EMBEDDING CONNECTED SUMS OF TORI IN CODIMENSION ONE

BY
Doucras R. ANDERSON'

The problem of classifying embeddings of a torus 87 X 8%in S**** has been
settled in the differentiable and piecewise linear (PL) categories by Kosinski
[6], Wall [7], and Goldstein [1]. It is the object of this paper to extend these
results in the PL category to locally unknotted embeddings of connected sums

of tori in a sphere of codimension one. Before stating the main result we make
the

DeriniTioN. Let M and V be PL manifolds and let f, g ¢+ M — V be locally
unknotted PL embeddings. Then f is pseudo-isotopic to g, written f ~ g, if
there is a PL homeomorphism H:V X I — V X I with H(z, 0) = (z, 0) and
H(z,1) = (h(z), 1) such that Af (M) = g(M). Clearly ~ is an equivalence
relation. The equivalence class of the locally unknotted embedding f : M — V'
is called the pseudo-zsotopy class of f and the set of all pseudo-isotopy classes is
denoted by Pseudo-Iso (M, V).

The main result of this paper is
Main TeEOREM. Letn 2> 5 and let
M" = (Hita 87" X SP) # (Hita S7* X S#) # -+ # (Hi: ST X 8%°)
where2<p1 <pe< -+ <P << - <@<q;pi+g=mj=1-,s
and # denotes the connected sum. Then [Pseudo-Iso e, 8™ |
={3(r+ 1)@+ 1)+ (rs+ 1)} ifnisoddorifniseven and ps ¥~ n/2
=3+ 1)+ 1) (rema+ 1)} if niseven and p, = n/2

where absolute value denotes cardinality and {x} is the least integer > x.
As special cases we have the following corollaries:

CororLraRY 1. Letn = p + q¢ = 5withp, g = 2. Ifn s odd or n is even
and p # n/2, then there are (r + 1)/2 pseudo-isotopy classes of embeddings of
#1187 X 8¢ 4n 87T,

CoroLLARY 2. Let n = 2p with p > 3. Then any two embeddings of
#1187 X 8?7 in 8™ are pseudo-isotopic.

It is interesting to note that although there are embeddings
f LN Sp+q+1, g: S, Sp+q+1 _ f(Sp)
whose images are linked, when it comes to embeddings of #i_; S7 X Sf in
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87+ guch linking phenomena do not occur. Indeed it is this observation
that leads to Lemma 3.1 which is essential to the proof of the Main Theorem.

This paper proceeds as follows: In §1, we sketch the proof of the Main
Theorem stating the theorems used in its proof; the proofs of these theorems
are then given in §2 and §3. Throughout this paper we work in the PL cate-
gory.

1. A sketch of the proof of the main theorem

Let M™ be a simply connected manifold and f : M™ — 8™*' be a locally un-
knotted embedding. By Alexander duality S*** — f( ) has two components
whose closures we denote throughout the remainder of this paper by A and B.
Since f is locally unknotted, A and B are PL manifolds and 04 = f(M) = 6B.

Let H;(X) denote the homology of X with integer coefficients.

Lemma 1.1, Letf: M™ — 8™ be a locally unknotted embedding., Then
(¢) The inclusions f(M) C A and f(M) C B induce isomorphisms

H,(f(M))—> H;(A) ® H;(B) for0 < i < n.

(i) H;(A) = Hi(B) =0fori=mn,n-+ 1.
(i) If M 4s (p — 1) connected, p > 2, then so are A and B.

Proof. (i) and (ii) follow from the Mayer-Victoris sequence of the proper
triad (S*™; 4, B) by observing that M must be orientable and that the bound-
ary homomorphism H,.1(S"™) — H, (M™) is an isomorphism. To see (iii),
notice first that M is simply connected; hence, by the Van Kampen Theorem
so are A and B. The result then follows from (i) and the Hurewiez iso-
morphism.

