
ON MANIFOLDS WITH CONJUGATION

R. E. STONG

1. Introduction
The concept of a conjugation on an almost complex manifold M was de-

fined by Conner and Floyd [2, 24]. Specifically, an almost complex structure
on M is a real linear bundle map J r -+ r on the tangent bundle of M, cov-
ering the identity map of M, and such that J -1, and a conjugation on
(M, J) is an involution a M -- M whose differential da --, is a conju-
gate linear isomorphism (i.e. da. J J. da).
The object of this paper is to analyze the cobordism classification of such

conjugations. One approach to this sort of problem occurs in Landweber
[4], considering equivariant homotopy of the Thorn spectrum MU. Lacking
strong transverse regularity theorems, this homotopy question is not as closely
related to the geometry of the problem as one would wish. The approach
taken here is analogous to the geometric part of the Conner and Floyd study
of involutions.
In order to perform a cobordism analysis, one must first enlarge the collec-

tion of objects under study to give a suitable boundary, since almost complex
manifolds are always even dimensional. This is performed in Section 2 by
defining the notion of a conjugation on a stably almost complex manifold (as
studied by Milnor [7] ). Another way to describe such a manifold structure is
to be given a manifold M with involution a and an isomorphism of the normal
bundle of M with an Atiyah-real vector bundle over (M, a) (see Atiyah [1]).
If (M, a, J) is a conjugation on an almost complex manifold, the inverse to the
Atiyah-real bundle (, J, da) over (M, ) provides a stably almost complex
conjugation structure on M.
One may then form cobordism groups in the standard way, and the ring of

cobordism classes of stably almost complex conjugations is denoted 25R.
By restricting to conjugations for which the underlying involution a is fixed-
point free, one may form the cobordism ring of free stably almost complex
conjugations, denoted R. In Section 3, the interrelationship of these rings
is studied, making use of the relative cobordism group of conjugations on stably
almost complex manifolds with free action on the boundary, denoted .
One then has a rather obvious exact sequence

F i -
similar to the sequences of Conner and Floyd [3] or [2, 28.1]. Further, using
the fixed-point method, one may analyze and reduce this to the calculation
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of ordinary (B, f) cobordism theories (as defined by Lashof [6] corresponding
to the fibrationsf BOk BO .--. BO, wheref classifies ,k ( (R) C). These
theories are basically uncomputable except for odd primary structure. The
case k 0 gives a Clifford algebra cobordism theory (briefly studied in [8]
related to the work of Wells (unpublished) on immersion cobordism, and at
present this is a highly unknown quantity.

In Section 4, the analysis of the free stably almost complex conjugation
ring is carried out. The main step is a modified Smith-theory exact
sequence

in which h is a Smith homomorphism, takes the cobordism class of the un-
derlying stably almost complex manifold, and 1 c sends M into M u ,
where/ is a complex conjugate of M. The crucial point of this analysis is
that a given stably almost complex manifold has exactly two coniugates, and
the two choices are used on the two copies of 12. For an almost complex
manifold there is one natural choice of conjugate, so the difficulties of the
conjugate for the stable class of a bundle have not previously been noted. Us-
ing results (and examples) similar to those of Landweber [5] one may com-

pletely determine the image of and thereby compute R. In particular,
has rank the number of partitions of n/2, with all torsion of order 2 and

with dimension as Z vector space being computable inductively.
In Section 5, the computation of R is combined with the computation of

the odd primary structure of to prove that all torsion of 2x is two primary
and to determine 25R (R) Z[1/2].

It is a pleasure to acknowledge the assistance of Larry Smith, whose willing-
ness to talk over this material cleared up many of my blunders. Further,
the author is indebted to Princeton University and the National Science
Foundation for financial support during this work.

2. Conjugations on stably almost complex manifolds

Let M be a compact differentiable manifold with boundary and
M M-- a differentiable involution. If f M ---> Rn+2r is an imbedding

with normal bundle , a complex conjugation on is a pair (J, *), where J is
a complex structure on ; i.e. a real linear bundle map J --* covering the
identity map onM withJ 1; and* -+ is an involution given by a real
linear bundle map covering # on M and satisfying *J -J*. Two com-
plex conjugations (J0, ) and (J, ) are equivalent if there are complex
conjugations (J, ), e [0, 1], so that the maps X I --, X I defined by
(x, t) -- (J (x), t) and (x, t) -+ (* (x), t) are continuous.
Note. If , (f) M’* --> BO is the map classifying the normal bundle of f, a

complex conjugation is a deformation of (f) to an equivariant map of (M, )
into BUwith involution induced by complex conjugation. Two complex con-
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jugations are equivalent if there is a homotopy through such deformations oi
the two given deformations.

