ON MANIFOLDS WITH CONJUGATION

BY
R. E. Stona

1. Introduction

The concept of a conjugation on an almost complex manifold M™ was de-
fined by Conner and Floyd [2, §24]. Specifically, an almost complex structure
on M is a real linear bundle map J : 7y — 74 on the tangent bundle of M, cov-
ering the identity map of M, and such that J* = —1, and a conjugation on
(M, J) is an involution o : M — M whose differential do : 74 — 74 is a conju-
gate linear isomorphism (ie. do-J = —J-do).

The object of this paper is to analyze the cobordism classification of such
conjugations. One approach to this sort of problem occurs in Landweber
[4], considering equivariant homotopy of the Thom spectrum MU. Lacking
strong transverse regularity theorems, this homotopy question is not as closely
related to the geometry of the problem as one would wish. The approach
taken here is analogous to the geometric part of the Conner and Floyd study
of involutions.

In order to perform a cobordism analysis, one must first enlarge the collec-
tion of objects under study to give a suitable boundary, since almost complex
manifolds are always even dimensional. This is performed in Section 2 by
defining the notion of a conjugation on a stably almost complex manifold (as
studied by Milnor [7]). Another way to describe such a manifold structure is
to be given a manifold M with involution ¢ and an isomorphism of the normal
bundle of M with an Atiyah-real vector bundle over (M, o) (see Atiyah [1]).
If (M,q,J) is a conjugation on an almost complex manifold, the inverse to the
Atiyah-real bundle (74, J, do) over (M, o) provides a stably almost complex
conjugation structure on M.

One may then form cobordism groups in the standard way, and the ring of
cobordism classes of stably almost complex conjugations is denoted Q&F.
By restricting to conjugations for which the underlying involution ¢ is fixed-
point free, one may form the cobordism ring of free stably almost complex
conjugations, denoted (%%. In Section 3, the interrelationship of these rings
is studied, making use of the relative cobordism group of conjugations on stably
almost complex manifolds with free action on the boundary, denoted Q4%%.
One then has a rather obvious exact sequence

s;zzﬂi»sz:ﬂ—l-»rlz:“
0

similar to the sequences of Conner and Floyd [3] or [2, §28.1]. Further, using
the fixed-point method, one may analyze 34" and reduce this to the calculation
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of ordinary (B, f) cobordism theories (as defined by Lashof [6]) corresponding
to the fibrations f : BO, X BO — B0, where f classifies v, @ (v ® C). These
theories are basically uncomputable except for odd primary structure. The
case k = 0 gives a Clifford algebra cobordism theory (briefly studied in [8])
related to the work of Wells (unpublished) on immersion cobordism, and at
present this is a highly unknown quantity.

In Section 4, the analysis of the free stably almost complex conjugation
ring Q4% is carried out. The main step is a modified Smith-theory exact
sequence

&+ 0 1+¢

2T 0, ol ol —=C, g

J
A

in which A is a Smith homomorphism, & takes the cobordism class of the un-
derlying stably almost complex manifold, and 1 =& ¢ sends M into M u M,
where M is a complex conjugate of M. The crucial point of this analysis is
that a given stably almost complex manifold has exactly two conjugates, and
the two choices are used on the two copies of @%. For an almost complex
manifold there is one natural choice of conjugate, so the difficulties of the
conjugate for the stable class of a bundle have not previously been noted. Us-
ing results (and examples) similar to those of Landweber [5] one may com-
pletely determine the image of ® and thereby compute (4%, In particular,
Q4% has rank the number of partitions of n/2, with all torsion of order 2 and
with dimension as Z, vector space being computable inductively.

In Section 5, the computation of Q4" is combined with the computation of
the odd primary structure of 34" to prove that all torsion of %" is two primary
and to determine Q%" ® Z[3].

It is a pleasure to acknowledge the assistance of Larry Smith, whose willing-
ness to talk over this material cleared up many of my blunders. Further,
the author is indebted to Princeton University and the National Science
Foundation for financial support during this work.

2. Conjugations on stably almost complex manifolds

Let M" be a compact differentiable manifold with boundary and
u i M" — M" a differentiable involution. If f : M" — R™™ is an imbedding
with normal bundle », a complex conjugation on  is a pair (J, u*), where J is
a complex structure on v ie. areal hnear bundle map J : » — v covering the
identity map on M with J* = —1;and u* : v —visaninvolution given by a real
linear bundle map covermg pon M and satisfying p*J = —Ju*. Two com-
plex conjugations (J o, ue) and (Jq, pt) are equivalent if there are complex
conjugations (J;, u: ¥), telo, 11, so that the maps » X I — v X I defined by
(z,t) = (J:(x),t) and (x,t) — (¥ (z), t) are continuous.

