MAXIMAL NORMAL FUCHSIAN GROUPS

BY
C. MACLACHLAN

1. Let £ denote the group of all conformal homeomorphisms of D, the
unit dise. The elements of £ are linear fractional transformations and so £ is
a topological group. We define a Fuchsian group T' as a finitely-generated
discrete subgroup of £. Then I' has a presentation of the following form.

Generators: @y, by, *= ¢+, Gy, by, @1,y ¢ 5 Ty P1y **° s Doy Py = 5 Iy
Relations: z1* = .- = 27" = 1, (1)
I lai, 0] [T 2 [l o I e = 1

We say T has signature (v; m1, +++,ms; s; t) and any two groups of the

same signature are isomorphie.

If or : D — D/T denotes the orbit-map, then ¢r (D) can be made into a
Riemann surface with an associated ramification index dr : ¢r (D) — N where
N denotes the natural numbers [2, p. 4]. ¢r (D) is obtained from a compact
Riemann surface of genus v by deleting s points and ¢ dises. The z;, in the
presentation (1), correspond to elliptic elements of I' and to those points ¢ of
or (D) such that dr (¢) > 1, the p; to parabolic and the a;, b;, h; to hyperbolic.
The m; are called the periods of T'.

Following Greenberg [1], I' is defined to be a maximal Fuchsian group if there
does not exist a Fuchsian group T’y such that I' € Ty and [[y: T is finite. We
also define T to be a maximal normal Fuchsian group if there does not exist a
Fuchsian group Ty such that T' is normal in T and [Tg: T'] is finite.

If T' is a Fuchsian group with generators vy, vz, *** , v», & topology is de-
fined on the set of all isomorphisms 7:I' — £ by associating with = the point
(r(n1), 7(v2), -+, 7(v2)) of £". On this space, define the equivalence re-
lation 7 ~ 7/ if there exists an angle-preserving homeomorphism ¢ of D such
that

7 (f) = ()t forall feT.

This quotient space is denoted by T'(I'). Let Max (T') and Max Normal (T')
be the subspaces corresponding to those 7 (I') which are maximal and maximal
normal respectively. Note that Max (I') < Max Normal (I'). Greenberg
[1] has shown that Max (T') is either empty or a dense subset of T'(T').

In this paper, we obtain necessary and sufficient criteria on the signature of
I such that Max Normal (I') = T(T'). This is tantamount to obtaining
criteria on the signature of T' such that for at least one [r] ¢ T(T'), 7(T') is a
normal subgroup of finite index in some Fuchsian group TI'.

Received September 23, 1968.
104



MAXIMAL NORMAL FUCHSIAN GROUPS 105

2. The elements of £ may be considered as acting on the extended plane.
Let L(T') denote the set of limit points in the extended plane of a Fuchsian
group I'. If T' is of finite index in Ty, then L(I') = L(Ty). Also, for any
Fuchsian group I', L (T') is a subset of C = {z|| 2| = 1} of one of three types.

(a) L(T) has at most two points.
(b) L(T) = C.
(¢) L(T) is a perfect subset of C [4, Ch 3].

We consider the three types separately. In case (a), Greenberg shows that
Max (T') is empty [1, Theorem 3A] and one can easily check that Max Normal
(T') is also empty.

Groups of type (b) are called Fuchsian groups of the first kind and we call
groups of type (c) of the second kind although this term usually includes the
groups of type (a). If Fr denotes a Fundamental region for I' in D, u(Fr)
the hyperbolic area of Fr, and T' is of the first kind then, in the presentation
1),¢ = 0 and

p(Fr) =2r{2(y — 1) + 2iea 1 — I/my) + 8} > 0 @)

If T is of the second kind then ¢ > 0 and the area of its fundamental region is
infinite. However, if a signature (y;my, - -+, m,; s;t) is given such that the
inequality

20y — 1)+ i L — 1/mi) +s+t>0 3)

holds, then a Fuchsian group with that signature exists always provided, of
course, that the presentation is consistent [4, Ch 7] and [2].

3. The presentation (1) of a Fuchsian group is obtained from a Funda-
mental region for the group, the generators being those elements which map
Fr into a full neighbour and the relations being obtained from the copies of
Fr which meet at a vertex, it being sufficient to consider one vertex out of a
congruent set, [5], [4, Ch 7]. Thus 21, -- -, z. is a complete system of elliptic
representatives (c.s.e.r.) by which we mean a set of elliptic elements such that

(i) every elliptic element of I' is conjugate in I' to some power of an
X (1 < % < 7‘),

(ii) non-trivial power of z;is conjugate in I' to a power of z; (¢ & 7) [6,
p. 46].