Since any two imbeddings fl, f2 M --* Rn+r for r sufficiently large are regu-
larly homotopic and any two regular homotopies are themselves homotopic
through regular homotopies keeping end points fixed, the normal bundles of
any two such imbeddings are isomorphic and there is a well defined homotopy
class of isomorphisms. If --, 1 is such an isomorphism, with (J, *) a,
complex conjugation on , then (-lj, -I ) is a complex conjugation on
2. This establishes a one-to-one correspondence between the equivalence
classes of complex conjugations on the normal bundles of any two imbeddings
of M provided the codimension is large.

If one has a complex conjugation (J, *) on , then

f X 0 M --* R"+r+ R"+2r X z
is an imbedding with normal bundle, 2 (the Whitney sum of with a trivial,
2 plane bundle). One then defines the "suspension" of (J, to be given by
(J X i, * X c) where

and
J X i’E(v) X C--. E(v) X C" (x, a)--, (Jx, $a)

, c E () -. E () (x..) - (*. a)

(a complex conjugate of a), where the total space of 2 is thought of as
the product of that of with the complex numbers.
A stably almost complex conjugation structure on (M", ) is then an equiva-

lence class of triples (, J, *) where is the normal bundle of an imbedding
f" M" --* R"+r and (J, u*) is a complex conjugation on , with two such triples
being equivalent if some sufficiently high suspensions of each define the same
equivalence class under the correspondence established by means of the under-
lying normal bundles.

DEFINITION. A stably almost complex conjugation is a triple (M, , )
where M is a compact differentiable manifold with boundary, M -, M is a
differentiable involution, and is a stably almost complex conjugation struc-
ture on (M, ).

If (M", , ) is a stably almost complex conjugation, represented by
(., J, *), where is the normal bundle of an imbedding f M" --. R+"
which imbeds M in half space {x R+ x.+

_
0} and OM in R"+r-1 so that

a tubular neighborhood imbeds orthogonally along f(OM), then the normal
bundle of M in R+" restricts to the normal bundle of aM in Rn+- and
(" lo, J, *) defines a stably almost complex conjugation structure, denoted
O, on (aM, io). The resulting triple (aM, Ion, O) is the boundary of
(M, , ).
Note. The central point is that for the boundary one must choose a identi-

fiction of io with the normal bundle of OM, obtained by choosing trivial-
iation of the normal bundle of OM in M.
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One then defines the cobordism group of stably almost complex conjugations
as the group obtained from the semigroup (disjoint union inducing the opera-
tion W of isomorphism classes of stably almost complex conjugations on
closed manifolds by introducing the equivalence relation a --= if there exist
stably almost complex conjugations and with a +

This cobordism group will be denoted fl$, and is the direct sum of the sub-
groupsR formed of classes for which the underlying manifold has dimension
n. The notation AR is meant to suggest Atiyah-real, for (v, J, *) is precisely
a "real" vector bundle over (M, ) in the sense of Atiyah.
In exactly the same way, one defines the group of cobordism classes of free

stably almost complex conjugations, R, using only those stably almost com-
plex conjugations (M, , ) for which the involution has no fixed points.

Finally, one defines a relative cobordism group$ of equivalence classes of
stably almost complex conjugations (M, , ) forwhich Io has no fixed points.
One says (M, , ) is cobordant to (M’, ’, ’) if there are stably almost com-
plex conjugations (V, , ) and (W, p, ,) with having no fixed points such
that

O (V, (, 7) (OM’, ’ IOM’, 0’) u (aM, [o, --O)

nd OW is the mnifold formed from M u V u M’ by identifying boundaries,
with p restricting to , , or p’ respectively, nd ), restricting to , 7, or -’respectively.

Note. (M, , -) is obtained by tking M X I c/"+ R with involu-
tion X 1, identifying the normal bundle of M X I with the pullback of v to
give n induced structure on M X I restricting to
be the structure induced on M X 1. This corresponds to reversing the trivi-
uliztion of the normal bundle of M in M X I, or the orientation of the normal
bundle of M in R"++.

