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Pierce [4] gives a representation of an arbitrary commutative ring R as the
ring of global sections of a sheaf of connected rings over a compact, totally
disconnected, Hausdorff space. Here we apply this representation to the
study of central separable R-algebras. Pierce’s sheaf has the interesting
property that modules and algebras over the stalks may be extended to mod-
ules and algebras over R. We carry out these constructions in Section 1 be-
low and use the results to compute the Brauer group of R in terms of the
Brauer groups of the stalks. In Section 2 we establish that properties ana-
logous to the Skolem-Noether Theorem, the existence of Galois splitting rings,
and the generation of separable algebras by units holds for R if they are true
at each stalk. Our results apply in particular to commutative Von Neumann
(regular) rings, which are characterized [4, p. 41, 10.3] by the property that
each stalk of the associated sheaf is a field.
We will assume all rings and algebras have identities and all modules are

unitary. R always denotes the fixed commutative base ring and unsub-
scripted tensor means over R. The author wishes to thank Professor Daniel
Zelinsky for his help and encouragement in the preparation of this paper.

1. We recall the description of the tinged space (X (R), t) associated to R.
X (R) is the maximal ideal space of the Boolean algebra of all idempotents of
R (X (R) is topologized by taking the sets Ue Ix 1 e e x}, for all idem-
potents e, as basic open sets) and (Ue) Re. Note that U c Us if and
only if e _< f (that is, ef e). The stalk of t at x, which we denote R,
is R/xR. R is flat, being the direct limit of projectives. If M is an R-module,
let M M (R) R, and for each m in M, let m be the image of m in Mx.
Mx is to be thought of as the stalk at x of a sheaf corresponding to M. The
following lemma of Pierce makes this precise (4, p. 18]:

(1.1) Let M be an R-module, a, b elements of M. If a bx, there is an
idempotent e with x in U such that ea eb. If a b for all y in X (R),
then a b.
Note that ea eb if and only if a b for all y in Ue.
(1.1) may be paraphrased as "if a finite system of equations among ele-

ments of M holds at x, it holds in a neighborhood of x".
If f is in HomR (M, N) H, let f denote the morphism f (R) R as well as

the image of f in H. When M is finitely presented, this notation is unam-
biguous.
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(1.2) Let M be a finitely presented R-module. Then the canonical map

HomR (M, N) --* HomR (M, N)
is an isomorphism and hence the canonical map

Hom (M, N) --* Hom (Ms, N)
is onto.

Proof. Since R is flat, the isomorphism is a special case of [2, p. 93, 2.8].

The second part of (1.2) says that homomorphisms at the stalks may be
lifted. The first part, along with (1.1), says that if equations (diagrams) of
maps between finitely presented modules hold (commute) at x, they do so in a
neighborhood of x.

(1.3) Let M0 be a finitely presented R-module. Then there is a finitely
presented R-module M such that M M0.

Proof. Let To (R) -- (R)m be such that Coker (T0) M0. Choose
T: R--*RmsuchthatT To. LetM Coker (T);thenM M0.

(1.4) Let S be an R-algebra, finitely generated and projective as an R-
module. Let No be a finitely generated projective S-module (x in X (R)).
Then there is a finitely generated projective S-module N such that N No.

Proof. No is finitely presented as an R-module. Thus by (1.3) there is a
finitely presented R-module M such that M No (as R-modules). To say
that M has an S-module structure is to give a map S (R) M --. M satisfying an
associative law, i.e. making a certain diagram (whose vertices are finitely
presented R-modules) commute. Since S X M is finitely presented, we
can choose an R-module map / lifting the S-module structure of Mo.
Then the diagram for the associativity of ] commutes at x, hence in a neigh-
borhood of x; that is, there is an idempotent e with x in U6 such that ke
makes Me and Se-module. Replace M by S (1 e) -t- Me. Then M is an
S-module and M No as S-modules. Since M is finitely generated over S,
for some n there is an S-module epimorphism g S" -* M. Let h0 be the S-
module right inverse to g (which exists since M is S-projective). Let
h M -- S be an R-module homomorphism lifting h. To say that h is an
S-module homomorphism is again an assertion that a diagram, with finitely
presented vertices, commutes. This diagram commutes at x, hence in a neigh-
borhood of x. Moreover, since h is a right inverse to g at x, there is also a
neighborhood of x on which h is a right inverse of g. Let U] contain x and
be contained in the intersection of these two neighborhoods. Then hf is an
Sf-module inverse to gf, so Mf is Sf-projective. Then N S (1 f) -t- Mf is
a finitely generated projective S-module such that N No.