In the same way p1, P2, - -+ , s is a complete system of parabolic representa-
tives (c.s.p.r.).
The h1, - -+, h, must be treated differently as, for example, the hyperbolic

element a; is not conjugate to a power of an a;. Let Q denote the component
of the set of proper discontinuity of T' containing D, as defined in [2, p. 4].

DerINITION 1. & € T is said to be an admitted hyperbolic element of T' if
h(#1) maps some component of @ n C into ttself.
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LEmMa 1. If T has the presentation at (1), then every admatied hyperbolic
element of T 1s conjugate to a power of some h; (1 < 7 < t).

Proof. The action of T splits the set of components of @ n C into distinet
equivalence classes, corresponding to the number of holes in ¢r (D) and the
number of generators hy, he, -+, hy. If Frisa canonical polygon for I' with
surface symbol [4, Ch 7]

A ’ ’ ’ ! ’ ’ ’ ’
a1biaiby +cc Ayby @y by i@y o T Tep1PL o DePsCrfror o cofice

where fi, f2, - -+, f: denote ‘sides’ of the polygon which lie on C, which gives
rise to the presentation (1), then h; is the hyperbolic generator which maps
over the side ¢;. Let E; denote the equivalence class containing the com-
ponent «; containing the ‘side’ f; (¢ = 1,2, ---,¢). Let h be an admitted
hyperbolic element and let ha = « where a is a component of ;. So a = ta;
and ¢ 'hto; = ;. Thus ¢kt (f;) € @j. Since no point of «; is a limit point,
there are a finite number of copies of Fr, abutting on «;, say Fr = uo(Fr),
u (Fr), +++, un(Fr) = t'ht(Fr) such that u;(Fr) is a full neighbour of
winn(Fr). Now w = hF' and similarly wip = Ffu;. Thus 7kt = k"
and h = thi™ .

Thus k1, k2, - - -, hs is a complete set of admitted hyperbolic representatives
(c.s.a.h.r.).

Thus the signature of a Fuchsian group is dependent upon its systems of el-
liptic, parabolic and admitted hyperbolic representatives, and we now obtain
results in this direction for normal subgroups of finite index in a given group.
First note the following result which follows by consideration of fixed points
[6, p 16].

LemMa 2. If T has presentation (1) and a is an elliptic, parabolic or admitted
hyperbolic generator, then 't = o implies that r = s (mod o(a)) and t is a
power of a.

In [3] Knopp and Newman prove

TurorEM 1. Let T' be normal in T and of finite index u, and p1, P2, * -+, Ds
be a c.s.p.r. for To. Suppose that pi is of exponent r; modulo T, 1 < ¢ < s.
Then a c.s.p.r. for T contains u D i1 1/r; members.

The proof only uses the fact that pi, p, <+, ps is a complete system of
representative for the class of parabolic elements and Lemma 2. It can thus
immediately be applied to a c.s.a.h.r. in I'y to obtain the number of elements
in a c.s.a.hr for I. In the case of elliptic elements, we must entertain the
possibility that the exponent r; of &; modulo T is, in fact, equal to the order of
z;. In this case, zi* = 1 and so, corresponding to x;, there are no elliptic
representatives in I'.  Thus the number of elements in a c.s.e.r. for I' would be
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I Z:-d,r;;éo(z;)l/ r;. These elliptic representatives are conjugates of z7*which
have order o (z;)/r;. Thus

CororraRY 1. Theorem 1 7s true with parabolic replaced by admitted hyper-
bolic.

CoroLLARY 2. Theorem 1 s true with parabolic replaced by elliptic and the
sum restricted to those © such that o (p:)/ri > 1.

These results enable us to compute part of the signature of a normal sub-
group I' of finite index in T’y in terms of the finite index and the signature of
Ty. Itremains to obtain the genus of I'. If I' is of index u in T and Fr, is a
fundamental region for I'y, then u copies of Fr,, corresponding to the coset
representatives of I' in Iy, form a fundamental region for T' [4, p 257]. When
Ty, and hence T, are of the first kind we can use the hyperbolic area formula
(2) to compute the genus of T since,

|To/T | = u(Fr)/u(Fr,). “4)

4. 1In this section we obtain a result akin to (4) for groups of the second
kind, using the results and notation of Heins [2]. For I of the second kind, let
Q be as in §3. Let yr denote the orbit-mapping ¢r : @ — ¥r(Q) such that
Yr (Q) is a Riemann surface and 8r : ¢r (Q) — N the ramification index. Since
T is finitely-generated, Yr (2) is conformally equivalent to a compact Riemann
surface less a finite number of points and {q | 8r(¢) > 1} is finite.