Before beginning the nlysis of these cobordism groups, one should note
that stably lmost complex coniugtion structure on (M", ) my be defined
using the tangent bundle rther thn the normal bundle of M. Let denote
the tngent bundle of M with involution dv, the differential of

ASSERTION. The stably almost complex conjugation structures on (M,) are in
one-to-one correspondence with equivalence classes of triples (a, , j) where a is a
trivial real vector bundle over M, a -- a is an involution of a by real bundle
maps covering , and j r a -* r @ a is a complex structure for which d 0
is a conjugation.

Proof. Being given (a, O, j), the inverse to ( @ a, j, d# @ O) as Atiyah-
real bundle is an Atiyah-real structure on u bundle stably isomorphic to the
normal bundle of M, and hence defines a stably almost complex conjugation
structure on some normal bundle.

Conversely, suppose (, J, a*) is a stably almost complex conjugation struc-
ture on the normal bundle of f M’* ---> R’*+r, and choose an inverse for
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(, J, t*) as Atiyah-real bundle, say (, K, p) so that

(,JK,* p) (M)< C,l)i,)<c).

Let (, L, a) be an inverse for the Atiyah-real bundle (r r, I, (-dt) (dt))
whereI(a,b) (-b,a). Then ( @ r,p (-dt)) isaninvolution
on a trivial real vector bundle over M (covering it) and the Whitney sum with
the bundle with involution (r, d) admits a complex structure for which
[p (-d)] d is a conjugation. Specifically, K L @ I is such a
complex structure.**
In particular, if M is an almost complex manifold with conjugation, this

gives a well defined stably almost complex conjugation structure by letting a
be zero dimensional. For the more general case, one must consider pairs
(a, ). It should be noted that (a, ) need not be simply the product M X V
with V a representation space of Z.

3. The unrestricted-free relationship

Let F -- ft denote the homomorphism obtained by considering a free
stably almost complex conjugation as simply a stably almost complex conjuga-
tion by forgetting the freeness condition. Let i ft$ --. fi be the homomor-
phism obtained by considering a closed manifold as a manifold with a free in-
volution on its boundary, and let 0 --.$ be the homomorphism induced
by sending (M, t*, ) to the class of (OM, I, 0).

PROPOSTIO 1. The sequence

F i -, .
is exact.

Proof. (a) Oi 0, for Oi (M, t, ) [(OM, [o, 0)] and aM is empty.
(b) F 0 0, for F 0 (M, it, ) is the class of (OM, Io, 0) which bounds

(M, it, ).
(c) iF 0, for if (M, , ) is free, let (W, p, ) (M) I, t X 1, r*)

and (V, z, ) the induced structure on M X 1, giving a cobordism to zero of
(M, t, ).

(d) If O[M, it, ] O, then (OM, t [o 0 0 (X, x, with x free and let
(T, r, ) be the stably almost complex conjugation structure on M u X/OM
OX with r inducing and x and inducing and -p. Then

(W,p,)) (TXI, r X 1,r*), (V,z,n) (X X 0, x,-’)

defines cobordism of (M, t, if) nd i(T, r, ).
(e) If F[M, , ] 0, then (M, t, ) bounds n unrestricted ction (V, z, )

nd O[V, r, n] [M, #, ].



ON MANIFOLDS WITH CONJUGATION 343

(f) If i[M, , ] O, with (W, p, k) and (V, a, ) as a cobordism to zero,
then OM 0V 0 and (W, p, k) is a cobordism of (M, u, ) to F (V, a, ).**

In order to make this sequence of value for the study of 2R one needs addi-
tional information about the other groups. Beginning withR, one may apply
a fixed point structure analysis.

If (M, , is a stably almost complex conjugation with given by (, J, *)
where is the normal bundle off" M" R"+, th free on OM, then the ed
point set F of is a closed submanifold imbedded in the interior of M. One
maywte F F, where F is the union of the k-dimensional components
of F, and the normal bune of F in R+ is the Whitney sum of the normal
bundle of F in M, an n plane bundle denoted ._, and the restriction to
F of the normal bundle of M. Over F, * is a conjugation on # coverinthe identity map, so that v ] decomposes into the Whitney sum of
and , the W 1 and -1 eigenvalue bundles of *. The operation J is a real
linear isomorphism interchanng these two bundles, so or ( [, J, *)
is isomorphic to ( @ C, 1 @ i, 1 @ c).

