemma, (4), the kernel Δ of the representation π is the intersection of the conjugates of Γ in ${ }_{1} \Gamma$. Therefore G is isomorphic to the factor group ${ }_{1} \Gamma / \Delta$, and H to Γ / Δ.

Both groups Γ and Δ are of the same level in ${ }_{1} \Gamma$ as defined in [4], and if one of them is a congruence subgroup of ${ }_{1} \Gamma$ so is the other.

4

We now take up the particular case $n=9, \tau=$ (14)(26)(37)(58). As $\sigma=\tau \omega=(015)(274)(386)$ is of order $3, \tau$ indeed corresponds to some cycloidal subgroup Γ of index 9 in ${ }_{1} \Gamma$.

If Γ were a congruence subgroup of ${ }_{1} \Gamma$, because its level is 9 , it would have to contain the principal congruence group ${ }_{9} \Gamma$ (cf. [4]), and ${ }_{9} \Gamma \subset \Delta$ would follow. Now $\left(T U^{3}\right)^{6} \equiv-I \bmod 9$, while $\tau \omega^{3}=(0317652)$ is not of order 6 , so $\left(T U^{3}\right)^{6} \& \Delta$, and Γ is not a congruence subgroup of ${ }_{1} \Gamma$.
By the relations

$$
\eta_{0}^{2}=\eta_{1} \eta_{4}=\eta_{2} \eta_{6}=\eta_{3} \eta_{7}=\eta_{5} \eta_{8}=\eta_{0} \eta_{1} \eta_{5}=\eta_{2} \eta_{7} \eta_{4}=\eta_{3} \eta_{8} \eta_{6}=\iota
$$

t is seen that η_{0}, η_{2} and η_{7} suffice to generate H and satisfy

$$
\eta_{0}^{2}=\eta_{0} \eta_{2} \eta_{7} \eta_{2}^{-1} \eta_{7}^{-1}=\iota
$$

This shows-as does already the permutation τ-that the Riemann surface belonging to Γ has genus 1. A. O. L. Atkin has computed the coefficients of the algebraic equation between two generating functions belonging to $\Gamma . \mathrm{He}$ found essentially (unpublished)

$$
y^{2}=4 \cdot x^{3}+225 \cdot x^{2}+3840 \cdot x+16384
$$

If this is put into Weierstrass normal form,

$$
Y^{2}=4 \cdot X^{3}-g_{2} \cdot X-g_{3}
$$

then $g_{2}=1515, g_{3}=23053$ and so

$$
\begin{gathered}
\delta=g_{2}^{3}-27 \cdot g_{3}{ }^{2}=-2^{27} \cdot 3^{4}, \\
j=12^{3} \cdot g_{2}^{3} \cdot \delta^{-1}=-2^{-21} \cdot 3^{2} \cdot 5^{3} \cdot 101^{3} .
\end{gathered}
$$

The absolute invariant j not being an integer it may be concluded that the function field of genus 1 belonging to Γ has no complex multiplication.

5

Continuing with the particular case of Section 4 , besides $\tau^{2}=\tau \eta_{2} \eta_{7} \eta_{2}^{-1} \eta_{7}^{-1}=\iota$
there ought to be other relations in the group H. Indeed, $\eta_{7} \eta_{2}=\eta_{2}^{2} \tau$ is easily verified, and elimination of η_{7} then leads to

$$
\eta_{2}{ }^{4} \tau \eta_{2}{ }^{2} \tau \eta_{2} \tau=\iota
$$

This may be used to show that $\eta_{2}{ }^{\mu} \tau \eta_{2}{ }^{-\mu}(\mu \bmod 7)$, all of order 2, together with ι form an abelian subgroup K, normal in H, of order 8. The factor group is generated by $\eta_{2} K$ and so is cyclic or order 7. Therefore, H has order 56 and then G has order 504 .