Let x : D — Q define D as a universal covering surface of @ and let T be the
group of conformal automorphisms of D leaving Yr o x invariant. Then
o1 (D) is conformally equivalent to ¥ o x (D) so that 7 o o5 = Yr o x where 7 is
the conformal mapping. Now T is of the first kind and let dr denote the rami-
fication index of o5 (D). Then 7is such that 7 o dr = ér so that the ramification
indices of ¢r and ¢r (2) agree at corresponding points.

Also ¢r (Q) is the double of ¥r (D) and the number of deleted neighbourhoods
of point-like boundary elements of Y (2) is twice the number of such boundary
elements of yr(D). Hence ¢r (D) has this number of boundary elements
which will be the number of parabolic generators of I'. The genus of ¥r(Q)
will be 2y 4+ (¢ — 1), if I has presentation (1) with¢ > 0. We thus have

TrEorREM 2. If T has signature (yimy, ms, -+, m,; 8;t) where t > 0,
T has the signature 2y + (¢ — 1);ma, ma, M2, Ma, +++ , My, My ; 28;0).

TueoreM 3. If T ¢s normal in Ty and of index u where T', Ty are groups of the
second kind, then T s a subgroup of Ty of index u, where T, Ty are defined as above.

Proof. Since the set of discontinuity is the same for T' and I'y we have
7 ¥r(Q) — ¥, (Q) such that

TOIPP:‘I/I‘Q-
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If 7, 7o denote the conformal mappings defined, as above, for T', T'y respectively
then

(751°1r°f)°¢r='r§1°1r° (Wrox) = 7o ° (¥, © X) = ¢Fy -

Thus # = 7o' o w o 7 is such that 7 © @ = ¢f,. Let us denote the orb1t of
zeD under T b 2. Thus #(x") = 2™ 2 eD. LetyeD. Thusa™ =
#') = 7 (") ) = (z")T for every z ¢ D. So for any z ¢ D, 2¥ = £"®@
where vo(z) € To. Let z, y be distinet points of D such that d(x, y) < €/2,
where d denotes the hyperbolic metrie, and z, y are not fixed points of T or
To. Suppose

S 'ro(ac) Y = V0@

x y =y
Since d is invariant with respect to elements of £, d(z, y) = d(z", ") =
d(x yvo(u)'vo(z) 1) < 6‘/2

Thus d(y, y"* @@ ™) < &. But T, acts discontinuously on D and does not
fix y. Therefore vo(y) = vo(x) and 2”@ = z and """ = y, ie.
vo (2 )y " fixes two points of D. Thusy = yo(x) e To and we have proved that
I' © Ty. The following diagram is commutative

X

er(D) —— ¥r(Q)
L

oro(D) —2 Y1, (Q)

Let u' = [To:T], so that the inverse image of each point of ¢r, (D) under %~
contains u’ points while the inverse image of each point of y¥r, (2) contains u
points. But 7, 7o are homeomorphisms, so that p = u’.

1

6. We now aim to determine for which signatures does there exist a group
T such that I is normal and of finite index in some other Fuchsian group T .
Thus without loss we can assume that the index is a prime p.

The periods in the signature of a group can be considered as unordered as a
re-ordering of the elliptic (or parabolic or admitted hyperbolic) generators
merely defines an automorphism of the group. In the signature, we use m®
to denote that the period m is repeated p times.

THEOREM 4. Let T have signature (y; my, - -+, m,; 8; t) with presentation
(1) and T be normal in Ty of index p, a prime. Suppose that
(@) @1, -, xs have order p

®) w1, -, xa (@ = 8) have exponent > 1 mod T'
(¢) p1, -, pg have exponent > 1 mod T
d) M, -, hy, have exponent > 1 mod T.
Then T has the signature
@Y+ @ — 1) (a+ B+ n— 2)/2mua/p, -+, ma/p, mBr, -+, mP;

B4+ ps—8)u+plE—w).
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Proof. All exponents will be 1 or p. From Theorem 1 the number of para-
bolic generators of I' is

P2ial/p+p Xisul=p8+p—B).

From Corollary 1 to Theorem 1, the number of admitted hyperbolic generators
will be u + p(¢ — ). From Corollary 2 the number of elliptic generators
is (@ — 8) 4+ p(r — a) with corresponding periods m;/p G =8+ 1, .-+, a)
and m; (¢ = @ + 1, - -+, r) the latter being repeated p times. Each elliptic
generator z of order m contributes (1 — 1/m) to the area formula (2). Thus
we can without loss, include the & trivial elliptic generators of I' without alter-
ing the area formula. Let g be the genus of T.
Case A. T and T are of the first kind so ¢ = 0 and from equation (4)

u(Fr) = pu(Fr,) ®)
u(Fr)

=2r{2(g — 1) + 2 (1 — p/ms) 4+ p 2imasr 1 — 1/mi) + 8+ p(s — B)}
Substituting in (5) gives
g=pv+ @ — 1)(a+ B — 2)/2.