Clearly, application of this same fixed point analysis to a cobordism gives a
cobordism of the ed point sets together with a decomposition of the normal
be into a real bundle (of appropriate dimension n k over the k W 1 di-
mensionM component) and the complexification of a real bune.
One then introduces the (B, f) cobordism theories . (BO, X BO, f,) de-

fined by the map f, BO, X BO BO classifyg the Whitney sum of the
canonical s plane bundle over BO and the complexification @ C of the
canonical bune over BO. This is precisely the cobordism theory obtained
by using manifolds together with a decomposition of their normal bundle as
the Whitney sum of an s plane bune and the complexification of a real
bune.

Thus, the ed point analysis defines a homomorphism

Being given closed mnifold F together with decomposition of its normal
bundle s v_ ( @ C), one my consider the compact n-mfold with
boundary given by D (v_), the disc bundle of v_. Multiplication by 1 in
the fibers of v._ defines n involution on D (v), with ed point set F
(the zero section) nd hence free on the boundary. The tngent bune of
D (v._) is the Whitney sum of the pullback of the tngeat bune of F,
*, nd the bundle tngent to the fibers, which is isomorphic to v*v_.
Thus

(,._ (* e c) *( ._ ( e c))

is tribal nd so the normM bundle ofD (.._) is stably isomorphic to* @ C.
Consideng the total spce of r* @ C s subspce ofD (._) N E( @ C),
one hs complex structure given by 1 N (1 @ i) nd conjugation given by
(- 1) N (1 @ c) covering (- 1) on D (.._). This defines stably lmost
complex conjugation (D (.._), -l, ) nd sending (F, .._, ) to this cluss



defines a homomorphism

d -o f, (BO,_ X BO, f,,_,) .--, ,,
Clearly, 3’ d 1, while d o f[M, , ] is represented by (D (v), t, ) which

may be identified as a tubular neighborhood of the fixed point set of u in M.
A cobordism of this to (M, u, ) is given by

(W,p,X) (M X I,u X 1,r*)
and (V, a, ) is given by restriction to

V OM X I u [M- interior (D(v))] X 1.

Thus d o f 1, proving:

PROPOSITION 2. The fixed point homomorphism
-.41e,, ---. -o (BO,_ X BO, f,,_)

is an isomorphism.

This result is useful since one knows how to compute (B, f) cobordism
theories by homotopy methods. Applying the Pontrjagin-Thom construc-
tion, one has

(BO, X BO, f,) lim.. r+,+(T[3,’ (/(R) C)], oo

where Tb" (/* (R) C)] is the Thorn space of the bundle /’ (/* (R) C) over
BO X BO,.
From a practical point of view this isn’t very helpful, since for example the

2-primary structure of 2, (BOo X BO, fo) is known to be difficult to compute.
The odd primary structure is relatively easy and will be computed in Section 5.

Note. This calculational complication carries over to 25 since

,(BO0 X BO, o)
is identifiable with the direct summand of 25 given by stably almost complex
conjugations (M, , ) for which v keeps M pointwise fixed. For example,

(BOo X BO, fo) Z, (Wells, unpublished) nd hence fl$ has elements of
order 4.

4. Cobordism of free conjugations
In order to analyze the groups , one may make use of the Smith homo-

morphism A fian __, 0.-x. Being given (M, t, ) with represented by
(v, J, t*), and a free involution on M, one may find a submanifold N con-
tained in M, invariant under t, such that M is the union of a manifold with
boundary V and its image under t, tV, joined along their common boundary
N. One may construct N as in [2, (26.1)] by finding an equivariant map
(M, u) --. (S, a), a the antipodal involution, r > dim M, which is transverse
regular on S-x. The normal bundle ofN inM is then trivial, so that one may
identify the normal bundle of N with the restriction to N of v. Thus, by re-
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striction to N, (, J, *) defines a stably almost complex conjugation (N,
I, !). Clearly the same construction may be applied to a cobordism, so

that assigning to (M, , ) the class of (N, !, I) defibes a homomorphism
--* $ of degree -1.

