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1. Introduction
The disc algebra A-those functions holomorphic in the open unit disc

U z: z "< 1} and continuous on its closure -has been extensively studied,
and the cumulative knowledge of its structure is almost complete. Consider-
ably less is known, however, about subalgebras of A which are obtained by
prescribing various smoothness conditions at the boundary of U. In this
paper we shall be concerned with the algebras A() of functions f, holomorphic
in U and such that f() (the p derivative of f) has a continuous extension to
7, and particularly with the algebra A() n-. A() Denote by C() the
space of p-times continuously differentiable functions (differentiation is with
respect to e) on the unit circle T z" z 1}, and normed by

Q (f) -o (1// i) f()
if 1

_
p and given the topology r which is generated by the family of

norms {Q" 1 _-< p < if p . In a manner exactly analogous with the
disc algebra A, the space A() may be identified with the subalgebra of C(),
consisting of those functions whose negative Fourier coefficients are zero.
In Section 2, we extend Wermer’s mximulity theorem to this setting; that is,
A () (1 -< p

_
) is a maximal dosed subalgebra of C(). In Section 3 we

take A() (without topology) and observe that a result of Silov to the effect
that C() is not a Banach algebra under any norm, applies to A () as well.
The proof of this result makes use of a theorem due to Singer and Wermer
which states that a semisimple commutative Banach algebra admits no non-
trivial continuous derivations. However, when A() is equipped with the
topology I’, the situation is quite different and a simple characterization of the
continuous derivations of (A(), r) is obtained. Section 4 is devoted to the
problem of characterizing those subsets of T which are .ero sets for functions
in the classes A (). L. Carleson [2, p. 325-329] provided the answer to this
problem for 1 __< p our contribution is the solution for p .

2. Maximality
We shall view A () (1

_
p -< as the closed subalgebra of C(), consisting

of those functions f e C() whose kt Fourier coefficients,

if(k) f(e) e- dt/2,
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are zero for/c < 0. The proof of the following maximality theorem follows
closely that given by P. Cohen in the case of the disc algebra A.

THEOREM 2.1. For 1

_
p <-_ A () is a maximal closed subalgebra of C().

Proof. Suppose B is a subalgebra of C() which contains A( properly.
Let f0 (z) z (z e T). Then as in Co.hen’s proof (for the details see [3, p. 94] ),
one obtains afunction g e B such that 1 f0 g I1 < 1. Define the sequence
{s} by sn ’--0 (1 f0 g). The statement of the theorem follows if
we can show that s converges to (fo g)-I in the topology of C(); for this would
mean that (f0 g)-I belongs to the closure of B, C1 (B), and thus j,l e C1 (B).
Since the trigometric polynomials are dense in C), it would then follow that
C1 (B) C(). That sn does, in fact, converge in the topology of C) is a
consequence of the following observation"

LEMMA 2.1. Let p be a positive integer and f e C. Then there is, a p-tuple
of non-negative numbers, (al, a2, ..., a), with the property hat for every
positive integer >-_ p,

k--p

We will not go into the proof, except to say that the p-tuples are constructed
inductively with the inductive step making use of Leibnitz’s rule for com-
puting higher order derivatives of a product.

3. Derivations in A()

DEFINITION. A derivation of an algebra B is a linear map D’B -- B which
satisfies the product rule

D(fg) fD(g) + D(f)g (f, g e B).

THEOREM (Singer and Wermer [6, pp. 260-261]). Let B be a semisimple
commutative Banach algebra andD a continuous derivation of B. Then D (f 0
for all f e B.

With the aid of this theorem we can deduce

THEOREM 3.1. There is no norm under which A (’) is a Banach algebra.