Case B. T and T, are of the second kind so ¢ > 0. From Theorem 2,
T has the signature

@y + ¢ — 1);m?®, -+, m?®;25;0)
and T has the signature
@y + w4+ p@ —u) —1);m/p, -, mP/p, mER, -, mEP;

2B+ p(s—8));0)

and from Theorem 3 and equation (4)

p(Fr) = pu(Fr,)

since T, Ty are of the first kind. Substituting in this equation we obtain
g=pv+ (@ — 1D+ B+u—2)/2

We note that T' being normal in T’y of index p places certain restrictions on
a, B, u. Thus there exists a homomorphism of Ty onto Z, if and only if

(a) a+ B+ nisevenifp = 2
®) a+B84+u=1
(¢) y>0ifa+pB8+u=0.

This follows since such a homomorphism exists if and only if Z, is a factor
group of Ty/ T'; where T is the first derived group of T.

Provided the inequalities (2) and (3) are satisfied for the integers of a
given signature, we have pointed out that there exists a Fuchsian group of that
signature. Further, if the inequality is satisfied for T, it will be satisfied for
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Ty from (4) for groups of the first kind and Theorem 3 and (4) for groups of
the second kind. Thus we have the converse to the above theorem.

TaEOREM 5. If 0 is the signature of a Fuchsian group of the first or second
kind, which can be written in the form given at the end of the statement of Theorem
4 for some p, a, B, u where a, B, u satisfy conditions (a), (b), (c) above, then
there exists a group T with signature o and a group T'o such that T' is normal in
T of index p.

6. The remainder of the paper is devoted to obtaining this result in a
manageable form. To this end, we adopt the following notation.

Let o = (y;m1, ma, -+, m,;s;t) be the signature of a Fuchsian group.
Define the equivalence relation on the periods of ¢ by m; ~ m; if m; = m;.
Let the ¢ equivalence classes contain ny, 7, , -+ - , N, periods respectively. For
a fixed prime p define

ko, p) = 23-1[ni/p] (6)
where [a] denotes the largest integer in [a]. Also define
lo,p) =1 — pk(o, p) @)

so that I (o, p) is the number of periods which do not fall into sets containing
p equal periods. We can assume that the periods of ¢ are ordered such that
the first p are equal, the next p are equal, and so on up to the pk (s, p)’-th
period.

Now consider the parabolic generators of ¢. Define

8(e, p) = least non-negative residue = s (mod p) 8)

and in the same way define ¢ (o, p) for the admitted hyperbolic generators.
From Theorem 5, we see that if o is to be the signature of a group I' which is
to be normal in Ty of index p, then Ty must have at least I(c, p) elliptic-
generators of periods pMpr@,m+15 *** , PM, Whose exponents are p mod T,
at least s(o, p) parabolic generators whose exponents are p mod T' and at
least (o, p) parabolic generators whose exponents are p mod I'. Finally,
define

n(o, p) = l(o, p) + s(, p) + t(o, p). ©)
LEmMA 3. Leto = (y;my,mg, -+, m; 8;t) and let
ne, 2) = 2n/ (o, 2) + €(o,2) where (o, 2) = Oor 1.

Then there exists a group T' with signature o and a group Ty such that T' s of
index 2 in Ty if and only if v > n' (0, 2) + €(0, 2) — 1.

Proof. We must choose o, 8, u to satisfy Theorem 5. The number &’
of parabolic generators of T satisfiess = 8 4 2(s’ — B) sothat s’ = (s + 8)/2.
Thus 8 is an integer > 0 with the same parity as s, so set 8§ = 28’ 4 s(o, 2).
Note that 8 is bounded above by s. Similarly u = 2’ + ¢(0, 2). Since the
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parity of 8, u is determined by o, we must choose « so that a + 8 + u is even.
From Theorems 4 and 5, a group T with the periods of ¢ will be normal in T
and of index 2 if and only if Ty has periods {n:} of the following form:

Ni =My (@=1,2 +-+,b) where 0 < b < k(o, 2)
M =2m; @E=2+1, -, 2% 2))
Moy = 2m; (G =2k(0,2) + 1, -+ ,7)
Nip = 2 @G=r+1---,r4+ 24 + (o, 2)) where o’ > 0.