Clearly, if (N, I, l) is obtained from (M, #, ) in this way, then N
bounds as a stably almost complex manifold, for in the above notationN 0V.
Conversely, if (M, , ) is a free stably almost complex conjugation and
M OW as a stably almost complex manifold with complex normal bundle

restricting to , with (J, *) on defining , then one may form a closed
stably almost complex manifold T from W X {1, -1} by identifying
M 0W X 1 with 0W (- 1) using , with the normal bundle formed from

over W X 1 and the conjugate over W (- 1 ) identified over the inter-
section by *. The involutions on T and r, p and p*, given by the interchange
of W >( 1 with W (-1) and of with then define a free stably almost
complex conjugation (T, p, ’). Clearly A (T, p, ’) (M, , ) since T is
the union of W 1 and its image under p joined along their common boundary
M. Thus, one has:

LEMMA 1. The sequence

is exact, where takes the cobordism class of he underlying sably almost complex
manifold.

If on the other hand A[M, , ] 0, then with the notation used in defining
A, one has (N, !, !) 0 (W, p, ) for some free stably almost complex
conjugation (W, p, ’) and one may form a manifold T with boundary by join-
ing M X [0, 1] and W [-1, 1] by identifying OW [-1, 1] with a tubular
neighborhood N X [- 1, 1] X 1 of N X 1 in M 1. This identification may
be made so that the complex normal bundles are compatible, with 1 agree-
ing with p X (- 1) and #* 1 agreeing with p* (- 1) along the intersec-
tions. The resulting free stably almost complex conjugation on T has bound-
ary in two parts, one being obtained from M 0 and being (M, , ), while
the other portion consists of two disjoint manifolds interchanged under the in-
volution (one piece P being formed from V minus a neighborhood of N and
W 1 by joining along the common boundary). Thus, the remaining portion
of the boundary is P 1, 1} with involution 1 (- 1), with normal
bundle given by over P X 1 and e over P X (- 1 ), with conjugation given
by interchanging the two summands.

If one begins with any closed stably almost complex manifold Q with
] Q -- R+ an imbedding, with normal bundle and complex structure J
on , one may then form a free stably almost complex conjugation on two copies
of Q, Q I1, -1}, with interchange involution, by taking the normal bundle
over Q 1, its conjugate over Q (- 1) and interchange involution on the

normal bundle. This construction defines a class in, but depends on the
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choice of the normal bundle (, J) and not just upon its class as a stable
bundle.

Specifically, if g Q X 1, 1} -. R"+r is an imbedding with normal bundle
u , stabilization gives normal bundle ( u ) X C with involution (inter-

change X conjugation), while first stabilizing gives X C u X C with
interchange involution. That these are inequivalent is most easily seen by
noting that the orientation of the fibers (as induced by the complex struc-
ture) is preserved by one involution and reversed by the other. The difficulty
is that the space of complex structures on R has two components, one contain-
ing i, the other containing --i.

If one stabilizes twice the problem disappears, for on C C the complex
structures (x, y) -. (ix, iy and (x, y) -- (-ix, -iy may be joined by a path
of complex structures. Specifically, letting H denote the quaternions, ie
0 _< _< 1, is a path of complex structures joining i and -i, so that C C

Thus one obtains precisely two free stably almost complex conjugations de-
pending on the complex dimension of the representative normal bundle mod 2.
Clearly, the same process may be used for a stably almost complex manifold
with boundary, and thus one has defined two homomorphisms from 2g to
R. Rather than distinguish these more precisely, one may simply add them
together to define a homomorphism

This obviously has image consisting of all classes of disjoint unions of two mani-
folds which are interchanged by the involution, and hence-

L,MA 2. The sequence

is exact.

In order to understand the homomorphism 1 -4- c more fully, let M be a
stably almost complex manifold of dimension 2n, f M" -- R’+r an imbed-
ding with complex normal bundle , and formM X 1, 1} with normal bundle. This defines the stably almost complex manifold structure (for the
class of r rood 2) underlying the 1 -4- c operation. One then has"

ASSERTION. The class of Ms" X 1, 1} with normal bundle
as an element ofv is 1 -t- (- 1 )+l [M].