For the remainder of this section we specialize and let
M= (L 87 X 8{')# - # (Gin ST § 47)

where p;, ¢; j = 1, .-+, s are arbitrary, but fixed, integers satisfying
28 <pe< - <PeL < - <@e<g,adp;+¢=n25j=1, -,
s. Then M is simply connected and

H;M) =2 if¢=0n
=Z+ -+ Z (rjtimes) if¢=1p;,q¢,j=1,:,8
=0 otherwise
Thus by 1.1,
H,(A) =2 ife=0
(*) =Z+ -+ Z (u; times) ifi=p;,j=1,---,s
=Z+ -+ Z (v;times) ifi=g¢;,j=1,---,s8
=0 otherwise

where0 < u; < rjand0 <v; <7;,j=1,---,s Itthen followsfrom Alex-
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ander duality that u; + v; = r;,7 = 1, - -+, s; and from 1.1 that
H;B) =172 ife=0
=Z+4 -+ Z (vjtimes) ifz=1p;,j=1:-+,8
=Z+4+ -+ Z (u;times) ifl=¢;,7=1,.--,s
=0 otherwise
Let0 < wuj <rjand0 <v; <r;,j =1, -+, sand construct a polyhderon

X(ul’ ...’u"vl...’v.)

as follows: Let S{Y, - - o, ST, e, S0, 8T, e, S0, ST, -, S be
spheres of the 1ndlcated dlmensmns with base points b1, * -, bu, , bug41, ** ¢,
Bugtov oty 5 Oupootugtly Duptotugto, 5 Dugtetugtogtty * 05 Dugser g e sy T€-

spectively and let I be the closed interval
Lw+ - +u o+ -+l

Then X (U1, -+, 4s, v1, *++, ;) is obtained from the disjoint union of the
spheres and the interval by identifying the base point b; with the point
tel,i=1 -, a4+ - +u+0v+ -+ + 0. Thus

X(uh crty Us,y U1, "'7”8)

has the homotopy type of the one point union of u; spheres of dimension p;
and v; spheres of dimension ¢;,j7 = 1, -+, s. In the sequel we shall often
identify the spheres ST*, or ST? and the interval [1, 2] with their images in
X(ur, -+, %, v, -, 0s). We shall also suppress the arguments u;, - -
Us, V1, *** , ¥ and simply write X when no confusion can arise.

The first step in the proof of the Main Theorem is

TuporeM 1.2. (i) Let h : M"™ — S™* be a locally unknotted embedding and
suppose the homology of A vs as in (%). Then there vs an embedding

f:X(uly cttyUsy Uty "';vc)'_)S"-H

such that A is a reqular neighborhood of f(X).
(i) Conversely iff: X (ur, -+, %, 01, - ,0) — 8" is an embedding and
N 1s a regular netghborhood of f(X ), then

= (i, 87 X BB ... b (i 8P X Ba.+1)h (hiey 8% X B

- B (Bi% S X BT

where b denotes boundary connected sum and the B,- are balls of the indicated
dimensions. Hence ON = M.

b

The proof of Theorem 1.2 is given in §2.
The next step in the proof is

TurEorEM 1.3. Let f, g 2 X(uy, +++, Us, 03, =+, 05) — 8™ be embeddings
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and let P and Q be regular neighborhoods of f (X ) and g(X) respectively. Then
there is a homeomorphism h : 8™ — 8™ of degree 1 such that h(P) = Q

The proof of Theorem 1.3 is given in §3.
The final important step in the proof of the Main Theorem is

TuroreMm 1.4. Let

f:X(uly crty Usy U1, .“’va)_)sn-l-l

and

g: X’(u{: ,u:)v{> 70:)_')‘8”-”
be embeddings and let P and Q be regular neighborhoods of f(X) and g(X')
respectively. In order that there be a homeomorphism h : 8" — 8™ of degree 1
such that h(aP) 8Q 1t is necessary and sufficient that u; + v; = u; + vy,

ji=1, , 8 and that one of the follow%ng be true:

(1) Ifnzsoddu,—u,andv,—-v,,y-—l --,s;oruj=v§andv,~=u,",
j=1

(n) Ifnzsever,zandp, = n/2,u; = usand v; = v;,5 =1, -+, 8 or
U; v,'andv,—u,,y—-l <., 8.

(iii) Ifnzsevenomdp.—-n/2 u,—ujandv,—v,,] 1, -8 —1;

oru,-—v,andv,—u,y—-l ce,8— 1,
Proof. We prove only case (i) since the proofs of (ii) and (iii) are similar.

Suppose there is a homeomorphism % : 8™ — 8™ of degree 1 such that
h(@P) = 8Q. Then 3P and 4@ have isomorphic homology and since, by 1.2,
H,,, (aP) is free abehan of rank U; + v, while H,, (8Q) is free abelian of rank
uj + vi,uj+v; =u; +v;,j=1---,8 Also since & is a homeomorphism
and 9P and 9Q separate S into two components, either h(P) = Qorh(P) =
S —@Q°. Ifh(P)=Q,a 81mple argument using the homology of P and @
shows that u; = u;and v; = v;,5 =1, ---,s. If h(P) = 8" — Q° an
equally simple argument using the homology of P and 8" — @°, and 1.1
shows that u; = v; and v; = wi, s = 1, , 8.