The generators corresponding to the period n; (¢ > b) will all have exponent
2 mod T and so

a=2(Fk(@,2)—b)+12) + 2 + €, 2)

and « + 8 + upis even.

It remains to determine the possible genera. Let I'o have genus ¢ and so,
by Theorem 4,

y=29+ 3+ B8+ pn—2)
=29 +n'(,2) + (k(@,2) —b) +a +&0,2) -1+ + 4
Now ¢, k(s, 2) — b, &, #, 4’ all take non-negative values and g and o’ are
unbounded. Provided condition (c) is satisfied, i.e. in all but a finite number
of cases, we can choose g = k(0,2) — b= =p = 0and o > 0, giving
v > n'(s,2) + €(,2) — 1. In the finite number of exceptional cases, we
find that the criteria for the existence of Ty is the same inequality.

LemMa 4. Leto = (y;my, me, -+, My; 858). Then there exists a group
T with signature o and a group Ty such that T is normal in Ty of index p where p
s a prime > 2 if and only if

2v/(p — D] = @y + n(@,p) — 2)/p (10)
and [2v/® — 1)1 # 2y — 1)/p. (11)

Proof. Using the same notation and argument as Lemma 3, we must have
B =1p8 +s(,p)and pu = py’ + £(o,p). Also a group I' with the periods of
o will be normal in T of index p if and only if T, has periods {n,} of the form:

Ny = Mpi—pyy (€ =1,2, ---, b) where 0 < b < k(s, p)
Nim(p—1p = PM: G=pb+1,- -, pk(s,p))
Nim(p—1p = PM;i @ = pk,p) + 1, ---,r)
Nim(p—t)p = D G=r+1---,7r+ o) wherea’ > 0

provided b, o/, 8/, 4’ can be chosen such that o + 8 + p # 1.
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Let Ty have genus g. Then by Theorem 4

y=p9+30—1)m (12)
where m=a+pB+u—2
=n(,p)—2+a +plke,p)—db+8 +4)
8o that m = n,p) — 2.

If the only solution of (12) in the rangeg > 0,m > n (o, p) — 2, givesm = —1,
then ¢ + B8 4+ p = 1. In the remaining cases, as in Lemma 3 with the ex-
ception of a finite number, we obtain the possible values of v by taking
k(o,p) —b=8 =4 =0andg > 0,/ > 0. The general solution of the
linear diophantine equation (12)isgivenby g = v — 3 (p — 1)y, m = py — 2.

We require that v — $(p — 1)y > 0, py — 2v = n (s, p) — 2 and that
py — 2y = —1 does not give the unique solution of (12) i.e. that there exists
an integer y such that

2v/p—1)2y 2> 2y +n,p) —2)/2

and that y = (2y — 1)/p is not the unique solution of these inequalities.
These conditions are equivalent to (10) and (11) and in the finite number of
exceptional cases the same criteria are obtained.

7. If we substitute p = 2in (10), it reduces to the inequality of Lemma 3
and (11) becomes trivial. Thus Lemma 4 can be taken to include all primes.
From our definitions in §1, Max Normal (I') = T'(T') if and only if, for all p,
either

v/ — 1] < @y +n@,p)—2)/p

or [2v/(p — 1)] = (2y — 1)/p. Of course, since I' is finitely-generated,
we need only investigate these for a finite number of primes. Indeed, if
Y222y +n(,p) —2>0. Thusif p — 1 > 24, the inequality always
holds. Ify = 1,2y + n({,p) — 2 > Ounless n(o, p) = 0. Thus the in-
equality holds for all primes p > 3 except, perhaps, those such that
r=gs=1¢=0 (mod p). Similarly for y = 0. The equation is invalid in
the cases v = 0, 1.

TuEOREM 6. Leto = (y;my,ma, + + + , M, ; 8;t) be the signature of a Fuchsian
group T of the first or second kind as defined in §2. Then

Max Normal (T') = T (")
if and only if either
v/ — DI < @y +n@,p) —2)/p or 2v/(p— 1= 2y — 1)/p
holds

(a) forallprimesp <2y + 1i¢fv > 1
(b) for all primesp < 3or suchthatr =s=t=0 (modp) efy =1
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(¢) for all primes p such thatr,s,t = 0,1,2 (mod p) ify = 0
where [a] denotes the largest integer in a and n (s, p) ¥s defined at (9).

Remark. It had been conjectured independently that if the periods of
o were co-prime in pairs then max (I') = T'(T'). A study of the above result
in such a situation and the fact that Max (I') € Max Normal (T') shows that
this is false.
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