Transformation of $\eta_{2}=(0)(1)(2456873)$ by powers of $\eta_{7}=(0)(8)(1267543)$ leads to permutations in H which fix any $j=1,2, \cdots, 7$ besides 0 while changing the rest of N cyclically. The case $j=8$ is covered by η_{7}. Therefore H is doubly transitive as a permutation group on $N^{\prime}=\{1,2, \cdots, 8\}$. G is then a triply transitive permutation group of degree 9 , and so its order, 504 , is a product of the form $9 \cdot 8 \cdot 7 \cdot q$, with q the order of any subgroup of G whose operations fix 3 elements of N. This gives $q=1$, therefore ι is the only permutation in G fixing more than 2 elements of N. It is not difficult to show now that G is isomorphic to the well-known simple group $P S L(2,8)$ of 2×2 matrices of determinant 1 with elements in the Galois-field GF (8).

6

The Galois-field $G F(8)$ is an extension of degree 3 of the prime field of characteristic 2, and the elements of this field different from zero form a cyclic group of order 7 .

There is a generator ε of this group with $\varepsilon^{3}+\varepsilon+1=0$, and so we may write $G F(8)=\left\{0,1, \varepsilon, \varepsilon^{2}, \cdots, \varepsilon^{6}\right\}$, and

$$
\varepsilon^{3}=1+\varepsilon, \quad \varepsilon^{4}=\varepsilon+\varepsilon^{2}, \quad \varepsilon^{5}=1+\varepsilon+\varepsilon^{2}, \quad \varepsilon^{6}=1+\varepsilon^{2}
$$

The matrices

$$
A=\left(\begin{array}{cc}
\varepsilon & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & \varepsilon^{3} \\
0 & 1
\end{array}\right)
$$

give $B^{2}=(B A)^{3}=I$, therefore there is a representation

$$
D:{ }_{1} \Gamma \rightarrow P S L(2,8)
$$

with $D U=A$ and $D T=B$. That D essentially is the representation $\pi:{ }_{1} \Gamma \rightarrow G$ is seen as follows: Introducing the projective line of nine points with homogeneous coordinates $\xi, \eta \in G F(8)$ we take $t=\xi \eta^{-1}$ as a projective scale with values in $G F(8) \cup\{\infty\}$. Any $L=(\alpha \beta \mid \gamma \delta)$ in $\operatorname{PSL}(2,8)$ induces a permutation of these values by

$$
t \rightarrow L^{-1} t=(\delta t+\beta)(\gamma t+\alpha)^{-1}
$$

In particular, $D U, D T$ and $D(T U)$, respectively, induce

$$
\left(\infty 0 \varepsilon^{6} \varepsilon^{2} \varepsilon^{3} 1 \varepsilon^{4} \varepsilon^{5} \varepsilon\right), \quad(\infty)\left(0 \varepsilon^{3}\right)\left(\varepsilon^{6} \varepsilon^{4}\right)\left(\varepsilon^{2} \varepsilon^{5}\right)(1 \varepsilon)
$$

and

$$
(\infty 01)\left(\varepsilon^{6} \varepsilon^{5} \varepsilon^{3}\right)\left(\varepsilon^{2} \varepsilon \varepsilon^{4}\right)
$$

If the values of the t-scale are suitably labelled by the elements of N, the 3 permutations above, respectively, exactly correspond to ω, τ and σ. This proves the assertion made at the end of Section 5.

7

Another application of the theorem in section 3 arises in the case $n=7$, $\tau=(12)(36)$. Here $\sigma=\tau \omega=(013)(456)$ is of order 3 and so τ determines a cycloidal subgroup Z of index 7 in ${ }_{1} \Gamma$.