Proof. Let [M, ] e H, (M; Z) denote the orientation class induced by the
complex structure on the normal bundle of M. The complex structure then
induces the orientation [M, ] (-1)riM, ]. Since the Chern class c()
is given by

c() 1 c1() + c() c() -t-
one has for each 0 a partition of n, that c () (-1)c () in H (M; Z).
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Thus
(,)[M, (-

and the class of (M, ) u (M, ) in 2 is {1 + (-1)+} [M].**
Note. If dim M is odd, everything must bound, so no analysis is required.
Now let M be a stably almost complex manifold such that M 2r (_ being

one conjugate structure) bounds in $R (notice that this completely deter-
mines r) and let 0 (V, , ) M u/r. For dim M 0, one may suppose by
cobordism that M consists of k points with the same orientation. Then V is
a union of intervals joining one point in M and one in/r and a collection of
circles. Since an interval has no free involution, k must be even (with inter-
vals being interchanged). Since two points with the same orientation admits
the interchange conjugation, [M] lies in the image of . If dim M > 0, then
by a cobordism one may assume M is connected (using complex surgery).
Let N c V be a submanifold of codimension one such that V is the union of W
andW along their common boundary N. Since interchanges the boundary
componentsM and M of V, N may be chosen to be a closed manifold contained
in the interior of V. One may then label as W that manifold whose boundary
is M u N, which defines a stably almost complex cobordism of M and N. N is,
however, stable under and restricts to a free stably almost complex conjuga-
tion structure on (N, IN). Thus [M] belongs to the image of" $R --,.

If (M, , ) is a free stably almost complex conjugation, one may form the
manifold M X [-- 1, 1] with involution X (-- 1) having normal bundle

[- 1, 1] * (), complex structure J X 1 and conjugation * X (- 1)
covering X (-1), where is given by (v, J, *). The boundary of the re-
sulting manifold is a free stably almost complex coniugation interchanging
two stably almost complex manifolds, one of which is M with normal structure
given by , and hence the other is the conjugate of M cobordant to -M.
Combining this with Lemmas 1 and 2 gives:

PROPOSITION 3. The sequence

is exact.

In order to make use of this sequence, it is necessary to determine the image
of -- 2. The result is"

LEMMA 3. The image of is precisely the kernel of the homo-
morphism ---, 9. sending each stably almost complex manifold to its un-
oriented cobordism class.

Proof. To see that im c ker @ one notes that for (M, , ) a free stably
almost complex conjugation, t acts freely on M so M bounds as manifold (M
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bounds the disc bundle of the double coverM M/). To see that ker I, c.
im , one first proves that every class in fig contains a manifold with conjuga-
tion;i.e, the homomorphism ’ 25 --. . is epic. For this, one notes that
it is trivial in dimension zero (since a point with either orientation has the
trivial conjugation) while in positive dimensions every class in fg is represented
as an integral polynomial in the classes of complex projective spaces and
hypersurfaces H (m, n) c CP (m) X CP (n) defined by equations with real
coefficients. (This is a result of Milnor, but the only exposition is in Thom
[9]. ) Since CP (n) and H (m, n) have conjugations given by conjugation of the
complex number spaces underlying their definition, while im (V is clearly
closed under sums, products, and additive inverses (using appropriately chosen
conjugates for the normal bundle) this shows that ’ is epic. Then im is
an ideal, for if a im is represented by M inR and fig is represented by
N in fR, then a. f is represented by the product conjugation M X N, which
is free.
As already noted im 22 by taking M u 3r for an appropriate conjugate

and hence it suffices to prove that im contains generators for the ideal given
by the kernel of I,’ 2/22g --. .. Representative generators for this ideal
are well known and are given by the nonsingular complex algebraic varieties
of dimension 2+ 2, s >- 0, H (2’, 28) c CP (2) X CP (28) defined by the
equations -o zw 0, where

CP(28 X CP(28 ([z0, ..., z2o], [w0, ...,
in standard homogeneous coordinates. A fixed point free conjugation for the
usual complex manifold structure on H (2’, 28) is given by

T([z0, ...,z,],[w0,...,w2o]) ([0, "",2o],[0, "",o]).

[Note. T ([z], [w]) ([z], [w]) implies w aS, a 0, so 0
a z , but this gives z 0 for all i which is impossible.]**

odd 0 toOne may apply this result, together with Proposition 3, and
obtain exact sequences

and

(2) 0 2+ ker (I, [ -- 9) --. 0.