Proof. Suppose to the contrary that If" is a norm on A() such that
that (A(), I]" is a Banach algebra. The operator D, defined by Df f,
is dearly a derivation of the algebra A(). We claim that D is continuous,
for suppose /f} is a sequence in (A (), [[) such that f -. f and Df --, g.

fn f [I ----< A f [4, cor 3.2.2, p. 121]), it follows that f. --uniformly on compact subsets of U. But f Df -, g, hence f’ g which
says that Df g. By the closed graph theorem D is continuous. But the
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theorem of Singer and Wermer implies that D is the zero operator and this is
clearly false. The theorem thus follows.
We do, however, have non-trivial continuous derivations of the topological

algebra (A (), I) and these can be characterized as follows"

THEOREM 3.2. A map D"A() -- A(’) is a F-continuous derivation of A
if and only if there exists a function g e A (’) such that

(3.1) D(f) gf’ (f A(’)).
Proof. Suppose g e A() and D is given by (3.1). It is straight forward to

verify that D is a derivation of A(), and a calculation shows that if p is a
positive integer und > 0, then Q,(Df) < s provided Q+l(f)
e/(p -t- 1)Q, (g). It follows that D is continuous at the zero function and
consequently continuous.

Conversely, suppose D is a F-continuous derivation of A(). As before, let
f0 (z) z and (k) be the k Fourier coefficient of f. For functions if
(or C()), one can use integration by parts to show that if p is a positive integer
then {/ l(k)I}1 is a bounded sequence. This order condition on the
Fourier coefficients of f implies that

with the series converging to f in the F-topology. Hence

Setting g D (f0) completes the proof.

4. Zero sets for functions of class A
Letf be a function in A () which is not identically zero, and let F = Z (f) n T

where Z (f) {z e :f(z) 0}. Since f is (in particular) continuous and

(4.1) .( log f(e) dt

(see [3, p. 52]), it follows that F is closed and has Lebesgue measure zero.
A. Beurling [1, p. 13] observed that F has an additional property" if {J,} de-
notes the sequence of complementary components of F and measure of
J,, then it follows from the boundedness of f’ and (4.1) that

<

Conversely, L. Carleson [2, pp. 325-329] showed thut if p is a given positive
integer and F is a closed subset of T of measure ero which satisfies condition
(4.2), then there exists a function f e A() whose zero set is precisely F.
Such sets F are called Carleson sets, and the remaining sequence of lemmas und
theorems culminate with the conclusion that Carleson sets are zero sets for
the algebra A ().
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DEFINITION 4.1. Let F C T be a closed set of measure zero with {J,} and
e, as above. We say that F belongs to the class C (s, , p), where
is a bounded sequence of positive numbers, is a number between 0 and 1, and
p is a positive integer, provided

(ii) e.exp (-s e) is a bounded sequence.

THEOREM 4.1. If F e C (s, a, p), then F is a Carleson set.

Proof. Condition (ii) of Definition 4.1 implies that there exists a positive
number M such that for every n,

(4.3) --s.. e =< e. log My pen log .
Summing both sides of (4.3) and applying condition (i), we find that

< e. log er. Thus F is a Carleson set.

THEOREM 4.2. If F is a Carleson set, then there exists a bounded sequence s of
positive numbers and a number a between 0 and 1 svch that F e n--1 C (s, cz, p)

Proof. The statement of the theorem is obviously true if F is a finite set.
Suppose then that F is an infinite closed set of measure zero whose (infi-
nitely many) complementary components satisfy Carleson’s condition,
__1 log e > o. Since e -- 0, there is a positive integer no such that
if n-> no, thene, < 1. Definetnby

and s. by

t --1 ifn no,
1-1/2[--k=, ek log j if n => no

s 1 ifn <n0,
_/4--t loge, if n_>- no.