Z is a congruence subgroup of level 7. Indeed, a system of defining relations for the factor group ${ }_{1} \Gamma /{ }_{q} \Gamma$, with ${ }_{q} \Gamma$ the principal congruence group of prime level q, is

$$
U^{q} \equiv T^{2} \equiv(T U)^{3} \equiv\left(T U^{j} T U^{k}\right)^{2} \equiv \pm I \bmod q
$$

$(j k \equiv 2 \bmod q)(c f .[3])$, and the assertion made then follows from $\left(\tau \omega^{3}\right)^{4}=\iota$.
As a consequence $G=\langle\tau, \omega\rangle$ is isomorphic to the simple group ${ }_{1} \Gamma / 7 \Gamma$ of order 168 and $H=\left\langle\eta_{j} \mid j \bmod 7\right\rangle$ has order 24.

Now from

$$
\eta_{0}=(12)(36), \quad \eta_{3}=(1534)(26), \quad \text { and } \quad \eta_{4}=(26)(45)
$$

it will be found that $K=\left\langle\eta_{3}^{2}, \eta_{4}\right\rangle$ is an abelian (non-cyclic) group of order 4, Klein's "Vierergruppe", and normal in $\left\langle\eta_{0}, \eta_{3}, \eta_{4}\right\rangle$. As K is of index 2 in $\left\langle\eta_{3}, \eta_{4}\right\rangle$ and the latter group does not contain $\eta_{0} \eta_{3} \eta_{4}=(124)(365)$ of order 3 as an element, the order of the group generated by η_{0}, η_{3} and η_{4} is at least 24 . Therefore that group is H and of octahedral type, and K is its unique normal subgroup of order 4. As G is simple, K is not normal in G and H must be the normalizer with respect to G of K. This fact will be used to describe the matrices $L \in \mathbf{Z}$.

Let Λ be the inverse image of K under the permutation representation $\pi:{ }_{1} \Gamma \rightarrow G$ defined by $\pi U=\omega, \pi T=\tau . \quad \Lambda$ is, of course, a congruence subgroup of level 7 in ${ }_{1} \Gamma$. Because $\eta_{4}=\omega^{4} \tau \omega^{-4}$ is in K, Λ will contain all modular matrices which up to a sign are congruent mod 7 to $U^{4} T U^{-4}$. Taking regard of the other elements of K in the same way it is found that Λ consists of all $L \in{ }_{1} \Gamma$ satisfying

$$
\pm L \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
4 & 4 \\
1 & 3
\end{array}\right),\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
4 & 1 \\
4 & 3
\end{array}\right) \bmod 7
$$

But Z is the inverse image under π of the group H and, because of what has been said above, will be the normalizer of Λ with respect to ${ }_{1} \Gamma$. Therefore Z consists of all modular matrices L such that

$$
L\left(\begin{array}{cc}
4 & 4 t^{2} \\
t & 3
\end{array}\right) L^{-1} \quad(t=1,2,4)
$$

are congruent mod 7 to matrices

$$
\pm\left(\begin{array}{cc}
4 & 4 s^{2} \\
s & 3
\end{array}\right)
$$

Evaluating congruences leads to this
Theorem. A certain cycloidal subgroup of index 7 in ${ }_{1} \Gamma$ consists of all $L=(a b \mid c d) \epsilon_{1} \Gamma$ satisfying

$$
\begin{array}{rlrl}
a & \equiv d^{2}\left(4 d^{8}-c^{3}\right) & \bmod 7 & (7 \nmid c) \\
b \equiv c^{2}\left(3 c^{3}-d^{8}\right) & \bmod 7 & (7 \nmid d)
\end{array}
$$

Remark. Similar descriptions may be obtained for cycloidal subgroups of indices 5 or 11 in $_{1} \Gamma$.

References

1. M. H. Millington, On cycloidal subgroups of the modular group, Proc. London Math. Soc., vol. 19 (1969), pp. 164-176.
2. H. Petersson, Über einen einfachen Typus von Untergruppen der Modulgruppe, Arch. Math., vol. 4 (1953), pp. 308-315.
3. B. L. van der Waerden, Gruppen von linearen Transformationen, Erg. Mat., vol. 4, Springer-Verlag, New York, 1958.
4. K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math., vol. 8 (1964), pp. 529-535.

Mathematisches Institut

Heidelberg, Germany

