HOLOMORPHIC FUNCTIONS WITH INFINITELY DIFFERENTIABLE BOUNDARY VALUES

BY
W. P. Novinger

1. Introduction

The disc algebra A-those functions holomorphic in the open unit disc $U=\{z:|z|<1\}$ and continuous on its closure \bar{U}-has been extensively studied, and the cumulative knowledge of its structure is almost complete. Considerably less is known, however, about subalgebras of A which are obtained by prescribing various smoothness conditions at the boundary of U. In this paper we shall be concerned with the algebras $A^{(p)}$ of functions f, holomorphic in U and such that $f^{(p)}$ (the $p^{\text {th }}$ derivative of f) has a continuous extension to \bar{U}, and particularly with the algebra $A^{(\infty)}=\cap_{p=1}^{\infty} A^{(p)}$. Denote by $C^{(p)}$ the space of p-times continuously differentiable functions (differentiation is with respect to $e^{i \theta}$) on the unit circle $T=\{z:|z|=1\}$, and normed by

$$
Q_{p}(f)=\sum_{k=0}^{p}(1 / k!)\left\|f^{(k)}\right\|_{\infty}
$$

if $1 \leqq p<\infty$; and given the topology Γ which is generated by the family of norms $\left\{Q_{p}: 1 \leqq p<\infty\right\}$ if $p=\infty$. In a manner exactly analogous with the disc algebra A, the space $A^{(p)}$ may be identified with the subalgebra of $C^{(p)}$, consisting of those functions whose negative Fourier coefficients are zero. In Section 2, we extend Wermer's maximality theorem to this setting; that is, $A^{(p)}(1 \leqq p \leqq \infty)$ is a maximal closed subalgebra of $C^{(p)}$. In Section 3 we take $A^{(\infty)}$ (without topology) and observe that a result of Silov to the effect that $C^{(\infty)}$ is not a Banach algebra under any norm, applies to $A^{(\infty)}$ as well. The proof of this result makes use of a theorem due to Singer and Wermer which states that a semisimple commutative Banach algebra admits no nontrivial continuous derivations. However, when $A^{(\infty)}$ is equipped with the topology Γ, the situation is quite different and a simple characterization of the continuous derivations of $\left(A^{(\infty)}, \Gamma\right)$ is obtained. Section 4 is devoted to the problem of characterizing those subsets of T which are zero sets for functions in the classes $A^{(p)}$. L. Carleson [2, p. 325-329] provided the answer to this problem for $1 \leqq p<\infty$; our contribution is the solution for $p=\infty$.

2. Maximality

We shall view $A^{(p)}(1 \leqq p \leqq \infty)$ as the closed subalgebra of $C^{(p)}$, consisting of those functions $f \in C^{(p)}$ whose $k^{\text {th }}$ Fourier coefficients,

$$
\hat{f}(k)=\int_{-\pi}^{\pi} f\left(e^{i t}\right) e^{-i k t} d t / 2 \pi
$$

are zero for $k<0$. The proof of the following maximality theorem follows closely that given by P. Cohen in the case of the disc algebra A.

Theorem 2.1. For $1 \leqq p \leqq \infty, A^{(p)}$ is a maximal closed subalgebra of $C^{(p)}$.
Proof. Suppose B is a subalgebra of $C^{(p)}$ which contains $A^{(p)}$ properly. Let $f_{0}(z)=z(z \in T)$. Then as in Cohen's proof (for the details see [3, p. 94]), one obtains a function $g \epsilon B$ such that $\left\|1-f_{0} g\right\|_{\infty}<1$. Define the sequence $\left\{s_{n}\right\}$ by $s_{n}=\sum_{k=0}^{n}\left(1-f_{0} g\right)^{k}$. The statement of the theorem follows if we can show that s_{n} converges to $\left(f_{0} g\right)^{-1}$ in the topology of $C^{(p)}$; for this would mean that $\left(f_{0} g\right)^{-1}$ belongs to the closure of $B, \mathrm{Cl}(B)$, and thus $f_{0}^{-1} \in \mathrm{Cl}(B)$. Since the trigometric polynomials are dense in $C^{(p)}$, it would then follow that $\mathrm{Cl}(B)=C^{(p)}$. That s_{n} does, in fact, converge in the topology of $C^{(p)}$ is a consequence of the following observation:

Lemma 2.1. Let p be a positive integer and $f \in C^{(p)}$. Then there is a p-tuple of non-negative numbers, $\left(a_{p 1}, a_{p 2}, \cdots, a_{p p}\right)$, with the property that for every positive integer $k \geqq p$,

$$
\begin{aligned}
& \left\|\left[(1-f)^{k}\right]^{(p)}\right\|_{\infty} \\
& \leqq a_{p 1} k\|1-f\|_{\infty}^{k-1}+a_{p 2} k(k-1)\|1-f\|_{\infty}^{k-2} \\
& +\cdots+a_{p p} k(k-1) \cdots(k-p+1)\|1-f\|_{\infty}^{k-p} .
\end{aligned}
$$

We will not go into the proof, except to say that the p-tuples are constructed inductively with the inductive step making use of Leibnitz's rule for computing higher order derivatives of a product.