Note. If v(f) : M" — BO,, is the map classifying the normal bundle of f, a
complex conjugation is a deformation of » (f) to an equivariant map of (M, u)
into BU, with involution induced by complex conjugation. Two complex con-
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jugations are equivalent if there is a homotopy through such deformations of
the two given deformations.

Since any two imbeddings fi , fa ¢ M — R™ for r sufficiently large are regu-
larly homotopic and any two regular homotopies are themselves homotopic
through regular homotopies keeping end points fixed, the normal bundles of
any two such imbeddings are isomorphic and there is a well defined homotopy
class of isomorphisms. If ¢ : v — »; is such an isomorphism, with (J, x*) a
complex conjugation on », then (¢ *Jo, ¢ n*e) is a complex conjugation on
vo. 'This establishes a one-to-one correspondence between the equivalence
classes of complex conjugations on the normal bundles of any two imbeddings
of M provided the codimension is large.

If one has a complex conjugation (J, u*) on », then

f X 0: M — Rn+2r+2 = Rn+2r X R2

is an imbedding with normal bundle » @ 2 (the Whitney sum of » with a trivial
2 plane bundle). One then defines the “‘suspension” of (J, u*) to be given by
(J X 1, u* X ¢) where

JX1:E@)XC—-E@W) XC: (xa)— (Jz, ia)
and
B*Xc:E@) X C—E@P)XC: (xa)— (u', a)

(& = complex conjugate of o), where the total space of » @ 2 is thought of as
the product of that of » with the complex numbers.

A stably almost complex conjugation structure on (M", u) is then an equiva-
lence class of triples (v, J, u*) where » is the normal bundle of an imbedding
f+ M"— R"™ and (J, u*) is a complex conjugation on », with two such triples
being equivalent if some sufficiently high suspensions of each define the same
equivalence class under the correspondence established by means of the under-
lying normal bundles.

DErFINITION. A stably almost complex conjugation is a triple (M, u, £)
where M is a compact differentiable manifold with boundary, u : M — M is a
differentiable involution, and £ is a stably almost complex conjugation struc-
ture on (M, p).

If (M", u, £) is a stably almost complex conjugation, represented by
(v, J, u*), where » is the normal bundle of an imbedding f : M" — R*™
which imbeds M in half space { ¢ R"™ | @n42, = 0} and M in R™* g0 that
a tubular neighborhood imbeds orthogonally along f(dM ), then the normal
bundle of M in R™™ restricts to the normal bundle of M in R*** ™ and
@ |oae, J, u™*) defines a stably almost complex conjugation structure, denoted
8¢, on (M, u |su). The resulting triple (M, u |3M , 0¢) is the boundary of
M, u, £).

Note. The central point is that for the boundary one must choose an identi-
fication of » lb u with the normal bundle of M, obtained by choosing a trivial-
ization of the normal bundle of M in M.
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One then defines the cobordism group of stably almost complex conjugations
ag the group obtained from the semigroup (disjoint union inducing the opera-
tion +) of isomorphism classes of stably almost complex conjugations on
closed manifolds by introducing the equivalence relation a = B if there exist
stably almost complex conjugations ¢ and » with a + 9% = 8 + 9.

This cobordism group will be denoted 4, and is the direct sum of the sub-
groups 2" formed of classes for which the underlying manifold has dimension
n. The notation AR is meant to suggest Atiyah-real, for (v, J, u*) is precisely
a “real” vector bundle over (M, ) in the sense of Atiyah.

In exactly the same way, one defines the group of cobordism classes of free
stably almost complex conjugations, (47, using only those stably almost com-
plex conjugations (M, u, £) for which the involution u has no fixed points.

Finally, one defines a relative cobordism group %" of equivalence classes of
stably almost complex conjugations (M, u, £) for which u [a x has no fixed points.
One says (M, u, £) is cobordant to (M’, u', £') if there are stably almost com-
plex conjugations (V, g, n) and (W, p, A) with ¢ having no fixed points such
that

a(V’ 0,1) = (aM,» w Iau' ) aE’) u (M, u Iau , —0f)

and dW is the manifold formed from M u V u M’ by identifying boundaries,
with p restricting to u, o, or u’ respectively, and \ restricting to £, 9, or —§’
respectively.