Suppose now that (i) holds. Then if u; = uwijandv; = v;,j =1, --+,s,
X and X’ are homeomorphic and there is a homeomorphism A : S’”’1 S"*‘ of
degree 1 with A (9P) = dQ by 1.3. Suppose u; = viandv; = uj,j=1, -
Then by 1.1, Hy, G- Q°) and H,, (8™ — Q°) are free abelian of ranks u,
and v; ; respectlvely, j=1,---,8;for Hy;(3Q) and H,,(8Q) are abehan of
rank u; + v; by 1.2 and H i (Q) and H,, (Q) are free abelian of ranks u; and
v; respectively. Hence by 1.2 there is an embedding

+1
=X(u1’ cery Usy V1, ...,v,)._.)S”

such that 8" — Q° is a regular neighborhood of ¢’ (X). Another application
of 1.3 gives the homeomorphism .
We are now ready to give the

Proof of the Main Theorem. Since any homeomorphism & : §™* — S"*'of
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degree 1 is ambient isotopic to the identity, Theorems 1.2-1.4 establish a one
to one correspondence between elements of Pseudo-Iso (M", S"') and se-
quences of integers w1, * -, Us, V1, -, 0,0 < u; < 1,0 < v; < 1y,
Jj =1, -+, ssatisfying only the relationsu; + v; = r;,7 = 1, -+ ;s,and (i),
(ii), or (iii) of 1.4. A simple calculation completes the proof.

2. Proof of Theorem 1.2

Throughout this sectionlet X = X (uy, < - ,%s, 01, -+ ,0), X1 =87 C X
fus>land Xy = S{* Cc Xifus = 0,X, = X — (X1u[1,2]). The proof of
Theorem 1.2 requires some lemmas to which we now turn.

LemMa 2.1, Letf : X — 8" be an embedding and let N be a reqular neighbor-
hood of f (X ) in S*™'.  Then there exists regular neighborhoods N ; of f(X;) in N,
i = 1,2, and a ball B""' < N such that

(l) N1 n Nz = ﬂ,
(ii) N;nBisafaceof BindN;,72 = 1,2,

@iii) N = NiuBuN,.

Proof. By the uniqueness of regular neighborhoods it suffices to prove the
lemma in one case. Therefore let (J; K, K1, Ks, L) be a triangulation of
8™ £(X), f(X1), f(Xs), fI1, 2]) with K, K;, Ks and L full in J and let

N = U,xr st (v, J”),
N; = Uyxst (0,J"), i=1,2,
B = Us—gauren st (v, J”)

where the single (double) prime denotes a first (second) derived complex and
st (v, J”) is the closed star of the vertex » in J”. Then N, N1, and N, are
regular neighborhoods of f (X ), f (X1), and f (X2 ) respectively, and Nyn N, = §.
But also B is a regular neighborhood of the complex L, obtained from L’ by
deleting f(1), f(2), and the open 1-simplices o1, o2 containing these points.
Thus, since L, is either a point or homeomorphic to a closed interval, L, is
collapsible and B is a ball.

Now Nin B = U(st (v, J”) n st (w, J”)) where the union runs over all
verticesv e Ky and we L/ — f@)uf(2)). Sincev,wed’,st (v,J”)nst (w,J”)
# (if and only if v and w span a 1-simplex of J’. Butif» = ¢ and w = # where
o, 7 ¢ J and ¢ (#) is the point of ¢° (+°) at which o (7) is starred in forming J’,
then » and w span a 1-simplex of J if and only if 7 < ¢ or ¢ < 7 where < means
“is a face of”.

Suppose 7 < ¢. Then since a point of 7° namely w = #, is in
L' — (1) u f(2), r ¢ L. Similarly 0 ¢ Ky. Thus 7 ¢ Ki n L and since
KinL=f(Q1),r=f(1). Hencew =4%=f(1)¢L — (f(1)uf(2)) whichisa
contradiction. Thuse < 7.