3. Derivations in $A^{(\infty)}$

Definition. A derivation of an algebra B is a linear map $D: B \rightarrow B$ which satisfies the product rule

$$
D(f g)=f D(g)+D(f) g \quad(f, g \in B)
$$

Theorem (Singer and Wermer [6, pp. 260-261]). Let B be a semisimple commutative Banach algebra and D a continuous derivation of B. Then $D(f)=0$ for all $f \in B$.

With the aid of this theorem we can deduce
Theorem 3.1. There is no norm under which $A^{(\infty)}$ is a Banach algebra.
Proof. Suppose to the contrary that $\|\cdot\|$ is a norm on $A^{(\infty)}$ such that that $\left(A^{(\infty)},\|\cdot\|\right)$ is a Banach algebra. The operator D, defined by $D f=f^{\prime}$, is clearly a derivation of the algebra $A^{(\infty)}$. We claim that D is continuous, for suppose $\left\{f_{n}\right\}$ is a sequence in $\left(A^{(\infty)},\|\cdot\|\right)$ such that $f_{n} \rightarrow f$ and $D f_{n} \rightarrow g$. Since $\left\|f_{n}-f\right\|_{\infty} \leqq\left\|f_{n}-f\right\|$ (see [4, cor 3.2.2, p. 121]), it follows that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of U. But $f_{n}^{\prime}=D f_{n} \rightarrow g$, hence $f^{\prime}=g$ which says that $D f=g . \quad$ By the closed graph theorem D is continuous. But the
theorem of Singer and Wermer implies that D is the zero operator and this is clearly false. The theorem thus follows.

We do, however, have non-trivial continuous derivations of the topological algebra $\left(A^{(\infty)}, \Gamma\right)$ and these can be characterized as follows:

Theorem 3.2. $A \operatorname{map} D: A^{(\infty)} \rightarrow A^{(\infty)}$ is a Γ-continuous derivation of $A^{(\infty)}$ if and only if there exists a function $g \in A^{(\infty)}$ such that

$$
\begin{equation*}
D(f)=g f^{\prime} \tag{3.1}
\end{equation*}
$$

$$
\left(f \in A^{(\infty)}\right)
$$

Proof. Suppose $g \in A^{(\infty)}$ and D is given by (3.1). It is straight forward to verify that D is a derivation of $A^{(\infty)}$, and a calculation shows that if p is a positive integer and $\varepsilon>0$, then $Q_{p}(D f)<\varepsilon$ provided $Q_{p+1}(f)<$ $\varepsilon /(p+1) Q_{p}(g)$. It follows that D is continuous at the zero function and consequently continuous.

Conversely, suppose D is a Γ-continuous derivation of $A^{(\infty)}$. As before, let $f_{0}(z)=z$ and $\hat{f}(k)$ be the $k^{\text {th }}$ Fourier coefficient of f. For functions $f \in A^{(\infty)}$ (or $C^{(\infty)}$), one can use integration by parts to show that if p is a positive integer then $\left\{k^{p}|\hat{f}(k)|\right\}_{k=1}^{\infty}$ is a bounded sequence. This order condition on the Fourier coefficients of f implies that

$$
f=\sum_{k=0}^{\infty} \hat{f}(k) f_{0}^{k}
$$

with the series converging to f in the Γ-topology. Hence

$$
D f=\sum_{k=0}^{\infty} \hat{f}(k) D\left(f_{0}^{k}\right)=D\left(f_{0}\right) \sum_{k=1}^{\infty} k \hat{f}(k) f_{0}^{k-1}=D\left(f_{0}\right) f^{\prime} \quad\left(f \in A^{(\infty)}\right)
$$

Setting $g=D\left(f_{0}\right)$ completes the proof.

4. Zero sets for functions of class $A^{(\infty)}$

Let f be a function in $A^{(p)}$ which is not identically zero, and let $F=Z(f) \cap T$ where $Z(f)=\{z \in \bar{U}: f(z)=0\}$. Since f is (in particular) continuous and

$$
\begin{equation*}
-\infty<\int_{-\pi}^{\pi} \log \left|f\left(e^{i t}\right)\right| d t \tag{4.1}
\end{equation*}
$$

(see [3, p. 52]), it follows that F is closed and has Lebesgue measure zero. A. Beurling [1, p. 13] observed that F has an additional property: if $\left\{J_{n}\right\}$ denotes the sequence of complementary components of F and $\epsilon_{n}=$ measure of J_{n}, then it follows from the boundedness of f^{\prime} and (4.1) that

$$
\begin{equation*}
-\infty<\sum \varepsilon_{n} \log \varepsilon_{n} \tag{4.2}
\end{equation*}
$$

Conversely, L. Carleson [2, pp. 325-329] showed that if p is a given positive integer and F is a closed subset of T of measure zero which satisfies condition (4.2), then there exists a function $f_{p} \in A^{(p)}$ whose zero set is precisely F. Such sets F are called Carleson sets, and the remaining sequence of lemmas and theorems culminate with the conclusion that Carleson sets are zero sets for the algebra $A^{(\infty)}$.