Note. (M, pu, —¢) is obtained by taking M X I < R*™* X R with involu-
tion u X 1, identifying the normal bundle of 2/ X I with the pullback of » to
give an induced structure on M X I restricting to £ on M X 0, and letting —£
be the structure induced on M X 1. This corresponds to reversing the trivi-
alization of the normal bundle of M in M X I, or the orientation of the normal
bundle of M in R+,

Before beginning the analysis of these cobordism groups, one should note
that a stably almost complex conjugation structure on (M", p) may be defined
using the tangent bundle rather than the normal bundle of M. Let r denote
the tangent bundle of M with involution du, the differential of .

AssERTION. The stably almost complex conjugation structures on (M,u) are in
one-to-one correspondence with equivalence classes of triples (a, 0, j) where a is a
trivial real vector bundle over M, 6 : o — « is an tnvolution of o by real bundle
maps covering u, andj 1 v ® a — 7 @ ais a complex structure for which du @ 6
18 a conjugation.

Proof. Being given (a, 0, j), the inverse to (r @ a, j, du @ 0) as Atiyah-
real bundle is an Atiyah-real structure on a bundle stably isomorphic to the
normal bundle of M, and hence defines a stably almost complex conjugation
structure on some normal bundle.

Conversely, suppose (v, J, a*) is a stably almost complex conjugation struc-
ture on the normal bundle of f : M™ — R™™, and choose an inverse for
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(v, J, u*) as Atiyah-real bundle, say (, K, p) so that
G@®nJ®K p*®p) (M XC1XiuXe).

Let (¢, L, o) be an inverse for the Atiyah-real bundle (+ @ 7, I, (—du) ® (du))
where I (a,b) = (—b,a). Then (@t @ 1,p ® o ® (—du))is an involution
on a trivial real vector bundle over M (covering u) and the Whitney sum with
the bundle with involution (r, du) admits a complex structure for which
[p ® o ® (—du)] @ duis a conjugation. Specifically, K ® L @ I is such a
complex structure.**

In particular, if M is an almost complex manifold with conjugation, this
gives a well defined stably almost complex conjugation structure by letting o
be zero dimensional. For the more general case, one must consider pairs
(a, 0). It should be noted that («, 6) need not be simply the product M X V
with V a representation space of Z, .

3. The unrestricted-free relationship

Let F : 04" — Q4% denote the homomorphism obtained by considering a free
stably almost complex conjugation as simply a stably almost complex conjuga-
tion by forgetting the freeness condition. Let ¢ : Q4* — Q4" be the homomor-
phism obtained by considering a closed manifold as a manifold with a free in-
volution on its boundary, and let 8 : 3%% — Q4" be the homomorphism induced
by sending (M, u, £) to the class of (M, u |, 88).

ProposiTioN 1. The sequence
i

)

18 exact.

Proof. (a) 8i = 0, for 3 (M, p, £) = [(OM, u |ou, 95)] and M is empty.

(b) F3=0,forFa(M,pu,t)is the class of M, u |,-,M , 9¢) which bounds
(M, p, £).

(¢) iF = 0, forif (M, u, £) is free,let (W, p,\) = (M X I, u X 1, x*¢)
and (V, o, ) the induced structure on M X 1, giving a cobordism to zero of
M, p, £).

(d) If8[M,u, £l = 0, then (M, u o, 88) = 8(X, x, §) with x free and let
(T, 7, ¢) be the stably almost complex conjugation structure on M v X/dM =
9X with 7 inducing x and x and ¢ inducing £ and —p. Then

(W,p,)\) = (TXI’TX 1:7"*90)’ Vyo,9) = (X X0,x, =)

defines a cobordism of (M, u, £) and 2(T, 7, ).

(e) IfF[M,p,t] =0,then (M, u, £) bounds an unrestricted action (V,q, 5)
and d[V, o, n] = [M, p, .
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() If M, u, £] = 0, with (W, p, ) and (V, o, n) as a cobordism to zero,
then M = 8V = @and (W, p, \) is a cobordism of (M, u, £) to F(V, ¢, 1).**

In order to make this sequence of value for the study of 24" one needs addi-
tional information about the other groups. Beginning with (347, one may apply
a fixed point structure analysis.