Then {s, is bounded sequence of positive numbers which stisfies condition
(i) for the choice a [. It remains to be shown that condition (ii) is stisfied
for ech positive integer p. Let p be positive integer. Since t, --, + oo nd
e. -- 0, it must be the cse that eventually, (t p) log e, < 0. Hence there
exists positive number My such that for n 1, 2, ..., we hve

(tn p) log e < log

It follows from this nd the definition of s. that

exp (--s e/) _-< M
n 1, 2, .... Thus F e a-- C (s, a, p) where s {Sn/ is the sequence defined
above und a 3/4.
The next two lemmas are estimates which are essential in our proof that

Carleson sets are zero sets for A().
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LEMMA 4.1. Let n be a positive integer and k be a non-negative integer.
Then there exists a positive real number Mo (, n) such that if 0 < r 1 and
0 8 r/2, then

f Mo(]c, n) (
(e,_ r),

dt

_
r" "$,------i"

Proof.
Then

Suppose first that k and n are positive integers such that k _> n.

dt

For integers k, n such that 0 -< k < n, we proceed by induction on n. If
n 1, then necessarily ] 0; so in this case we have

1 1 1 re- 1 1
e* rdt - log

1-- re
--< r-r =-r Mo(O, 1) -.

Assume now that n is a positive integer and that for/c 0, 1, there exist
positive numbers M0 (k, n) such that if 0 < r < 1 and 0 < < r/2, then

M0(/c, n) 8
(et- r)

dt <-
r n--1

t F[e-" -)--]e-t(4.4)
(et r)+

dt (1 re dt,

so that integration by parts and our inductive hypothesis implies that the
modulus of the left hand side of (4.4) is less than

{ rM(k’n)}1 Mo(--1, n) +r+ 2- +

rn+l n Mo(k, n + 1), say.

The statement of the lemma now follows by induction.
The next lemma follows from an integration by parts and the previous one.

LEMMA 4.2. Let be a non-negative integer and n be a positive integer >= 2.
Then there exists a positive number M(tc, n) such that if 0 < r < 1
and 0 < 8 < r/2, then

e M(k, n)
(e- r)’t dt

_
rn- 8,,_---.
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THEOREM 4.3. If F is a Carleson set, then there exists an (outer function)
f e A (’) whose zero set is F.

Proof. Let F be a Carleson set which, for convenience, we assume to con-
tain -1. In addition, we assume that F is an infinite subset of T; otherwise
the proof of the theorem is trivial. Let E {t , r]" e* F}. SinceEis
closed and -r, e E, it follows that [-r, r] E (J-I (an, bn) where
(am, bin) n (an, bn) I if m n. Moreover, since F is a Carleson set,- < :-1 (b- an) log (b.- an).

Employ Theorem 4.2 to obtain a bounded sequence s {s}:_l of positive
numbers and a number a, 0 < a < 1, such that

(i) :=Isn(b,- sn)- < ,
(ii) for each positive integer p,

(b an)-.exp [- sn (b an)-"]}

is bounded sequence.

Let h be the extended real-valued function on [-r, r] defined by

h(t) - if teE,

-s/(t-- an)+ -s/(bn- t)" if te (a,

Then h(t) < 0 if e [--r, r]; h is infinitely differentiable as a function on
[-r, r] E; and from (i) it follows that h e L[-r, r]. The function g de-
fined by

g(z) + z dt (z e U).h(t) 2"-
is holomorphic in U and

(4.5) Re g(z) P(z, t)h(t) dt , 0 (P (z, t) is Poisson’s kernel).

Finally, define f by
(4.6) f(z) exp {g(z)} (z e V).

The first step is to extend f to by setting

(4.7) f(e’) lim_f(re) (0 e [-r, r]).

Now if E, then f(e) exp {h (0)} 0. Suppose, on the other hand,
that 0 e E. If e E, then h (t) if t E, say e (a, bn), then

(4.8) h (t Sn/ (t an )" - sn/ (b t) <- 2+Sn/ (bn an ).

Condition (ii) implies (in particular) that

(4.9) limn Sn/ (bn an )" +
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From (4.8) and (4.9) it clearly follows that

lim. h (t) 0

which in turn implies that
dt

lim,l P(re, t) h (t) - o

(0 + E),

[3, p. 41, exercise 12]. Consequently (4.7) is an extension of f to such that
F {ze :f(z) 0/.