Definition 4.1. Let $F \subset T$ be a closed set of measure zero with $\left\{J_{n}\right\}$ and ε_{n} as above. We say that F belongs to the class $C(s, \alpha, p)$, where $s=\left\{s_{n}\right\}$ is a bounded sequence of positive numbers, α is a number between 0 and 1 , and p is a positive integer, provided
(i) $\sum s_{n} \varepsilon_{n}^{1-\alpha}<\infty$,
(ii) $\left\{\varepsilon_{n}^{-p} \cdot \exp \left(-s_{n} \overline{\varepsilon_{n}^{-\alpha}}\right)\right\}$ is a bounded sequence.

Theorem 4.1. If $F \in C(s, \alpha, p)$, then F is a Carleson set.
Proof. Condition (ii) of Definition 4.1 implies that there exists a positive number M_{p} such that for every n,

$$
\begin{equation*}
-s_{+} \varepsilon_{n}^{1-\alpha} \leqq \varepsilon_{n} \log M_{p}+p \varepsilon_{n} \log \varepsilon_{n} \tag{4.3}
\end{equation*}
$$

Summing both sides of (4.3) and applying condition (i), we find that $-\infty<\sum \varepsilon_{n} \log \varepsilon_{r}$. Thus F is a Carleson set.
Theorem 4.2. If F is a Carleson set, then there exists a bounded sequence s of positive numbers and a number α between 0 and 1 svch that $F \in \cap_{p=1}^{\infty} C(s, \alpha, p)$.

Proof. The statement of the theorem is obviously true if F is a finite set. Suppose then that F is an infinite closed set of measure zero whose (infinitely many) complementary components satisfy Carleson's condition, $\sum_{n=1}^{\infty} \varepsilon_{n} \log \varepsilon_{n}>-\infty$. Since $\varepsilon_{n} \rightarrow 0$, there is a positive integer n_{0} such that if $n \geqq n_{0}$, then $\varepsilon_{n}<1$. Define t_{n} by

$$
\begin{aligned}
t_{n} & =-1 & \text { if } n<n_{0} \\
& =\left[-\sum_{k=n}^{\infty} \varepsilon_{k} \log \varepsilon_{k}\right]^{-1 / 2} & \text { if } n \geqq n_{0}
\end{aligned}
$$

and s_{n} by

$$
\begin{aligned}
s_{n} & =1 & & \text { if } n<n_{0} \\
& =-t_{n} \varepsilon_{n}^{3 / 4} \log \varepsilon_{n} & & \text { if } n \geqq n_{0}
\end{aligned}
$$

Then $\left\{s_{n}\right\}$ is a bounded sequence of positive numbers which satisfies condition (i) for the choice $\alpha=\frac{3}{4}$. It remains to be shown that condition (ii) is satisfied for each positive integer p. Let p be a positive integer. Since $t_{n} \rightarrow+\infty$ and $\varepsilon_{n} \rightarrow 0$, it must be the case that eventually, $\left(t_{n}-p\right) \log \varepsilon_{n}<0$. Hence there exists a positive number M_{p} such that for $n=1,2, \cdots$, we have

$$
\left(t_{n}-p\right) \log \varepsilon_{n}<\log M_{p}
$$

It follows from this and the definition of s_{n} that

$$
\exp \left(-s_{n} \varepsilon_{n}^{-3 / 4}\right) \leqq M_{p} \varepsilon_{n}^{p}
$$

$n=1,2, \cdots$. Thus $F \in \mathrm{\Pi}_{p=1}^{\infty} C(s, \alpha, p)$ where $s=\left\{s_{n}\right\}$ is the sequence defined above and $\alpha=3 / 4$.

The next two lemmas are estimates which are essential in our proof that Carleson sets are zero sets for $A^{(\infty)}$.

Lemma 4.1. Let n be a positive integer and k be a non-negative integer. Then there exists a positive real number $M_{0}(k, n)$ such that if $0<r<1$ and $0<\delta<\pi / 2$, then

$$
\left|\int_{-\delta}^{\delta} \frac{t^{k}}{\left(e^{i t}-r\right)^{n}} d t\right| \leqq \frac{M_{0}(k, n)}{r^{n}} \cdot \frac{\delta^{k}}{\delta^{n-1}} .
$$

Proof. Suppose first that k and n are positive integers such that $k \geq n$. Then

$$
\begin{aligned}
\left|\int_{-\delta}^{\delta} \frac{t^{k}}{\left(e^{i t}-r\right)^{n}} d t\right| & \leqq \int_{-\delta}^{\delta} \frac{|t|^{k}}{|\sin t|^{n}} d t \\
& \leqq \frac{\pi^{n}}{2^{n-1}} \int_{0}^{\delta} t^{k-n} d t \\
& <\frac{M_{0}(k, n)}{r^{n}} \frac{\delta^{k}}{\delta^{n-1}}
\end{aligned}
$$

For integers k, n such that $0 \leqq k<n$, we proceed by induction on n. If $n=1$, then necessarily $k=0$; so in this case we have

$$
\left|\int_{-\delta}^{\delta} \frac{1}{e^{i t}-r} d t\right|=\frac{1}{r}\left|\log \frac{1-r e^{-i \delta}}{1-r e^{i \delta}}\right| \leqq \frac{1}{r} \pi=\frac{1}{r} M_{0}(0,1) \frac{\delta^{0}}{\delta^{1-1}}
$$