Before extending these results to algebras, we need a preliminary lemma.
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For a ring B and a subring A let

Z (B, A b e B ba ab for all a in A }.

Z (B, A is called the commutant of A in B.

(.5)
(a)
(b)

Let B be an R-algebra, A a separable R-subalgebra.
Z (B, A is a direct summand of B,
Z(B, A) Z(B, A).

Then

Proof.
inverse.

Let m Ae __, A be the multiplication map and r its Ae-module right
Recall that

h: Home(A,B)Z(B,A) and k Home(Ae,B)---,B,

where both maps are evaluation at 1, are R-module isomorphisms. Then
k o Hom e (m, B) o h-1 is the inclusion ofZ (B, A in B and h o Hom e (r, B) o k-1

is a left inverse to the inclusion. This establishes (a); (b) is a special case of
[2, p. 93, 2.8].

(1.6) Let A0 be an R-algebra, finitely presented as an R-module. Then
there is a finitely presented R-algebra A such thatA A0. If A0 is separable,
A may be taken to be separable. If A0 is central separable, A may be taken
to be central separable.

Proof. By (1.3) we can find a finitely presented R-module B such that
B A0. To say that B is an R-algebra is to give maps B (R) B -- B and
R --. B (multiplication and identity) which make certain diagrams commute.
Since R and B (R) B are finitely presented we can choose maps lifting the
multiplication and identify of A0. Then the necessary diagrams commute at
x and hence in a neighborhood. Thus there is an idempotent e with x in Ue
such that A R (1 e) W Be is an R-algebra. Clearly A A0 (as alge-
bras). A is separable if the multiplication map m A" --. A has a right A*-
module inverse. Exactly as in the proof of (1.4), if such an inverse exists at
x it exists on a neighborhood Uj of x. Thus Af is Rf-separable; replacing A
by R (1 f) Af, we have that A is separable. The center of A is Z (A, A ),
which is finitely generated over R, and Z (A, A ) Z (A, A), which is the
center of A, both remarks following from (1.5). Thus if a finite set of
generators of Z (A, A lies in R at x, it does so on a neighborhood and there is
an e with x in U, such that Re is the center of Ae. Replacing A by
R (1 e) Ae, we have that A is central separable.

(1.7) Let S be a commutative R-algebra, finitely generated and projective
as an R-module. Let A and B be S-algebras, finitely generated and projective
as S-modules. Suppose A is isomorphic to B (x in X (R)) as S-algebras.
Then there is an idempotent e with x in U such that Ae is isomorphic to Be as
Se-algebras.

Proof. A and B are finitely presented over R. Let h0 A B be an
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S-algebra isomorphism. Choose an R-module map h A --. B such that
h h0. The statement that h is an S-algebra map is an assertion that certain
diagrams (with finitely presented R-modules as vertices) commute. Since
these diagrams commute at x they do so on a neighborhood, hence there is an e
with x in U such that he Ae -. Be is an Se-algebra homomorphism. Since
Be is finitely generated over Re so is the cokernel M of he;since M 0, there
is an f _< e (with x in U]) such that Mf 0 and hence hf is onto. Since Bf
is projective the kernel N of hf is a direct sumand of Af and hence finitely
generated. Since N 0, there is a g _< f (with x in U) such that Ng 0
and so hg is an Sg-algebra isomorphism.
We now consider functors.

(1.8) Let X be a topological space. A finite cover of X by pairwise dis-
joint open sets is called a partition of X. A presheaf F of Abelian groups on X
is called additive if for each partition ( {U, U} the induced map

F(X) -- F(U) X F(Un)
is an isomorphism.

Sheaves as well as presheaves are to be functors.

(1.9) Let X X (R) and let F be an additive presheaf on X. Let $ F
be the associated sheaf. Then $ F (X) F (X).

Proof. For every open cover t {U} of X, let F (t) be the difference
kernel of the two standard projections of II F (U) to II F (U n U.). The
family of open covers of X is directed by refinement and by definition $ F (X)

dir lira F (t). Since X is compact, totally disconnected and Hausdorff,
every open cover has a refinement which is a partition. Thus the direct limit
may be taken over the cofinal subset of partitions, and for a partition

U, ..., U}, F ((P) is E (U) X X F (U) which is, by assumption,
F(X).

Now if F is any additive functor from commutative rings to Abelian groups
(additive in the sense of preserving products) then F o 6t is an additive pre-
sheaf on X (R). Let H be the associated sheaf. For every idempotent e with
x in U, there is a map F (Re) -- E (R) and hence an induced mapH --. F (R),
where H dir lira H (U), the limit being over Uo’s with x in U,.