If (M™, u, £)is a stably almost complex conjugation with £ given by (v, J, u™*)
where » is the normal bundle of f : M™ — R™**, with u free on 0}, then the fixed
point set F of u is a closed submanifold imbedded in the interior of M. One
may write F = Up— F¥, where F* is the union of the k-dimensional components
of F, and the normal bundle of F* in R*™ is the Whitney sum of the normal
bundle of F* in M, an n — k plane bundle denoted v, , and the restriction to
F* of the normal bundle of M. Over F*, u* is a conjugation on » | Fk COVerin;
the identity map, so that » |+ decomposes into the Whitney sum of & = &
and £, the 41 and —1 eigenvalue bundles of u*. The operation J is a real
linear isomorphism interchanging these two bundles, so & = & or (v |, J, u*)
is isomorphicto (5, ® C, 1 ® 7, 1 ® ¢).

Clearly, application of this same fixed point analysis to a cobordism gives a
cobordism of the fixed point sets together with a decomposition of the normal
bundle into a real bundle (of appropriate dimension n — k over the k£ + 1 di-
mensional component) and the complexification of a real bundle.

One then introduces the (B, f) cobordism theories Q« (B0, X BO, f,) de-
fined by the map f; : BO, X BO — BO classifying the Whitney sum of the
canonical s plane bundle ¥* over BO, and the complexification v ® C of the
canonical bundle over BO. This is precisely the cobordism theory obtained
by using manifolds together with a decomposition of their normal bundle as
the Whitney sum of an s plane bundle and the complexification of a real
bundle.

Thus, the fixed point analysis defines a homomorphism

£ 0% = @m0 % (BOu—s X BO, fut).

Being given a closed manifold F* together with a decomposition of its normal
bundle as v, ® (& ® C), one may consider the compact n-manifold with
boundary given by D (v, ), the dise bundle of »,—. Multiplication by —1 in
the fibers of vn_i defines an involution on D (v,—t), with fixed point set F*
(the zero section) and hence free on the boundary. The tangent bundle of
D (vn_s) is the Whitney sum of the pullback of the tangent bundle of F*,
x*rp , and the bundle tangent to the fibers, which is isomorphic to =*v, .
Thus

Toopp ® (T8 ® C) X 7™ (15 @ 1ot ® (& ® C))

is trivial and so the normal bundle of D (v, ) is stably isomorphic to 7*&, ® C.
Considering the total space of =*& ® C as a subspace of D (m—t) X E (& ® C),
one has a complex structure given by 1 X (1 ® ) and a conjugation given by
(—1) X (1 ® ¢) covering (—1) on D (ya—i). This defines a stably almost
complex conjugation (D (va—r), —1, £) and sending (F*, vns, &) to this class
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defines a homomorphism
d : ®pmg U (BOuri X BO, foi) — Q2%

Clearly, f e d = 1, while d o f[M, u, £] is represented by (D (»), u, ¢) which
may be identified as a tubular neighborhood of the fixed point set of u in M.
A cobordism of this to (M, u, £) is given by

W,y o,N) = (M X I,p X1, x%)
and (V, o, ) is given by restriction to
V =0M X I u[M — interior (D(»))] X 1.
Thus d o f = 1, proving:
ProposiTIiON 2.  The fixed point homomorphism

f Q2% = @fmo U (BOner X BO, fur)
18 an isomorphism.

This result is useful since one knows how to compute (B, f) cobordism
theories by homotopy methods. Applying the Pontrjagin-Thom construc-
tion, one has

Q,(BO, X BO, f,) = liMsew Tpiatae(TIY' @ (v' ® C)], )

where T[y* @ (v' ® ()] is the Thom space of the bundle v°* @ (v' ® C) over
BO, X BO;.

From a practical point of view this isn’t very helpful, since for example the
2-primary structure of @« (B0, X B0, f) is known to be difficult to compute.
The odd primary structure is relatively easy and will be computed in Section 5.

Note. This calculational complication carries over to Q4" since

24« (B0 X BO, f,)

is identifiable with the direct summand of Q4" given by stably almost complex
conjugations (M, p, £) for which p keeps M pointwise fixed. For example,
€ (BOy X BO, f) = Zs (Wells, unpublished ) and hence Q4" has elements of
order 4.

4, Cobordism of free conjugations

In order to analyze the groups (4%, one may make use of the Smith homo-
morphism A : (7% — 02%,. Being given (M, u, ¢£) with ¢ represented by
@, J, u*), and u a free involution on M, one may find a submanifold N con-
tained in M, invariant under u, such that M is the union of a manifold with
boundary V and its image under u, uV, joined along their common boundary
N. One may construct N as in [2, (26.1)] by finding an equivariant map
(M, u) — (S, a), a the antipodal involution, r > dim M, which is transverse
regular on 8.  The normal bundle of N in M is then trivial, so that one may
identify the normal bundle of N with the restriction to N of ». Thus, by re-
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striction to N, (v, J, u*) defines a stably almost complex conjugation (N,
K IN ) & 'N). Clearly the same construction may be applied to a cobordism, so
that assigning to (M, u, £) the class of (N, u|~, & lzv) defibes a homomorphism
A : 04% — 04" of degree —1.