Assume now that n is a positive integer and that for $k=0,1, \cdots$ there exist positive numbers $M_{0}(k, n)$ such that if $0<r<1$ and $0<\delta<\pi / 2$, then

$$
\left|\int_{-\delta}^{\delta} \frac{t^{k}}{\left(e^{i t}-r\right)^{n}} d t\right| \leqq \frac{M_{0}(k, n)}{r^{n}} \frac{\delta^{k}}{\delta^{n-1}}
$$

Now

$$
\begin{equation*}
\int_{-\delta}^{\delta} \frac{t^{k}}{\left(e^{i t}-r\right)^{n+1}} d t=\int_{-\delta}^{\delta}\left[e^{-i t}\left(1-r e^{-i t}\right)^{-n-1}\right] e^{-i n t} t^{k} d t \tag{4.4}
\end{equation*}
$$

so that integration by parts and our inductive hypothesis implies that the modulus of the left hand side of (4.4) is less than

$$
\begin{aligned}
\frac{1}{r^{n+1}} \frac{\delta^{k}}{\delta^{n}}\left\{\frac{\pi^{n}}{n 2^{n-1}}+\frac{k}{n} M_{0}(k-1, n)+\frac{\pi}{2} M_{0}(k, n)\right\} & \\
& =\frac{1}{r^{n+1}} \frac{\delta^{k}}{\delta^{n}} M_{0}(k, n+1), \text { say }
\end{aligned}
$$

The statement of the lemma now follows by induction.
The next lemma follows from an integration by parts and the previous one.
Lemma 4.2. Let k be a non-negative integer and n be a positive integer $\geqq 2$. Then there exists a positive number $M(k, n)$ such that if $0<r<1$ and $0<\delta<\pi / 2$, then

$$
\left|\int_{-\delta}^{\delta} \frac{e^{i t}}{\left(e^{i t}-r\right)^{n}} t^{k} d t\right| \leqq \frac{M(k, n)}{r^{n-1}} \frac{\delta^{k}}{\delta^{n-1}}
$$

Theorem 4.3. If F is a Carleson set, then there exists an (outer function) $f \in A^{(\infty)}$ whose zero set is F.

Proof. Let F be a Carleson set which, for convenience, we assume to contain -1. In addition, we assume that F is an infinite subset of T; otherwise the proof of the theorem is trivial. Let $E=\left\{t \epsilon[-\pi, \pi]: e^{i t} \epsilon F\right\}$. Since E is closed and $-\pi, \pi \in E$, it follows that $[-\pi, \pi] \sim E=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$ where $\left(a_{m}, b_{m}\right) \cap\left(a_{n}, b_{n}\right)=\emptyset$ if $m \neq n$. Moreover, since F is a Carleson set,

$$
-\infty<\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right) \log \left(b_{n}-a_{n}\right)
$$

Employ Theorem 4.2 to obtain a bounded sequence $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ of positive numbers and a number $\alpha, 0<\alpha<1$, such that
(i) $\sum_{n=1}^{\infty} s_{n}\left(b_{n}-s_{n}\right)^{1-\alpha}<\infty$,
(ii) for each positive integer p,

$$
\left\{\left(b_{n}-a_{n}\right)^{-p} \cdot \exp \left[-s_{n}\left(b_{n}-a_{n}\right)^{-\alpha}\right]\right\}
$$

is a bounded sequence.
Let h be the extended real-valued function on $[-\pi, \pi]$ defined by

$$
\begin{aligned}
h(t) & =-\infty & & \text { if } t \in E, \\
& =-s_{n} /\left(t-a_{n}\right)^{\alpha}+-s_{n} /\left(b_{n}-t\right)^{\alpha} & & \text { if } t \in\left(a_{n}, b_{n}\right) .
\end{aligned}
$$

Then $h(t)<0$ if $t \epsilon[-\pi, \pi] ; h$ is infinitely differentiable as a function on $[-\pi, \pi] \sim E$; and from (i) it follows that $h \in L^{1}[-\pi, \pi]$. The function g defined by

$$
g(z)=\int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} h(t) \frac{d t}{2 \pi}
$$

is holomorphic in U and

$$
\begin{equation*}
\operatorname{Re} g(z)=\int_{-\pi}^{\pi} P(z, t) h(t) \frac{d t}{2 \pi}<0 \quad(P(z, t) \text { is Poisson's kernel }) \tag{4.5}
\end{equation*}
$$

Finally, define f by

$$
\begin{equation*}
f(z)=\exp \{g(z)\} \quad(z \in U) \tag{4.6}
\end{equation*}
$$

The first step is to extend f to \bar{U} by setting

$$
\begin{equation*}
f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right) \quad(\theta \in[-\pi, \pi]) \tag{4.7}
\end{equation*}
$$

Now if $\theta \in E$, then $\left|f\left(e^{i \theta}\right)\right|=\exp \{h(\theta)\} \neq 0$. Suppose, on the other hand, that $\theta \in E$. If $t \in E$, then $h(t)=-\infty$; if $t \notin E$, say $t \in\left(a_{n}, b_{n}\right)$, then

$$
\begin{equation*}
h(t)=-s_{n} /\left(t-a_{n}\right)^{\alpha}+-s_{n} /\left(b_{n}-t\right)^{\alpha} \leqq-2^{\alpha+1} s_{n} /\left(b_{n}-a_{n}\right)^{\alpha} \tag{4.8}
\end{equation*}
$$