Using these sequences, one may describe as a group by the inductive reset"
ARPnoeosITO 4. (a) The group - is a vector space over Z2 of dimensi

a2_ and
(b) The group is the direct sum of a free abelian group of rank the num-

ber of partitis of k and a vector space over Z of rank , where

)+ a
_

W dim (im) dim (ker
u v and a_l O.with /2 ,
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Note. 2g/22 is a Z. polynomial ring on classes z, ] > 0, of dimension
2] and 9, is a Z polynomial ring on classes x, k > 0 and not of the form
2 1, of dimension k, with the homomorphism of gebras defined by
() xfork 2"- land(z) 0fork 2"- 1. Thusaqisin-
ductively computable by the given forma.

Proof. Suppose inductively that - is a Z vector space of dimension_
(which is clearly true for k 0 with a_ 0). Then the exact sequence

(1) becomes
0 Z’() Z’ fi Z’- 0

where fl[ Z’() is a flee abelian group of ra (k) [, the number of parti-
tions of k, and im, im Define a homomo@hism

by sending (M, #, ) into the unoriented bordism class of M/#.

sends ([M], IN]) into. 2[M] -}- [N] and thus the composite

Then

is an isomorphism onto the direct summand im . c 2. Thus the Z
vector space (1 :t: c) (im I,2) is a direct summand of. If T is a comple-
mentary summand, one then has an exact sequence

0-,Z()
a T::: ;Z’-1--,0.

The homomorphism 2 --, 2 Z() clearly sends the tomion group
(1 c)(ira 2) to zero and induces an epimohism T ker 2, with
a (Z() mapping precisely onto 2. This induces an exact sequence

0 Torsion (T) Z- ker 0

so that T is the direct sum of aZvector space of dimension
_

dim er)
and free abelian group ofra v (k) ]. This completes part b) and the calcu-
lation of .

Applying exact sequence (2), the kernel of ker Z() is
Aprecisely the torsion subgroup, so s+ Torsion (fi) is Z vector space of

ra +. This completes the induction step and thereby proves the
proposition.**

Note. The product in $ given by the product of manifolds makes $
ring, with g a ring homomohism. Tensofing with Z[]], be-
comes an isomorphism of rings

" Z[] @ Z[] Z[][x,] (dim x2, 2i).
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5. Odd primary structure of the unrestricted groups

Returning to the exact sequence of Proposition 1, one has the diagram

where and ’ take the cobordism class of the underlying manifold. Applying
the analysis of ’, one has ker F c ker which is the torsion subgroup of
fi’, consisting of elements of order 2. Since cokernel is also a Z, vector
space, defines a splitting of the exact sequence provided one ignores the
prime 2. Thus one has"

LEMMA 4. Modulo the Serre class of 2-primary groups, one has an iso-
morphism

Note. ’,, and" are all rings with the product given by the product
of manifolds, and F, i, and ’ are ring homomorphisms. Thus t" contains the
ideals im F ker i and ker ’ (isomorphic mod 2 primary groups with
Thus 2R (R) Z[1/2] is isomorphic to (R) Z[1/2] (R) Z[1/2] as rings (both
summands being ideals).

Thus, the odd primary structure of 2" may be determined by analyzing, or applying Proposition 2, by analyzing, (BO X BO, f) dir lim r, (T (,’ ((R) C)), ).

IEMMA 5. Let q BO BSO be the map classifying . @ C with the orienta-
tion given by the complex structure, q is a homotopy equivalence modulo the Serre
class of 2-primary groups, and thus the induced map of Thorn spectra

T {T (,* (R) C)} -* {TBSO}

is also a homotopy equivalence modulo the Serre class of 2-primary groups.

Proof. Both H* (BSO; Z[1/2]) and H* (BO; Z[1/2]) are the polynomial rings
over Z[1/2] on the Pontrjagin classes , (dimension 4i) of the universal bundles.
By the Whitney sum formula,

(R) ) $

so * (,,) 2,, decomposables. Thus

q, H (BSO Z[1/2]) H* (BO Z[1/2])

is an isomorphism. Both Thom spectra are orientable for integral cohomology,
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and by the Thorn somorphism

Tq* P*(TBSO;Z[1/2]) --, iq*(T(7 (R) C); Z[1/2])

is also an isomorphism.**

COROLLRV. The spectral morphism defined by

T (7’ 9 (7’(R) C)) T (78)/k T (7’(R) C)
1/k T_; T (7s)/k TBSO,

induces an isomorphism modulo the Serre class of 2-primary groups

1/k Tq, , (BOB X BO, fs) ,o (TB08)

into the reduced oriented bordism of the Thorn space TBO, T (7").