By an argument similar to the one above ¢ = f(1). Therefore since
¢ < 7 ¢ L and since L is a triangulation of f([1, 2]), 7 is a 1-simplex of J.
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Finally since f : [1, 2] — 8" is an embedding there is a unique 1-simplex r of
L with f(1) < 7. Thus

Bn N, =st (f(1),J")nst (#,J")

which is just the cell B” dual to the 1-simplex of J’ spanned by f(1) and .
Sinee it is clear that B® C 4B and B" C 8N, (ii) holds for Ny n B. Similarly
(ii) holds for No n B. Since (iii) follows from the construction of N, Ny, Na,
and B, the proof of the lemma is complete.

CorOLLARY 2.2. Letf : X — 8™ be an embedding and let N be a regular
neighborhood of f(X)in 8™, Then

= (5%, 87 X B"™) ... g (g¥2y 8P X B¥™)
b (Bix Sg’ X Bp°+1) B b (RiL SP X B?1+1).

Proof. The proof is by inductiononr = w3 4+ -+ 4+ us + 0, 4+ -+ + 0.
Ifr = 1, since p, ¢ = 2 the corollary follows from Zeeman’s unknotting theorem

[8].

Suppose the corollary is true (for) (r — 1). In the lemma then
Ny = 87* X B®* (or 87 X B2 if uy = 0) by [8] and

= (4% 87 X B™) g .- | (i 87 X BT
b (i 83t X Bp‘-H) -8 (B3R S® X BP1+1).

The corollary then follows from 2.1 and the definition of the boundary con-
nected sum.

Lemma 2.3. Let M™ be an orientable manifold and B; € M°, ¢ = 1, 2, be
n-balls. Let P € M — (Biu B:) be a polyhderon which does not disconnect M.
If h : By — B is a homeomorphism of degree 1, then there is a homeomorphism
k: M — M isotopic to 1 extending h such that k& | P = 1 where 15, 1p denote
the identity maps of M and P.

Proof. This is Theorem 3 of [2].

LemMA 2.4. Let M" be an orientable manifold and let B; € M, 4 = 1, 2, be
(n — 1) balls with Bin Be = @. Ifh: M — M is a homeomorphism of degree 1,
then there is a homeomorphism k of M isotopic to h such that k | B; = 1z,
i=1,2.

Proof. By 2.3since k™" | h(B1) : h(By) — Byis of degree 1, there is a homeo-
morphism &y : M — dM isotopic to 1oy with ki | A(B1) = A~ | h(B1). Let
K:0M X [0,1] - oM X [0, 1]

be an isotopy between ky and lsy and extend ki to 2 homeomorphism
ki : M — M by setting k1 = K on a collar around 9 and k1 = identity outside
the collar. Clearly %; is isotopic to 1y .
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By a second application of 2.3, there is a homeomorphism %, : M — oM
isotopic to lax such that ky | %y A (Bz) = (kah)™ | Boand ks | By = 15,. Ex-
tend ks to a homeomorphism ks : M — M isotopic to 1, as above. Letting
k=rkekih completes the proof.

Levma 2.5. Let V = Ki1 8% X B® wherep > 3and q > 2. Then any auto-
morphism o : Hy (V) — H (V') can be realized by a homeomorphism h : V — V.

Proof. Letei, - ,e e H,(V) be the system of generators corresponding to
the zero sections S X 0 € S X B c V,i =1, ---,r, and let R, S, and
T:,i=1,---,r — 1, be the automorphisms of H,(V') satisfying R (e,) =
—e1,R(e;) = ¢;,] #1;8(e1) = e1+ e2,8(¢;) = 5,7 # 1;and Ti(es) = eipa,
Ti(ei1) = €, Ti(e;) = e;,7 # 1,7 4+ 1. We prove the lemma first for o
equal R, S, or T';. To simplify the proof in these cases, we assume without
loss of generality thatin V, (S§ X Bf)n (8§ X Bf) =C;;isa (p +q¢— 1)
ball in 8 (S7 X BY)na(S} X BY)ifj = ¢ — lors + 1, and is empty if
j#E1— 1,714+ 1.

Suppose that ¢ = R. Letf: S{ — S{and g : Bf — B{ be homeomorphisms
of degree —1. Then f X g : 8f X Bf — 81 X Bf has degree 1 and by the
proof of 2.4, there is a homeomorphism k : 8 X Bf — 8{ X Bf such that
k| Ciz = l¢,,. Then k extends to a homeomorphism 4~ : V — V by setting
h equal to the identity outside Sf X Bf . Clearly & realizes R.