Clearly, if (N, u |, & [ ~) is obtained from (M, u, £) in this way, then N
bounds as a stably almost complex manifold, for in the above notation N = 9V.
Conversely, if (M, u, £) is a free stably almost complex conjugation and
M = OW as a stably almost complex manifold with complex normal bundle
vw restricting to vy , with (J, u*) on vy defining £, then one may form a closed
stably almost complex manifold T from W X {1, —1} by identifying
M = oW X 1 with W X (—1) using u, with the normal bundle formed from
vwover W X 1 and the conjugate ow over W X (—1) identified over the inter-
section by u*. The involutions on T and »r , p and p*, given by the interchange
of W X 1with W X (—1) and of »w with p then define a free stably almost
complex conjugation (7, p, &). Clearly A(T, p, ¢) = (M, p, £) since T is
the union of W X 1 and its image under p joined along their common boundary
M. Thus, one has:

Lemma 1. The sequence
o4r -5 odr -2, of

18 exact, where ® takes the cobordism class of the underlying stably almost complex
manifold.

If on the other hand A[M, u, §] = 0, then with the notation used in defining
A, one has (N, u | N, & [N) = §(W, p, ¢) for some free stably almost complex
conjugation (W, p, {) and one may form a manifold T’ with boundary by join-
ing M X [0, 1] and W X [—1, 1] by identifying W X [—1, 1] with a tubular
neighborhood N X [—1,1] X 1of N X 1in M X 1. This identification may
be made so that the complex normal bundles are compatible, with u X 1 agree-
ing with p X (—1) and p* X 1 agreeing with p* X (—1) along the intersec-
tions. The resulting free stably almost complex conjugation on 7' has bound-
ary in two parts, one being obtained from M X 0 and being (M, u, £), while
the other portion consists of two disjoint manifolds interchanged under the in-
volution (one piece P being formed from V minus a neighborhood of N and
W X 1by joining along the common boundary). Thus, the remaining portion
of the boundary is P X {1, —1} with involution 1 X (—1), with normal
bundle given by »p over P X 1 and 7p over P X (—1), with conjugation given
by interchanging the two summands.

If one begins with any closed stably almost complex manifold Q" with
f: Q" — R™™ an imbedding, with normal bundle » and complex structure J
on », one may then form a free stably almost complex conjugation on two copies
of @, @ X {1, —1}, with interchange involution, by taking the normal bundle
vover @ X 1, its conjugate » over @ X (—1) and interchange involution on the
normal bundle. This construction defines a class in 04", but depends on the
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choice of the normal bundle (v, J) and not just upon its class as a stable
bundle.

Specifically, if g : @ X {1, —1} — R™™ is an imbedding with normal bundle
v U 7, stabilization gives normal bundle (» u ») X C with involution (inter-
change X conjugation), while first stabilizing » gives » X C u 5 X C with
interchange involution. That these are inequivalent is most easily seen by
noting that the orientation of the fibers (as induced by the complex struc-
ture) is preserved by one involution and reversed by the other. The difficulty
is that the space of complex structures on R’ has two components, one contain-
ing ¢, the other containing —7.

If one stabilizes twice the problem disappears, for on C @ C the complex
structures (z,y) — (ir, 7y) and (z,y) — (—dxr, —dy) may be joined by a path
of complex structures. Specifically, letting H denote the quaternions, se™”,
0 < ¢ < 1,is a path of complex structures joining 7 and —¢, so that C @ C'=
CoC.

Thus one obtains precisely two free stably almost complex conjugations de-
pending on the complex dimension of the representative normal bundle mod 2.
Clearly, the same process may be used for a stably almost complex manifold
with boundary, and thus one has defined two homomorphisms from Q% to
(4®. Rather than distinguish these more precisely, one may simply add them
together to define a homomorphism

1+c: 0% @ Q% — Ga%.

This obviously has image consisting of all classes of disjoint unions of two mani-
folds which are interchanged by the involution, and hence:

LemMma 2. The sequence

ool LES, gar A gar

18 exact.