Proof. The Thom space of an external Whitney sum is the smash product
of the Thom spaces, so 1/k T, is just the induced homotopy homomorphism
of the odd primary homotopy equivalence 1/k T.**
In order to analyze these bordism groups one considers the pair

(D (7), S (7 consisting of the disc and sphere bundle of 7, giving the cofibra-
tion sequence

S (7") i_ D (7") (D (7’)/S (5’8)) T (7’).

Projection on the base space gives a homotopy equivalence of D (7’) and BO,,
while taking the orthogonal complement of a unit vector in D (7) defines a
fibration S (7) --, BO,_ with fiber the infinite sphere, which is contractible.
Thus one has the cofibration sequence

808_, i_ SO, P- T (78)

and i pulls 7 back to 7
-1 9 1. Then H* (BO,, Z[1/2]) is the polynomial ring

over Z[1/2] on the Pontrjagin classes ,, 1 _< i _< [n/2], denoting integral
part, of the universal bundle 7". In particular

"*" H* H*(BO. Z[1/2]) - (BOB_, Z[1/2])
is epic, and thus

/* (T (7’); Z[1/2]) 0 if s is odd

Z[1/2][,I, ..., ,8/]’,s/. if s is even,

the latter being the ideal consisting of multiples of
This implies that/,(T(7); Z) has no odd torsion, so that by [2, (15.2)]"

ff,o (TB08 I, (TBO, fls,o ).

Combining this with the corollary and the structure of ,o gives:

LEMMA 6. ], (BO, X BO, f,) is a 2-primary group if s is odd, while for s
even, all torsion is two primary and , (BO, X BO, f,) has the same rank as a
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free module on one generator of dimension 2s over the polynomial ring on generators, 1 <_ i <_ s/2, of dimension 4i, and generators x, j > 1, of dimension 4j.

Combining Lemmas 4 and 6, one then has"

PROeOSTmN 5. $ has no odd primary torsion, and @ Z[1/2] is iso-
morphic to the direct sum of , (R) Z[1/2] (= Z[1/2][x], i > 0) and a polynomial
ring over Z[] on generators y, j > 1 (where dim u, n throughout), both
summands being ideals.

Proof. The ring structure in $ given by the product of manifolds coin-
cides with the ring structure in $-o(BO,_ X BO, f,_) given by the
product of manifolds (with Whitney sum defining the normal structure). On
the spectral level, this is the homotopy product induced by the maps

T(7’ @ (7’@ C)) A T(7" 9 (’" (R) C))

T() A T(7’(R) C) A T(7") A T(" (R) C)

T (7’+’ 9 (7’+’’ (R) C)) T (7’+’’) A T (7’+*’ (R) C)

nd %his being compatible with T, the homomorphism

* ,o_,(rBO,)
is rin homomorphism, where he product is given by the mps

TBO A TBO,

In turn, one hs the cofibrtions

with the mups p defining u ring homomorphism

P * ,o__,(TnO.
where the product in the first term is induced by the Whitney sum maps

BO. BO.,---, BO.+...
Tensoring with Z[1/2], becomes an isomorphism and p becomes epic, with
kernel uiven bv the image of the homomorphism

* uI-.. (SO.)
induced by the maps i’BO._x - BO, adding a trivial line bundle. It is,, ,o_, (BO,) (R) Z[1/2] is the polynomial ring overof course, clear

fl (BOx) (the class of thet, (R) Z[1/2] Z[1/2][z] on %he classes
trivial line bundle over a point) and u.+ [CP(2j), ] fl (BO), j > O,
#yen by the canonical complex line bundle over CP (2j) thought of as a real
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2-plane bundle. It is clear that i is precisely multiplication by u, and hence

@,-o,-..,(TBO,) @ Z[1/2] Z[1/2][y J > 1]

where y p(z) and y+ p(u+),j >. 0.**
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