Suppose that o = Sand that V = 8{ X B 5 8§ X Bf. Leta:[1,2] >V
be an embedding such that a ([1,2]) n (8§ X 0) = a(¢),7 = 1, 2; and let

K=28{X0uS8 X0ua(l,?2]).

Let N < V° be a regular neighborhood of K. Then by the proof of 2.1,
N = Nyu D u N, where N; = 8¢ X B? is a regular neighborhood of S{ X 0 in
V,i=1,2;NinN; =@;Disa (p 4+ ¢) ball; and D n N, is a face of D in
ON;,7=1,2.

Let B® = Ef u Ef where E? ¢ = 1, 2 are balls such that Ef n E} is a common
face. Then there is a homoemorphism f : 8¢ X B® — 85 X B} such that
C12 © f(8? X ET) and such that f(S? X 0) representse,. Then

(S X Bf)uf(8* X Ef) = V'

is homeomorphic to V. Thus by Irwin’s Theorem [5], there is an embedding

g1 : 8%— V with g1(S?) € V which represents e; + ez. Let M, be a regular

neighborhood of ¢:(S%) in V*. Then since V' embeds in 87 (i.e., in co-

dimension 0), M, is also a regular neighborhood of g;(S?) in 87*% Since

p > 3, [8, Theorem 2] implies that M, is homeomorphic to S? X B”. Let

h1 : N1 — M, be a homeomorphism of degree 1 such that ;| S X 0 = ¢1.
Now let g5 ¢ 87 V be the composite

ST = 8 X0C 8 XELY.
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By an argument similar to the one above there is a homeomorphism
ha : N2 — M of degree 1 such that A2 | S§ X 0 = g, where M, C V°is a regular
neighborhood of g2 (S?) not meeting M, .

Let z;e WN;nD)°7 = 1,2 and let

b:[,2] >V — Mru My) = W

be an embedding such that b (2) = hs(x;) 7 = 1,2. Let D’ be a regular neigh-
borhood of b ([1, 2]) in W which meets dW regularly. Then D’ is a (p + q)
ball and it follows from regular neighborhood theory (see, for example [3,
Lemma 2.19]) that we can assume that D' n 0M; = A (N;n D) 7 = 1, 2.
Now since h; | N; n D is of degree 1, it is easy to see that these maps can be
extended to a homeomorphism k3 : D — D',

Let by : Nyu D u Ny — My u D’ u M, be the homeomorphism obtained by
patching Ay, ke, and ks together. Then k4 has degree 1. Finally since

V—- NiuDuN;) and V — (MyuD'uM,)

are both homeomorphic to 8V X [0, 1] by the H-cobordism theorem, A4 can
be extended to a homeomorphism 4 : V — V of degree 1.

If V. = gi_1S? X B? with r > 2, we can use the proof of 2.4 to assume that
the homeomorphism 4 constructed above leaves C.3 pointwise fixed. Then
h can be extended to a homeomorphism of V by setting 2 (x) = x if

xze¢ (S X BY)u (8% X BY).

It follows from the construction that % realizes S.

Suppose ¢ = T;and let V/ = 8§ X BY i S{;1 X Bi1 C V. Then there is
obviously a homeomorphism & : ¥V’ — V’ of degree 1 that interchanges 87 X BY
and S%,; X Bfy. By 24, there is such a homeomorphism with

k | Cic1au Ciin

the identity. Extend k to a homeomorphism 2 : V — V by setting h(z) = =
ifxeV — V' and h| V' = k. Then h realizes T';.

The lemma now follows by noting that R, S, and T2 = 1, -+, r — 1
generate Aut (Hq(V)).

COROLLARY 2.6. Any system of generators g1, -+ , gr € Hy (V') can be repre-
sented by embeddings f; : 8 — V with mutually disjoint images, ¢ = 1, --- , r.

Remark. It iseasy to see that each g; can be represented by an embedded
g-sphere. It is the mutual disjointness which requires some effort to prove.

Proof of 2.6. Let e, -+, e.e Hy (V) be the set of generators described
above and let o be the automorphism of H, (V') that sendse;tog;,2 =1, -, 7.
Then ¢ can be realized by a homeomorphism % of V. Therefore since the
e;7 =1, .-+, r can be represented by mutually disjoint embedded g-spheres,
socantheg;, 2 =1, -+, 7.
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We are now ready for the

Proof of Theorem 1.2. The key step in the proof is to show that if
e, ,ere Hy(A) generate Hy(A),wherer = uy + -+ +us + 014 -+ + 0,
and H«(4) denotes the reduced homology of 4, then these generators can be
represented by mutually disjoint spheres embedded in 4°, (Note that since
H,(A) is of rank r this is a minimal system of generators.) In proving this
key step we distinguish between the generators of dimension < p, and the
generators of dimension > p,.