In order to understand the homomorphism 1 =+ ¢ more fully, let M be a
stably almost complex manifold of dimension 2n, f : M — R*™ an imbed-
ding with complex normal bundle », and form M X {1, —1} with normal bundle

v u 5. This defines the stably almost complex manifold structure (for the
class of 7 mod 2) underlying the 1 == ¢ operation. One then has:

ASSERTION. The class of M™ X {1, —1} with normal bundle » u » in R*™*
as an element of Qay, is {1 + (—1)""}[M].

Proof. Let [M, v] e Hy (M ; Z) denote the orientation class induced by the
complex structure » on the normal bundle of M. The complex structure 7 then
induces the orientation [M, #] = (—1)"[M, »]. Since the Chern class ¢(7)
is given by

c@)=1—=ca@) + @) —c@)+ -
one has for each w a partition of n, that ¢, (?) = (—1)"c,(v) in H**(M; Z).
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Thus
@M, 5] = (—1)""e, ()M, 3]
and the class of (M, ») u (M, 5) in Q% is {1 + (—1)"""}[M].**

Note. If dim M is odd, everything must bound, so no analysis is required.
Now let M be a stably almost complex manifold such that 3 u M (M being
one conjugate structure) bounds in %% (notice that this completely deter-
mines r) and let 8 (V, p, £) = M u M. Fordim M = 0, one may suppose by
cobordism that M consists of & points with the same orientation. Then V is
a union of intervals joining one point in M and one in M and a collection of
circles. Since an interval has no free involution, ¥ must be even (with inter-
vals being interchanged). Since two points with the same orientation admits
the interchange conjugation, [M] lies in the image of ®. If dim M > 0, then
by a cobordism one may assume M is connected (using complex surgery).
Let N C V be a submanifold of codimension one such that V is the union of W
and uW along their common boundary N. Since u interchanges the boundary
components M and M of V, N may be chosen to be a closed manifold contained
in the interior of V. One may then label as W that manifold whose boundary
is M u N, which defines a stably almost complex cobordism of M and N. N is,
however, stable under  and £ restricts to a free stably almost complex conjuga-
tion structure on (N, u|»). Thus [M] Q% belongs to the image of ® : 04% — Q% .
If (M, u, £) is a free stably almost complex conjugation, one may form the
manifold M X [—1, 1] with involution x X (—1) having normal bundle
» X [—1, 1] = =*(»), complex structure J X 1 and conjugation u* X (—1)
covering u X (—1), where £ is given by (v, J, u*). The boundary of the re-
sulting manifold is a free stably almost complex conjugation interchanging
two stably almost complex manifolds, one of which is M/ with normal structure
given by », and hence the other is the conjugate of M cobordant to — M.
Combining this with Lemmas 1 and 2 gives:

ProrosiTioN 3. The sequence

QAR &40 o U 1+e

—_ LN

A
s exact.

In order to make use of this sequence, it is necessary to determine the image
of ® : 04 — QY. The result is:

LemuMa 3. The image of ® : Q4" — Qi s precisely the kernel of the homo-
morphism ¥ : Qi — Ny sending each stably almost complex manifold to its un-
oriented cobordism class.

Proof. 'To see that im & C ker ¥ one notes that for (M, u, £) a free stably
almost complex conjugation, u acts freely on M so M bounds as manifold (M
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bounds the dise bundle of the double cover M — M /u). To see that ker¥
im ®, one first proves that every class in Q% contains a manifold with conjuga-
tion; i.e. the homomorphism &' : Q4% — Q is epic. For this, one notes that
it is trivial in dimension zero (since a point with either orientation has the
trivial conjugation ) while in positive dimensions every class in 2% is represented
as an integral polynomial in the classes of complex projective spaces and
hypersurfaces H (m, n) < CP(m) X CP(n) defined by equations with real
coefficients. (This is a result of Milnor, but the only exposition is in Thom
[9].) Since CP (n) and H (m, n) have conjugations given by conjugation of the
complex number spaces underlying their definition, while im &' is clearly
closed under sums, products, and additive inverses (using appropriately chosen
conjugates for the normal bundle) this shows that &' is epic. Then im @ is
an ideal, for if a € im ® is represented by M in 34" and 8 e Q% is represented by
N in Q4% then a8 is represented by the product conjugation M X N, which
is free.