In order to show thatf e A() we are going to show thatf() e H, p 1, 2, ,
and thus conclude that f e A ().

Following Carleson [2], we put i, (0) (1/8) (0 a,) (b. 0). The perti-
nent properties of (0) are as follows: If a, < 0 < b, then

[0 n (0), 0 "t- n (0)] I (a, b.),
0 < (0) <
(0-.(0))-a> (1/8)(O-a,),b,-(O+it.(O)) > (1/8)(b,-O).

(a)
(b)
(c)

The above properties (a), (b), (c) are easily verified and we omit the proof.
We have f’ (z f (z )gr (z where

1 f e
g (z) -r -,, (et z)

h(t) dt (z e U)

In fact, for each positive integer p,

(4.11) g()(z) p" f (e z),+
h(t) dt

Suppose that z re and E, say 0 e (a, b). Put

L (o) [-,, o (o)) O (o + . (o),

(z U).

Then

f_ (e reO),+
h(t) dt

.(o) (e re)"+
h(t) dt +

o0-.(0) (e’ re),+
h(t) dr.

For the modulus of the first term on the right hand side of (4.12) we have the

2"+[.(0)1+1

inequality
e(4.13)

(o) (e re)+
h(t) dt

it remains to consider the second integral.
has the expansion

For e [0 {$n (0), 0 + n (0)], h

h(t) h(O) + h’(O)(t- O) + + (h<’)(O)/p !)(t- O) ’

+ (1/p !) (t x)h<+) (x) dx;
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hence,

(4.14)

(o
eit

-.(o) (e re)+1
h(t) dt

eit
n(o) (eit r)+l

dt

dt.

Since 0 < tt, (0) < r/2 (property (b) of n (0)), Lemma 4.2 can be applied to
the first p -t- i integrals on the right hand side of the above inequality (4.14),
while property (c) of 6, (0) together with the proof of the first part of Lemma
4.1 can be used on the last term. If the results are collected, the following fact
is obtained: there exists a constant K0 with the property that if 0 < r < 1 and
0 e (an, b,), then

O+(O) eit(4.15)
o-,,(o) (e reiO)+

h(t) dt < s Ko
r [6,(0)1"+’"

Combining the earlier result (4.13) with (4.15) and the fact that {s,} is a
bounded sequence, we obtain a constant K with this property--if 0 < r < 1
and 0 t E, say 0 e (a,, b,), then

(4.16) g()(re) <= (1/r)K,/[6n(O)]+’.

(In obtainingK we also use the fact that p + a p + 1 ).
p 1, we obtain

(4.17) If’(re) <- (Ka/r) If(re) [/[i,(0)]. From (4.16) with

A result like (4.17) is needed for each positive integer p; explicitly we need
the following: if p is a positive integer, then there exists a constant N such
that if 0 E, say 0 e (a, b), and 0 < r < 1, then

(4.18) (re’) <-- (N/r) ]f(re) [/[, (0)].
If we put No 1, then (4.18) holds for p 0 as well; and (4.18) is just (4.17)
for p 1 and Nx K. Assume then that/ is a positive integer and con-
stants N, 0 -<_ p -< k, exist such that (4.18) is true. Leibnitz’s rule says that

f(+) ,.o (kp) f()g(-+)
and so

(4.19)

by (4.16) and our inductive hypothesis. Examination of (4.19) shows thut
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Nk+l can be chosen so that (4.18) holds with p lc -t- 1; thus by induction,
(4.18) holds for all non-negative integers p.
Our next result, (4.20), follows readily from the last one. Let

a < 01 =< 02 < bn. Since h is continuous at each point of

f(re ---, exp {h(0)}

uniformly on [01,0] (cf. [3, p. 18] ). But exp h (0) has a positive lower bound
on [01,0]; so there exists rl rl (01,03) such that if rl -< r < 1 and 0 e [01,02],
then f(re)l --< 2 exp {h(0)}. Thus rl -< r < 1 and 0 e [01,0] implies

(4.20) If’) (re) <- (M/r’) If(e) I/[(0)],
where M 2N, p 0, 1, 2, ....
We have now reached a point in the proof where the full strength of condi-

tion (ii) will be used.