Let ey, -+, e.e H«(4) be the generators of H4(4) of dimension < p,.
Thust = us+ -« + usif ps Z gs,and ¢t = uy + -+ + us + 0, if ps, = ¢e.
Since H« (M) maps onto H«(4) and since every class in H (M) is spherical,
every class in H4(A) is spherical. Thus there are maps f;: 87 — 4,
=1+, u;;7=1--,s(orif ps =¢g,2=1, -+, u + v, forj = g)
representing the generatorse; - -+, e;. By Irwin’s results [5], we may assume
that the f; are embeddings. Since dim A > 2p, + 1, these embeddings can
be made mutually disjoint by general position arguments.

Suppose now that f; : S; — A°< = 1, - -+ | ¢ are embeddings with mutually
disjoint images representing the generators e;, - -, e, ¢ Hx(4) of dimension
less than m where m > p, and that Ny, - - -, N, are mutually disjoint regular
neighborhoods of the images. Let w1, *++, €140 € Hn(4) be the generators
of dimension m. (Note that w = v; if m = g;).

If some care is exercised in forming the connected sum, it is clear that the
embeddings S¥ = z; X 8Y¥ < 87/ X S¥ where z;¢ 87’ yield embeddings
S¥ - M", i =1, ---, r;, representing a system of generators of H,, (M)
which are mutually disjoint. Use a collar of M in

A— (Niu---uNj) = A’

to obtain embeddings g¢;: 8% — A® with mutually disjoint images,
i=1,---,7r;. Nowlety;eg:(8%),2 =1, ---, r;, be any point and let
a;i: i, i+ 11— A% ¢=1, ... r; — 1, be an embedding such that

ai(l%, 7 + 1) n g& (8¥) = y:

ifk =1, yimnif £ = 7 4+ 1, and is empty otherwise. Since dim 4 > 6, it is
possible to select the embeddings a; such that a;([Z, ¢ + 1]1) n a: ([k, k + 1]) is
yiif k =4 — 1, isyinifk =74 1,andisempty if &k % ¢ — 1,4,< + 1. Thus
the embeddings ¢g;,2 =1, ---,r;,and a;,2 = 1, - -+, r; — 1, fit together to
give an embedding g : X (r;) — A’.

Let N be a regular neighborhood of g(X (r;)) in A”. Then N is also a
regular neighborhood of ¢(X (r;)) in S**. Hence by 2.2,

N = K4 8% X B,
Since the inclusion /' € A induces an epimorphism H,; (M) — Hg; (A), it
follows from the construction of N, that H,; (N) — H,,; (4) is also an epimor-

phism. Now let e, e, ei,. eH,;(N) be a set of generators such that ei
projects to e.y; e Hy; (A) fori = 1, -+ -, v; and to 0 otherwise. But 2.6 shows
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thate;, -« -, e:, can be represented by mutually disjoint embedded ¢; spheres
in N. Hence, there are embeddings f;: S¥ — A%, 2 =¢+ 1, -+, ¢t + v;
representing €11, ‘-, €4o; Whose images are mutually disjoint and do not
meet any of the other embedded spheres f:(S;), 7 =1, -+, &.

By induction, therefore, there are embeddings f; : S; — A° representing e,,
1t =1, ---, r, with mutually disjoint images. The embedding

f:X(ul’ -~-,u,,vl--',v,)—>A°

is obtained from the f; by an argument similar to the one used above to con-
struct the embedding ¢ : X (r;) — A®. Note that it follows from the con-
struction of f that fx : H«(X) — Hx(A) is an isomorphism.

Now let N be a regular neighborhood of f(X) in A°. Then m(@N) = 0
by 2.2. Since m1(4) and 7 (V) also vanish, it follows from Van Kampen’s
Theorem that 71(4 — N°) = 0. Butalso H;(4 — N° 0N) =H;(A,N) =0
for all < since fx is an isomorphism. Hence the inclusion 9N < A — N°is a
homotopy equivalence. Since m (M) = 0 and H;(A — N°, M) = 0 by
Lefschetz duality, the inclusion M € A — N° is also a homotopy equivalence.
Hence by the H-Cobordism Theorem, A — N° & 0N X I and 4 is a regular
neighborhood of f(X). Thus (i) holds. Since (ii) follows from 2.2, the
proof is complete.