Condition (ii) implies (in particular) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n} /\left(b_{n}-a_{n}\right)^{\alpha}=+\infty \tag{4.9}
\end{equation*}
$$

From (4.8) and (4.9) it clearly follows that

$$
\lim _{t \rightarrow \theta} h(t)=-\infty \quad(\theta \in E)
$$

which in turn implies that

$$
\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} P\left(r e^{i \theta}, t\right) h(t) \frac{d t}{2 \pi}=-\infty
$$

[3, p. 41, exercise 12]. Consequently (4.7) is an extension of f to \bar{U} such that $F=\{z \in \bar{U}: f(z)=0\}$.

In order to show that $f \in A^{(\infty)}$ we are going to show that $f^{(p)} \epsilon H^{\infty}, p=1,2, \cdots$, and thus conclude that $f \in A^{(\infty)}$.

Following Carleson [2], we put $\delta_{n}(\theta)=(1 / 8)\left(\theta-a_{n}\right)\left(b_{n}-\theta\right)$. The pertinent properties of $\delta_{n}(\theta)$ are as follows: If $a_{n}<\theta<b_{n}$, then
(a) $\left[\theta-\delta_{n}(\theta), \theta+\delta_{n}(\theta)\right] \subset\left(a_{n}, b_{n}\right)$,
(b) $0<\delta_{n}(\theta)<\pi / 2$,
(c) $\quad\left(\theta-\delta_{n}(\theta)\right)-a_{n}>(1 / 8)\left(\theta-a_{n}\right), b_{n}-\left(\theta+\delta_{n}(\theta)\right)>(1 / 8)\left(b_{n}-\theta\right)$.

The above properties (a), (b), (c) are easily verified and we omit the proof.
We have $f^{\prime}(z)=f(z) g^{\prime}(z)$ where

$$
g^{\prime}(z)=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{e^{i t}}{\left(e^{i t}-z\right)^{2}} h(t) d t
$$

In fact, for each positive integer p,

$$
\begin{equation*}
g^{(p)}(z)=\frac{p!}{\pi} \int_{-\pi}^{\pi} \frac{e^{i t}}{\left(e^{i t}-z\right)^{p+1}} h(t) d t \quad \quad(z \in U) \tag{4.11}
\end{equation*}
$$

Suppose that $z=r e^{i \theta}$ and $\theta \notin E$, say $\theta \in\left(a_{n}, b_{n}\right)$. Put

$$
I_{n}(\theta)=\left[-\pi, \theta-\delta_{n}(\theta)\right) \cup\left(\theta+\delta_{n}(\theta), \pi\right]
$$

Then

$$
\begin{align*}
& \int_{-\pi}^{\pi} \frac{e^{i t}}{\left(e^{i t}-r e^{i \theta}\right)^{p+1}} h(t) d t \tag{4.12}\\
& \quad=\int_{I_{n}(\theta)} \frac{e^{i t}}{} \quad \begin{array}{l}
\left(e^{i t}-r e^{i \theta}\right)^{p+1}
\end{array}(t) d t+\int_{\theta-\delta_{n}(\theta)}^{\theta+\delta_{n}(\theta)} \frac{e^{i t}}{\left(e^{i t}-r e^{i \theta}\right)^{p+1}} h(t) d t .
\end{align*}
$$

For the modulus of the first term on the right hand side of (4.12) we have the inequality

$$
\begin{equation*}
\left|\int_{I_{n}(\theta)} \frac{e^{i t}}{\left(e^{i t}-r e^{i \theta}\right)^{p+1}} h(t) d t\right| \leqq \frac{\pi^{p+1}\|h\|_{1}}{2^{p+1}\left[\delta_{n}(\theta)\right]^{p+1}} \tag{4.13}
\end{equation*}
$$

it remains to consider the second integral. For $t \in\left[\theta-\delta_{n}(\theta), \theta+\delta_{n}(\theta)\right], h$ has the expansion

$$
\begin{aligned}
& h(t)=h(\theta)+h^{\prime}(\theta)(t-\theta)+\cdots+\left(h^{(p)}(\theta) / p!\right)(t-\theta)^{p} \\
&+(1 / p!) \int_{\theta}^{t}(t-x)^{p} h^{(p+1)}(x) d x
\end{aligned}
$$