THEOREM 1.10. There is a sheaf on X (R whose global sections are the Brauer
group of R and whose stalk at x is the Brauer group of R,.

Proof. We have to show that when F Br (Brauer group) the homo-
morphism h H -- F (R) defined above is an isomorphism. Let parentheses
denote Brauer class and let A0 be a central separable R-algebra. By (1.6)
there is a central separable R-algebra A such that A A0. Then the image
of A in H is sent by h.to (A0), and h is onto. If A is a central separable
Re-algebra, with x in U,, such that (A) 0, A is isomorphic to
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Hom (No, No) for some finitely generated projective R-module No. By
(1.4) we can choose a finitely generated projective R-module N such that
N No. By (1.7) there is anf

___
e (with x in Uf) such that Af is isomorphic

to Hom] (Nf, Nf). Then since (Af) is already trivial in Br (Rf), the image
of A in Ha is zero. Hence h is one-one.

COROLLARY 1.11. Let A be a central separable R-algebra.
(that is, (A) O) for all x in X (R then A is split.

If A i’s split

As an example, let/ be a commutative ring with no nontrivial idempotents
and let X be a compact I-Iausdorff space. Let S C (X, ]), the ring of con-
tinuous It-valued functions on X (k carries the discrete topology). Then
X (S) is an identification space of X, with components identified to points.
S is/c for all x and the map of S to S is evaluation on the component x, con-
tinuous functions being constant on components.

COROLLARY 1.12. Let be the integers, a finite field, or any other ring with
zero Brauer group. Then Br (C (X, 0 for all compact Hausdorff X. In
particular, the Brauer group of a Boolean ring is zero.

It is possible, using similar techniques, to prove the analogue of (1.10) for
Pic (Picard group).

2. This section discusses certain properties which R has if each R has
them.
A commutative R-algebra S is said to be weakly Galois [5, 3.1] provided S is

separable over R, finitely generated projective and faithful as an R-module,
and that the S-module Hom (S, S) is generated by R-algebra automorphisms
of S.

THEOREM 2.1. Every central separable R-algebra has a weakly Galois splitting
ring if the analogous property holds for each stal.

Proof. Let A be a central separable R-algebra, x a point of X (R) and So a
weakly Galois R-algebra splitting A. By (1.6)there is a separable R-al-
gebra S, finitely presented as an R-module, such that S So. Since So is
projective and commutative, arguments similar to those advanced in section 1
show that S may be taken to be commutative and proiective. The annihilator
B of S is a direct summand of R since S is finitely generated projective and
thus finitely generated. Since B 0 there is an e with x in Ue such that Be
0 and replacing S by Se - R (1 e) we have that S is also faithful and still
S So. By [5, 3.5 and 3.6], choose a finite group Go of R-algebra automor-
phisms of So such that S[G0] --* Hom(S0, So) is an isomorphism (S[G0] denotes
the trivial crossed product). As in [5, Section 3] there is an idempotent e (with
x in Ue) and a finite group G of Re-algebra automorphisms of Se such that G

Go and Se[G] Hom (Se, Se) is an isomorphism. Se is a weakly Galois
Re-algebra. Then So and S were chosen such that (A (R) S) A (R) S is
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isomorphic to Homs (No, N0) for some finitely generated projective S-module
No. Choose, by (1.4), a finitely generated projective S-module N such that
N No. Since A (R) S and Horns(N, N) are S-isomorphic at x, by (1.7)
there is a neighborhood U (with x in U) on which they are isomorphic. For
each x we have such a U, and this cover of X (R) has a refinement which is a
partition. Thus there are pairwise orthogonal idempotents e, i 1, ..., n,
summing to unity, and for each i a weakly Galois Re-algebra S and a finitely
generated projective S-module N such that Ae (R) Se is isomorphic to
Homs (N, N). (The e’s correspond to the neighborhoods forming the
partition.; see [4, p. 12].) Now let S II s and N II N. Then S is
weakly Galois [5, section 3], N is a finitely generated projective S-module and
A (R) S Hom, (N, N).

COROLLARY 2.2. Let R be a commutative Von Neumann ring. Then Br (R)
dir lim Br (S/R) where S ranges over weakly Galois R-algebras.

Proof. Since a finite Galois field extension of a field is clearly a weakly Galois
algebra, the result follows from the theorem and the existence of Galois split-
ting fields of central simple algebras [1, p. 78, 8.3E].