As already noted im ® O 20% by taking M u M for an appropriate conjugate
and hence it suffices to prove that im & contains generators for the ideal given
by the kernel of ¥’ : Q%/20% — 9«. Representative generators for this ideal
are well known and are given by the nonsingular complex algebraic varieties
of dimension 2°* — 2, s = 0, H(2, 2°) < CP(2') X CP(2°) defined by the
equations Y jeo z; w; = 0, where

CP(zs) X CP(Z‘) = {([Zo, ) 2], [wo, -+ -, lDza])}
in standard homogeneous coordinates. A fixed point free conjugation for the
usual complex manifold structure on H (2°, 2°) is given by
T([zO’ ] z2']r [‘ll)o, R w2']) = ([woy ) u-)2']’ [207 Tty 22‘])-

[Note. T(2], w]) = ([2], [w]) implies w = a2, a % 0,800 = D 2z w; =
o 2 2; %, but this gives 2; = 0 for all ¢ which is impossible.]**

One may apply this result, together with Proposition 3, and Q0aa = 0 to
obtain exact sequences

1) 0— Q% ® im (Wu : Q% — M) lte, g A > (e — 0
and

AAR A AAR ‘P . U
) 0 — Qgpts — Qo — ker (‘I’2k $ Qo — i) — 0.

Using these sequences, one may describe (4" as a group by the inductive result:

ProPOSITION 4. (a) The group Qsiney is a vector space over Z, of dimension
Ogk—1 ; and

(b) The group Qsi" is the direct sum of o free abelian group of rank the num-
ber of partitions of k and a vector space over Z; of rank as , where

Ooki1 = O = Qa1 + dim (im ;) — dim (ker 7%
with Vo, © 05%,/29% — N, and a_y = 0.
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Note. 92/29* is a Z, polynomial ring on classes 2%, £ > 0, of dimension
2k and 914 is a Z, polynomial mng on classes 2, & > 0 and not of the form
2’ — 1, of dimension k, with s the homomorphism of algebras defined by
Uy (o) = 2t fork = 2° — 1 and\If*(zzk) = Qfork = 2° — 1. Thus a, is in-
ductively computable by the given formula.

Proof. Suppose inductively that O3 is a Z, vector space of dimension
agi—1 (which is clearly true for ¥ = 0 with a_; = 0). Then the exact sequence
(1) becomes

0— er(k)l @ szb — QAR — th'n-1 —0

where Q5 = Z'"®! is a free abehan group of rank | = (k) | the number of parti-
tions of k, and im Wy, = im ¥y = Zo®*. Define a homomorphism

8 : Qo' — N
by sending (M, p, £) into the unoriented bordism class of M /u. Then
6- (1 £ c) : Ui ® Ui — Mo
sends ([M], [N]) into ¥au[M] + ¥x[N] and thus the composite

. 1+c¢ 0
im Wy e, Ok > Pok

is an isomorphism onto the direct summand im ¥y, C . Thus the Z2
vector space (1 == ¢) (im ¥y,) is a direct summand of 0z, If T is a comple-
mentary summand, one then has an exact sequence

00 2Z"® 2, p B, gou

The homomorphism & : & — Q5 = Z'"®! clearly sends the torsion group
(1 &+ ¢)(@m ¥x) to zero and induces an epimorphism 7 — ker ¥y, with
a(Z'""®') mapping precisely onto 203, . This induces an exact sequence

0 — Torsion (T') — Z2*-! — ker ¥z, — 0

so that T is the direct sum of a Z, vector space of dimension ag._; — dim (ker ¥3;,)
and a free abelian group of rank | w (k) ] This completes part b) and the calcu-
lation of az .

Applying exact sequence (2), the kernel of & : (3" — ker ¥y, = Z l=®1 jg
precisely the torsion subgroup, so 031 = Torsion (32" ) is a Z; vector space of
rank ax = axa1. This completes the induction step and thereby proves the
proposition,**

Note. The product in 34 given by the product of manifolds makes 34” a
ring, with ® : 04" — Q% a ring homomorphism. Tensoring with Z[}], ® be-
comes an isomorphism of rings

o: 04 @ Z3 = 0% ® Z[] = ZBllead  (dim 2 = 20).
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5. Odd primary structure of the unrestricted groups
Returning to the exact sequence of Proposition 1, one has the diagram

9

v 7 |

A T =

RN

o

where ® and &' take the cobordism class of the underlying manifold. Applying
the analysis of 04%, one has ker F < ker & which is the torsion subgroup of
(4%, consisting of elements of order 2. Since cokernel ® is also a Z; vector
space, ¥’ defines a splitting of the exact sequence provided one ignores the
prime 2. Thus one has:

LemmA 4. Modulo the Serre class of 2-primary groups, one has an iso-

morphism
" = 5" @ ;E.