3. Proof of Theorem 1.2

Before turning to the proof of Theorem 1.3, we fix our notation and prove
two lemmas. In this section X = X (ug -+, Us, 01, +++, ) and if uy > 1,
X = Sf*tcXand X, = X — (X],U [1, 2))

Lemma 3.1. Letwy > 1. Letf: X — 8™ be an embedding and let N (N2)
be a regular neighborhood of f(X) in 8™ (f(X,) in N°). Then there is an
embedding f' : X — N and a ball B"™ < 8™ such that

(i) N is a regular neighborhood of f' (X ) in 8™™; and

() fX1) cBand BnN, = §.

Proof. Since N (respectively N:) collapses to X (respectively X,) and
w > 1, the exact sequence of the pair (N, N.) shows that H;(N, N;) = Z if
7 = prand 0 if ¢ £ p,. By Theorem 1.1, H,,_1(dN:) = 0. Thus in the
commutative diagram

0 Hyy(Ny) —2 H, (V) L H, (N, N2) =0

I Fye ] Feor Iks.

0 — H,,(dNs) -2 H, (N — N3) -2 H, (N — N3, dN;) — 0

|| |re

H, (N2) -85 H, (8" — N3)
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the top two rows are exact. Note that ks is an isomorphism by excision
and that &y« and %+ are epimorphisms by Lemma 2.1. A diagram chase then
shows that there is a class z ¢ H, (N — N3) such that kez = 0 and 7is koe 2
is a generator of H,, (N, N2). Hence by the exactness of the top row, H,, (N)
is generated by the image of 4+ and ks« x.

The embedding ' : X — N is now obtained by noticing that since N — N3
is (p1 — 1)-connected, x is spherical and can be represented by an embedding
g : 87— (N — N,)°; by setting f' | S* = ¢, | X2 = f| Xz ; and by extending
f' over the interval [1, 2] € X as in the proof of 1.2, Then clearly
fx: H;(X) — H;(N) is an isomorphism if ¢ # p, and has image generated by
the image of 41e and kgsx. Thus fx : H,, (X) — H,, (V) is an epimorphism.
Since both of these groups are free abelian on u; generators, this implies that
fx is an isomorphism in dimension p; also. Then (i) follows from the H-Co-
bordism Theorem.

To prove (ii), we notice first that S**' — N3 is (p1 — 1)-connected. Thus
since ks = 0, the composite embedding

g:8* >N - N, c 8" - N,

is null homotopic. Since ¢ = 2, the codimension of this embedding is > 3
(n = p1 + @1). The proof of the engulfing theorem [3, Theorem 7.4, p. 163]
then shows that there is a ball B*™ < 8" — N; such that

f(Xy) = g(8™) c B
proving (ii).
LemMa 3.2. Letuy > 1,n > 5and let f, g : X — S™™ be embeddings such
that f| X: = g| X, % = 1, 2; and let P, Q be regular neighborhoods of f(X') and

g (X) respectively. Then there is a homeomorphism h : 8™ — S™* of degree 1
such that h(P) = Q.

Proof. By altering the embeddings f|[1, 2] and ¢ |[1, 2] if necessary, we
may assume that f([1, 2]) n g([1, 2]) consists of the two points f(1) = ¢(1)
and f(2) = ¢g(2). (Since S*", P, and @ have dimension > 6, it is always
possible to alter f and ¢ in this way.) Hence f|[1, 2] and ¢ | [1, 2] combine to
give an embedding e : 8 — S"*'. Let H:8' X I — S"™ be an embedding
with H|S' X 0 = e and

H(@S' X 1) c 8™ — (f(X1) u f(X2)).
(Clearly such an embedding H exists.) Then since S""' — (f(X1) u f(z2))
is simply connected, H|S" X 1 extends to a map
H': B 8" — (f(X1) u F(X,)).
Again since n + 1 > 6, we may assume that H' is an embedding and that
H(S"' X I)nH'(B*) = H(S' X 1).
Thus H and H' fit together to give an embedding G : B* — S™*' with

GOB) = f([1,2D) ug(,2)).
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Let B*™ be a regular neighborhood of G(B®) relative to f(X1) u f(X.).
Then B"™ is a ball [4, Lemma 1]; and

fI1,2): (1,2 — B and g¢|[1,2]:[1,2] — B*"

are proper embeddings. By the unknotting of balls in balls [8], then, there is
a homeomorphism % : B""' — B"*! of degree 1 such that

mf(1,2]) = ¢g(1,2]) and hi|dB"™ = identity.