Call an R-algebra A locally connected if for each x in X (R) A has no non-
trivial central idempotents. Since X (R) is a single point (4, p. 15, 4.2] if A
is a locally connected R-algebra then A is trivially a locally connected R-
algebra. Note that if R is a field, a separable R-algebra is simple if and only
if it is locally connected.

THEOREM 2.3. Every R-algebra isomorphism between two locally connected
separable subalgebras of a central separable R-algebra is the restriction of an inner
automorphism of the algebra, provided the analogous property holds at each stalk.

Proof. Let B be a central separable R-algebra, A’ and A’p locally connected
separable subalgebras of B and h an R-algebra isomorphism of A’ to A". By
assumption, for each x we have that ha is the restriction to A’ of an inner auto-
morphism ofB by a unit u. Let a and b be in B such that a u and b u-1.
Then a b 1, so there is an e with x in Ue such that (ae) (be) e. Thus ae
is a unit in Be; let g denote the inner automorphism of Be associated to it.
Since g restricted to Atis h, there is a Us c Ue such that hf is also given by
inner automorphism by af. X (R) is covered by such Us’s; this cover has a
refinement which is a partition. Thus there are pairwise orthogonal idem-
potents e, i 1, ..., n, summing to unity, and for each i elements a, b of
Be such that (a e)(b e) e and he(y) (a e)y(b e) for all y in A’.
Letting a a ei and b b e we have ab 1 and h (y) ayb for all
yinA.
We call the property of R with which the theorem is concerned SN (for

Skolem-Noether).
We remak that if instead of SN we consider the weaker property that every



automorphism of every central separable R-algebra is inner, then a result
similar to (2.3) also holds.

COROLLARY 2.4. Let R be a commutative Von Neumann ring. Then R
satisfies SN.

Proof. When R is a field, the Skolem-Noether Theorem [1, p. 66, 7.2C] im-
plies that R satisfies SN, and hence the result follows from (2.3).

(2.3) indicates that any Galois theory of central separable algebras over a
ring with the property SN should be inner. In this context it is useful to know
if separable algebras are generated by their units.

THEOREM 2.5. Let A be a separable R-algebra, finitely generated as an R-
module, and suppose that for each x in X (R A is generated as an R-algebra
by a finite set of units. Then A is generated as an R-algebra by a finite set of
units.

Proof. By assumption, for each x, A is generated over R by units u,
i 1, .-.,/. Choose wi’s in A such that (w) u. Exactly as in the
proof of (2.3), for each i there is an idempotent h with x in Uh such that
w h is a unit of Ah. Let f be the product of the h’s. Then each w f is a
unit of Af; let B be the R-subalgebra of Af generated by them. Since
(Af/B) A/B 0 and Af/B is a finitely generated R-module, there is an
idempotent e

_
f, with x in Ue, such that Ae Be. Such U’s cover X (R).

As usual, we refine the cover by a partition; let e, i 1, ..., n, be the cor-
responding pairwise orthogonal idempotents summing to one. Then A
Ael - - Ae,, where each Aei is generated, as an Re-algebra, by a finite
set of units of Ae. We now note that if w is a unit of Ae then 1 e - w is
a unit of A, and hence find that A is generated as an R-algebra by a finite set
of units.

If R is a field with more than two elements (so that 1 is the sum of two
units) then every finite-dimensional separable (indeed semi-simple) R-algebra
is generated over R by a finite set of units, as is well known.

COROLLARY 2.6. Let R be a commutative Von Neumann ring in which no
idempotent equals its own negative. Then every separable R-algebra, finitely
generated as an R-module, is generated by a finite set of units.

Proof. The condition on idempotents guarantees that for each x in X (R)
R has characteristic unequal to two, hence surely more than two elements.
The result now follows from (2.5) and the remark above.

With (2.4), (2.6) and Kanzaki’s generalization of the Double Commutant
Theorem, we can, exactly as in the classical case of fields, give a Galois theory
for central separable algebras over a Von Neumann ring. For completeness,
we give the full proof of this"
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(2.7) Let R be a commutative Von Neumann ring in which no idempotent
is its own negative and let A be a central separable R-algebra. Then every
separable subalgebra of A is the fixed ring of some finite set of inner auto-
morphisms of A.

Proof. Let B be a separable subalgebra of A. By [3, p. 105, 2], Z (A, B)
is separable over R and B Z (A, Z (A, B)). By (1.5), Z (A, B) is a direct
summand of A and hence finitely generated as an R module. By (2.6),
Z (A, B) is generated by a finite set F of units. Then B, being the commutant
of Z (A, B), is the subring of A left elementwise fixed by inner automorphism
by elements of F.
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