hence,

$$
\begin{align*}
\mid \int_{\theta-\delta_{n}(\theta)}^{\theta+\delta_{n}(\theta)} & \left.\frac{e^{i t}}{\left(e^{i t}-r e^{i \theta}\right)^{p+1}} h(t) d t|\leqq|h(\theta)|| \int_{-\delta_{n}(\theta)}^{\delta_{n}(\theta)} \frac{e^{i t}}{\left(e^{i t}-r\right)^{p+1}} d t \right\rvert\, \\
& +\left|h^{\prime}(\theta)\right|\left|\int_{-\delta_{n}(\theta)}^{\delta_{n}(\theta)} \frac{t e^{i t}}{\left(e^{i t}-r\right)^{p+1}} d t\right| \\
& +\cdots+\frac{\left|h^{(p)}(\theta)\right|}{p!}\left|\int_{-\delta_{n}(\theta)}^{\delta_{n}(\theta)} \frac{t^{p} e^{i t}}{\left(e^{i t}-r\right)^{p+1}} d t\right| \tag{4.14}\\
& +\sup _{\theta-\delta_{n}(\theta) \leqq t \leqq \theta+\delta_{n}(\theta)}\left|h^{(p+1)}(t)\right| \cdot \frac{1}{p!} \int_{-\delta_{n}(\theta)}^{\delta_{n}(\theta)} \frac{|t|^{p+1}}{\left|e^{i t}-r\right|^{p+1}} d t .
\end{align*}
$$

Since $0<\delta_{n}(\theta)<\pi / 2$ (property (b) of $\delta_{n}(\theta)$), Lemma 4.2 can be applied to the first $p+1$ integrals on the right hand side of the above inequality (4.14), while property (c) of $\delta_{n}(\theta)$ together with the proof of the first part of Lemma 4.1 can be used on the last term. If the results are collected, the following fact is obtained: there exists a constant K_{0} with the property that if $0<r<1$ and $\theta \in\left(a_{n}, b_{n}\right)$, then

$$
\begin{equation*}
\left|\int_{\theta-\delta_{\mathbf{n}}(\theta)}^{\theta+\delta_{n}(\theta)} \frac{e^{i t}}{\left(e^{i t}-r e^{i \theta}\right)^{p+1}} h(t) d t\right| \leqq \frac{s_{n}}{r^{p}} \cdot \frac{K_{0}}{\left[\delta_{n}(\theta)\right]^{\alpha+p}} . \tag{4.15}
\end{equation*}
$$

Combining the earlier result (4.13) with (4.15) and the fact that $\left\{s_{n}\right\}$ is a bounded sequence, we obtain a constant K_{p} with this property-if $0<r<1$ and $\theta \in E$, say $\theta \in\left(a_{n}, b_{n}\right)$, then

$$
\begin{equation*}
\left|g^{(p)}\left(r e^{i \theta}\right)\right| \leqq\left(1 / r^{p}\right) K_{p} /\left[\delta_{n}(\theta)\right]^{p+1} \tag{4.16}
\end{equation*}
$$

(In obtaining K_{p} we also use the fact that $p+\alpha<p+1$). From (4.16) with $p=1$, we obtain

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqq\left(K_{1} / r\right)\left|f\left(r e^{i \theta}\right)\right| /\left[\delta_{n}(\theta)\right]^{2} \tag{4.17}
\end{equation*}
$$

A result like (4.17) is needed for each positive integer p; explicitly we need the following: if p is a positive integer, then there exists a constant N_{p} such that if $\theta \notin$, say $\theta \in\left(a_{n}, b_{n}\right)$, and $0<r<1$, then

$$
\begin{equation*}
\left|f^{(p)}\left(r e^{i \theta}\right)\right| \leqq\left(N_{p} / r^{p}\right)\left|f\left(r e^{i \theta}\right)\right| /\left[\delta_{n}(\theta)\right]^{2 p} \tag{4.18}
\end{equation*}
$$

If we put $N_{0}=1$, then (4.18) holds for $p=0$ as well; and (4.18) is just (4.17) for $p=1$ and $N_{1}=K_{1}$. Assume then that k is a positive integer and constants $N_{p}, 0 \leqq p \leqq k$, exist such that (4.18) is true. Leibnitz's rule says that

$$
f^{(k+1)}=\sum_{p=0}^{k}\binom{k}{p} f^{(p)} g^{(k-p+1)}
$$

and so

$$
\begin{equation*}
\left|f^{(k+1)}\left(r e^{i \theta}\right)\right| \leqq \frac{1}{r^{k+1}} \frac{\left|f\left(r e^{i \theta}\right)\right|}{\left[\delta_{n}(\theta)\right]^{2 k+2}} \sum_{p=0}^{k}\binom{k}{p} \frac{N_{p} K_{k-p+1}}{\left[\delta_{n}(\theta)\right]^{p-k}} \tag{4.19}
\end{equation*}
$$

by (4.16) and our inductive hypothesis. Examination of (4.19) shows that
N_{k+1} can be chosen so that (4.18) holds with $p=k+1$; thus by induction, (4.18) holds for all non-negative integers p.