Extend h; to a homeomorphism of 8™ by setting »; = identity outside B"*.
Clearly hy has degree 1. Then since f(X;) n B"" = f(i) and g | X; = f| X;.
1 =12 lhf(X) = ¢g(X). Thus i (P) is a regular neighborhood of g(X).
By the uniqueness of regular neighborhoods, then, there is a homeomorphism
Byt 8* — S of degree 1 with Ay (h (P)) = Q. Letting A = kg by completes
the proof.

We turn now to the

Proof of Theorem 1.3. The proof is by induction on the number
r(=u+ - +u+ou+t+--+0)

of spheresin X (uy, +++ ,Us, %1, +++,0:). Ifr = 1, the theorem follows from
[8, Theorem 2] and the uniqueness of regular neighborhoods. Suppose the
theorem is true for (r — 1) spheres and let X contain r spheres. There are
now two cases.

Case I. X = X(uz, +-+, sy 1, -*, Us) With w3 > 1. In this case we
assume without loss of generality that f and g satisfy (i) and (ii) of 3.1 and
that as in 2.1, P = Pyu Cu P;, @ = Q1 u D u @ where P1(Q,) is a
regular neighborhood of f(X1)(9(X1)); P:(Q:) is a regular neighborhood of
f(X:)(@(X2)); C and D are balls; and Pyn P, = @ (Q1n Q: = @). Since P,
collapses to f(X3) and there is an (n + 1) ball B; with f(X,) € B: we may
engulf P; in B; and assume by [3, Lemma 7.1] that P, € B;. Furthermore
we may assume that By n P, = @. Similarly we assume that there is an
(n + 1) ball B, with @, € B; and B:n @ = §.

Now by 2.3, there is a homeomorphism &y : 8" — 8™ of degree 1 with
hi(B1) = B,. By the induction hypothesis there is a homeomorphism
Bt 8™ — 8™ of degree 1 with ks hy(P2) = Q.. We assert that ; can be
chosen such that hy| B, = identity; for if k.| B, # identity, then since @,
does not disconnect 8" and Q. < 8™ — (By u ha(B:)) by 2.3 there is a
homeomorphism & : §*** — §™* of degree 1 such that & | Q. = identity and
k|hy(B;) = hy'. Thus

khoha(P2) = k(@) = @ and khy|B: = hy'hy = identity.

Replacing h, by kh, verifies the assertion. Similarly since S"" — Bj is an
(n + 1) ball, there is a homeomorphism hs : 8" — S™*' of degree 1 such
that ks hi(Py) = Qy and hs | 8™ — B; is the identity. Thusif &’ = hghohs,
h'(Pl) = Ql and h,(Pz) = Qz.
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Define an embedding f' : X — &’ (P) by setting f/ | X; = ¢| X:, ¢ = 1, 2;
and letting f” | [1, 2] describe a path in A/ (P) between g(1) and ¢(2) not
meeting ¢ (X1) u g(Xz). Since &' (P:) = Q. collapses to g (X:),7 = 1, 2, it is
easy to check that f’ : X — &’ (P) is a homotopy equivalence and that &' (P) is
therefore a regular neighborhood of f/(X'). But then by 3.2 there is 2 homeo-
morphism 7, : 8" — S of degree 1 such that huh/(P) = Q. Letting

= 4}’ completes the proof of Case I.

CaseII. X = X(ul, cee, Us, V1 v, V) With uy = 0. Then since
= (HLST X SP) & - # (B8P X 8%),
it follows from 1.1 and 1.2 that there are embeddings
Flog s X (s, ooy Uay vy, oo, 05) — 8"

such that 8" — P° (S'"H — Q) isa regular nelghborhood of f/(X) (¢ (X )
where u; = r; — ujand v; = r;— v;,§ = 1, , 8. Therefore since uy > 1
there is, by Case I, a homeomorphism 4 : S"+1 — 8" of degree 1 such that
R(S™ — P°) = 8" — @°. But then 2(P) = Q completing the proof of
Case II and the theorem.
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