CLAIM. If t is a non-negative integer and is degned on [-r, r] E
U:-_l (a, b, by

then is a bounded function.

Proof of Claim. is a positive function and for each n, lim,t (t)
lim,; (t) 0; hence there exists t e (a, b) such that (t)
sup {(t)’a, < < b}. Put, (t) exp s,/(t a,)} / (t a,)k (a < < b,).

A calculation shows that , (t) > 0 if and only if s,,/(t a,)" > lc/a. How-
ever a, < < b, implies s,/ (t a,, ) > s,/ (b, a,, ) and s,/ (b,, a,, ---+ +
with n; consequently,

sup,,<,< ,(t) exp {-s,/(b, a,)/(b, a)}
for all but finitely many values of n. Thus for sufficiently large n and
te (a,b),

(t) O, (t) (a -+- b t)

< exp s,/(b a,,)} / (b an

so by (ii), is a bounded function.
We are finally in position to show that f() e H for each nonnegative integer

p; we have already seen that this is the case when p 0. So assume that p
is a non-negative integer such that f( e H*. We begin by combining the
preceding claim (with/ 2p -t- 2) and (4.20) to obtain a constant K with
the following property: if 01,0 E and 01,0 belong to the same complementary
component, say (a, b), then there exists rl r (01, 0) such that

(4.21) f(+ (reO) .<__ g/r’+,
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provided rl -< r < 1 and 0 is between 01 and 03. The next step is to extend
f) to . If 0 E and if lira,.1 f()(re) exists, we define f (e) to be this

H Hlimit. This extendsf to a dense subset of T F becausef e and
functions have radial limits almost everywhere on T. Suppose now that, e (a, b) and thatf (e), andf (e) are defined. Since

f)(re’) f)(re’) ir (re)
it follows that

f() (re) f() (re’) (g/r) 0 O ;
hence,

(4.22)

This means that f() is uniformly continuous on the dense subset of the open
arc, (eia", eib,), where it is defined; consequently, f() has a unique extension to
(ea’, eib’) such that (4.22) holds for all points 01,03 e (a, b.), n 1, 2, -...
We now have f() continuous, as a function on T F; and

(4.23) If) (e) -< M, if(e’a) I/[ (0)]
(see (4.20)) on a dense subset of T F. f() can therefore be extended to a
function on whose restriction to T is continuous if we put f() (e) 0 for
e e F. Thus f() (e) is defined for all 0 e [-r, r]. We want to show now
that (4.22) holds for all 01,03 e [-r, r]; we have shown this when 01,0 belong
to the same complementary component. To begin with, it is easily seen that
(4.22) holds if 01, 0. e [a,, b]; this is because lima+ f()(e)
lim f() (e) 0. Suppose next that 01 e [a, b] and 0. e [a., b] where
/c n. If 01 03, then necessarily b -_< a so what we have already proved
and the triangle inequality yields

If()(e) -f()(e’)I __< K(O a,) + K(b 01) <- K(O. 01)= K IOn.-
Finally, if 01 e E but 01 is not an end point of one of the complementary com-
ponents, choose a sequence {t.} [-r, r] E such that t --* 01. If 0. e E,
then (4.22) obviously holds; while if 0 E, then for every j,

If() (e’a) f() (e’’) -<- K 03 t. l,

and (4.22) follows by letting j --. . Hence (4.22) holds for all 0, 03 e [-r, r]
and consequently there exists a constant M such that

(4.24) f() (e’e") f() (el) M ea e$191

H" f() H"for every 01,02 r, r] But (4.24) implies that f(+l) e thus e

for every positive integer p. We conclude that f e A() which completes the
proof of the theorem.
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