Our next result, (4.20), follows readily from the last one. Let $a_{n}<\theta_{1} \leqq \theta_{2}<b_{n}$. Since h is continuous at each point of $\left[\theta_{1}, \theta_{2}\right]$,

$$
\left|f\left(r e^{i \theta}\right)\right| \rightarrow \exp \{h(\theta)\}=\left|f\left(e^{i \theta}\right)\right|
$$

uniformly on $\left[\theta_{1}, \theta_{2}\right]$ (cf. [3, p. 18]). But $\exp \{h(\theta)\}$ has a positive lower bound on $\left[\theta_{1}, \theta_{2}\right]$; so there exists $r_{1}=r_{1}\left(\theta_{1}, \theta_{2}\right)$ such that if $r_{1} \leqq r<1$ and $\theta \in\left[\theta_{1}, \theta_{2}\right]$, then $\left|f\left(r e^{i \theta}\right)\right| \leqq 2 \exp \{h(\theta)\}$. Thus $r_{1} \leqq r<1$ and $\theta \in\left[\theta_{1}, \theta_{2}\right]$ implies

$$
\begin{equation*}
\left|f^{(p)}\left(r e^{i \theta}\right)\right| \leqq\left(M_{p} / r^{p}\right)\left|f\left(e^{i \theta}\right)\right| /\left[\delta_{n}(\theta)\right]^{2 p} \tag{4.20}
\end{equation*}
$$

where $M_{p}=2 N_{p}, p=0,1,2, \cdots$.
We have now reached a point in the proof where the full strength of condition (ii) will be used.

Claim. If k is a non-negative integer and ϕ is defined on $[-\pi, \pi] \sim E=$ $\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right) b y$

$$
\phi(t)=\frac{\exp \left\{\frac{-s_{n}}{\left(t-a_{n}\right)^{\alpha}}+\frac{-s_{n}}{\left(b_{n}-t\right)^{\alpha}}\right\}}{\left[\left(t-a_{n}\right)\left(b_{n}-t\right)\right]^{k}} \quad\left(t \in\left(a_{n}, b_{n}\right)\right)
$$

then ϕ is a bounded function.
Proof of Claim. ϕ is a positive function and for each $n, \lim _{t \rightarrow a_{n}^{+}} \phi(t)=$ $\lim _{t \rightarrow b_{\bar{n}}} \phi(t)=0$; hence there exists $t_{n} \in\left(a_{n}, b_{n}\right)$ such that $\phi\left(t_{n}\right)=$ $\sup \left\{\phi(t): a_{n}<t<b_{n}\right\}$. Put

$$
\phi_{n}(t)=\exp \left\{-s_{n} /\left(t-a_{n}\right)^{\alpha}\right\} /\left(t-a_{n}\right)^{k} \quad\left(a_{n}<t<b_{n}\right)
$$

A calculation shows that $\phi_{n}^{\prime}(t)>0$ if and only if $s_{n} /\left(t-a_{n}\right)^{\alpha}>k / \alpha$. However $a_{n}<t<b_{n}$ implies $s_{n} /\left(t-a_{n}\right)^{\alpha}>s_{n} /\left(b_{n}-a_{n}\right)^{\alpha}$ and $s_{n} /\left(b_{n}-a_{n}\right) \rightarrow+\infty$ with n; consequently,

$$
\sup _{a_{n}<t<b_{n}} \phi_{n}(t)=\exp \left\{-s_{n} /\left(b_{n}-a_{n}\right)^{\alpha} /\left(b_{n}-a_{n}\right)^{k}\right\}
$$

for all but finitely many values of n. Thus for sufficiently large n and $t \in\left(a_{n}, b_{n}\right)$,

$$
\begin{aligned}
\phi(t) & =\phi_{n}(t) \phi_{n}\left(a_{n}+b_{n}-t\right) \\
& <\exp \left\{-s_{n} /\left(b_{n}-a_{n}\right)^{\alpha}\right\} /\left(b_{n}-a_{n}\right)^{2 k}
\end{aligned}
$$

so by (ii), ϕ is a bounded function.
We are finally in position to show that $f^{(p)} \epsilon H^{\infty}$ for each nonnegative integer p; we have already seen that this is the case when $p=0$. So assume that p is a non-negative integer such that $f^{(p)} \in H^{\infty}$. We begin by combining the preceding claim (with $k=2 p+2$) and (4.20) to obtain a constant K with the following property: if $\theta_{1}, \theta_{2} \ddagger E$ and θ_{1}, θ_{2} belong to the same complementary component, say (a_{n}, b_{n}), then there exists $r_{1}=r_{1}\left(\theta_{1}, \theta_{2}\right)$ such that

$$
\begin{equation*}
\left|f^{(p+1)}\left(r e^{i \theta}\right)\right| \leqq K / r^{p+1} \tag{4.21}
\end{equation*}
$$

provided $r_{1} \leqq r<1$ and θ is between θ_{1} and θ_{2}. The next step is to extend $f^{(p)}$ to \bar{U}. If $\theta \leftrightarrows E$ and if $\lim _{r \rightarrow 1} f^{(p)}\left(r e^{i \theta}\right)$ exists, we define $f^{(p)}\left(e^{i \theta}\right)$ to be this limit. This extends $f^{(p)}$ to a dense subset of $T \sim F$ because $f^{(p)} \in H^{\infty}$ and H^{∞} functions have radial limits almost everywhere on T. Suppose now that $\theta_{1}, \theta_{2} \in\left(a_{n}, b_{n}\right)$ and that $f^{(p)}\left(e^{i \theta_{1}}\right)$, and $f^{(p)}\left(e^{i \theta_{2}}\right)$ are defined. Since

$$
f^{(p)}\left(r e^{i \theta_{2}}\right)-f^{(p)}\left(r e^{i \theta_{1}}\right)=i r \int_{\theta_{1}}^{\theta_{2}} f^{(p+1)}\left(r e^{i t}\right) e^{i t} d t
$$

it follows that

$$
\left|f^{(p)}\left(r e^{i \theta_{2}}\right)-f^{(p)}\left(r e^{i \theta_{1}}\right)\right| \leqq\left(K / r^{p}\right)\left|\theta_{2}-\theta_{1}\right|
$$

hence,

$$
\begin{equation*}
\left|f^{(p)}\left(e^{i \theta_{2}}\right)-f^{(p)}\left(e^{i \theta_{1}}\right)\right| \leqq K\left|\theta_{2}-\theta_{1}\right| \tag{4.22}
\end{equation*}
$$

This means that $f^{(p)}$ is uniformly continuous on the dense subset of the open arc, $\left(e^{i a_{n}}, e^{i b_{n}}\right.$), where it is defined; consequently, $f^{(p)}$ has a unique extension to $\left(e^{i a_{n}}, e^{i b_{n}}\right)$ such that (4.22) holds for all points $\theta_{1}, \theta_{2} \in\left(a_{n}, b_{n}\right), n=1,2, \cdots$. We now have $f^{(p)}$ continuous, as a function on $T \sim F$; and

$$
\begin{equation*}
\left|f^{(p)}\left(e^{i \theta}\right)\right| \leqq M_{p}\left|f\left(e^{i \theta}\right)\right| /\left[\delta_{n}(\theta)\right]^{2 p} \tag{4.23}
\end{equation*}
$$

(see (4.20)) on a dense subset of $T \sim F . f^{(p)}$ can therefore be extended to a function on \bar{U} whose restriction to T is continuous if we put $f^{(p)}\left(e^{i \theta}\right)=0$ for $e^{i \theta} \in F$. Thus $f^{(p)}\left(e^{i \theta}\right)$ is defined for all $\theta \in[-\pi, \pi]$. We want to show now that (4.22) holds for all $\theta_{1}, \theta_{2} \in[-\pi, \pi]$; we have shown this when θ_{1}, θ_{2} belong to the same complementary component. To begin with, it is easily seen that (4.22) holds if $\theta_{1}, \theta_{2} \in\left[a_{n}, b_{n}\right]$; this is because $\lim _{\theta_{1} \rightarrow a_{n}^{+}} f^{(p)}\left(e^{i \theta_{1}}\right)=$ $\lim _{\theta_{2} \rightarrow b_{\bar{n}}} f^{(p)}\left(e^{i \theta_{2}}\right)=0$. Suppose next that $\theta_{1} \in\left[a_{k}, b_{k}\right]$ and $\theta_{2} \in\left[a_{n}, b_{n}\right]$ where $k \neq n$. If $\theta_{1}<\theta_{2}$, then necessarily $b_{k} \leqq a_{n}$; so what we have already proved and the triangle inequality yields
$\left|f^{(p)}\left(e^{i \theta_{2}}\right)-f^{(p)}\left(e^{i \theta_{1}}\right)\right| \leqq K\left(\theta_{2}-a_{n}\right)+K\left(b_{k}-\theta_{1}\right) \leqq K\left(\theta_{2}-\theta_{1}\right)=K\left|\theta_{2}-\theta_{1}\right|$.
Finally, if $\theta_{1} \in E$ but θ_{1} is not an end point of one of the complementary components, choose a sequence $\left\{t_{j}\right\} \subset[-\pi, \pi] \sim E$ such that $t_{j} \rightarrow \theta_{1}$. If $\theta_{2} \in E$, then (4.22) obviously holds; while if $\theta_{2} \oplus E$, then for every j,

$$
\left|f^{(p)}\left(e^{i \theta_{2}}\right)-f^{(p)}\left(e^{i t_{j}}\right)\right| \leqq K\left|\theta_{2}-t_{j}\right|,
$$

and (4.22) follows by letting $j \rightarrow \infty$. Hence (4.22) holds for all $\theta_{1}, \theta_{2} \epsilon[-\pi, \pi]$ and consequently there exists a constant M such that

$$
\begin{equation*}
\left|f^{(p)}\left(e^{i \theta_{2}}\right)-f^{(p)}\left(e^{i \theta_{1}}\right)\right| \leqq M\left|e^{i \theta_{2}}-e^{2 \theta_{1}}\right| \tag{4.24}
\end{equation*}
$$

for every $\theta_{1}, \theta_{2} \in[-\pi, \pi]$. But (4.24) implies that $f^{(p+1)} \epsilon H^{\infty}$; thus $f^{(p)} \in H^{\infty}$ for every positive integer p. We conclude that $f \in A^{(\infty)}$ which completes the proof of the theorem.

References

1. A. Beurling, Ensembles exceptionnels, Acta Math., vol. 72 (1940), pp. 1-13.
2. L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math., vol. 87 (1952), pp. 325-345.
3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
4. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.
5. G. E. Silov, On a property of rings of functions, Dokl. Akad. Nauk SSSR (N.S.), vol. 58 (1947), pp. 985-988.
6. I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann., vol. 129 (1955), pp. 260-264.
7. J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc., vol. 4 (1953), pp. 866-868.

University of Kentucky
Lexington, Kentucky
Florida State University
Tallahassee, Florida