Note. Q4%, 04%, and 04" are all rings with the product given by the product
of manifolds, and F, 7, and &' are ring homomorphisms. Thus Q4* contains the
ideals im F = ker ¢ and ker & (isomorphic mod 2 primary groups with 24%).
Thus Q%" ® Z[}] is isomorphic to 04% ® Z[3] ® O4° ® Z[}] as rings (both
summands being ideals).

Thus, the odd primary structure of Q4" may be determined by analyzing
04", or applying Proposition 2, by analyzing

2,(BO, X BO,f,) = dirlim7+(T(v' @ (v' ® C)), »).

LEMMA 5. Let ¢ : BO — BSO be the map classifying v ® C with the orienta-
tion given by the complex structure. ¢ is a homotopy equivalence modulo the Serre
class of 2-primary groups, and thus the induced map of Thom spectra

Te : {T(v' ® C)} — {TBSO:}
18 also a homotopy equivalence modulo the Serre class of 2-primary groups.

Proof. Both H*(BSO; Z[3]) and H*(BO; Z[}]) are the polynomial rings
over Z[}] on the Pontrjagin classes p, (dimension 4¢) of the universal bundles.
By the Whitney sum formula,

e () =p(r®C) = p(y ® ) = p(v)p(7)
80 ¢*(p;) = 2p; + decomposables. Thus
o* 1 H*(BSO; Z[3]) — H* (BO; Z[3])

is an isomorphism. Both Thom spectra are orientable for integral cohomology,
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and by the Thom isomorphism
To* : A*(TBSO; ZI3]) — A*(T (v ® C); Z[3])

is also an isomorphism.**
CoroLLARY. The spectral morphism defined by

TO'® (' ®C)) = T(') ATl ® 0) —~L2T2, 74y A TBSO

induces an isomorphism modulo the Serre class of 2-primary groups
1 A Tes : Q4 (BO, X BO, f,) — 85 (TBO,)
into the reduced oriented bordism of the Thom space TBO, = T (v°).

Proof. The Thom space of an external Whitney sum is the smash product
of the Thom spaces, 50 1 A Tox is just the induced homotopy homomorphism
of the odd primary homotopy equivalence 1 A Te.**

In order to analyze these bordism groups one considers the pair
(D (v*), 8 (v*)) consisting of the disc and sphere bundle of v°, giving the cofibra-
tion sequence

SO HDE) B OYSKH)) = T

Projection on the base space gives a homotopy equivalence of D (v') and BO, ,
while taking the orthogonal complement of a unit vector in D (y*) defines a
fibration S (y°) — B0, with fiber the infinite sphere, which is contractible.
Thus one has the cofibration sequence

BO,.1 % B0, 2 Tk

and ¢ pulls 4° back to " @ 1. Then H*(BO. ; Z[}]) is the polynomial ring
over Z[}] on the Pontrjagin classes p;, 1 < ¢ < [n/2], [ ] denoting integral
part, of the universal bundle 4". In particular

¥ H*(BO, ; Z[3]) — H*(BO._1; Z[}])
is epic, and thus

B*(T(v'); Z[3]) = 0 if s is odd
= Z[}llp1, +* , posel-porz  if s is even,

the latter being the ideal consisting of multiples of pess .
This implies that H« (T (v"); Z) has no odd torsion, so that by [2, (15.2)]:

& (TBO,) = H.(TBO, ; 95°).
Combining this with the corollary and the structure of 03’ gives:

LeMMA 6. Q4 (BO, X BO, f.) is a 2-primary group if s is odd, while for s
even, all torsion is two primary and Qx(BO, X BO, f,) has the same rank as a
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free module on one generator of dimension 2s over the polynomial ring on generators

pi, 1 < 7 < 8/2, of dimension 43, and generators x;, j > 1, of dimension 4j.
Combining Lemmas 4 and 6, one then has:

ProrosiTioN 5. Q4* has no odd primary torsion, and Q%* ® Z[}] is iso-
morphic to the direct sum of Q% ® Z[31(= Z[}x:, ¢ > 0) and a polynomial
ring over Z[}] on generaiors ys;, 7 > 1 (where dim u, = n throughout), both
summands being ideals.

Proof. The ring structure in $4® given by the product of manifolds coin-
cides with the ring structure in ®ieo Q% (BOs— X BO, fsi) given by the
product of manifolds (with Whitney sum defining the normal structure). On
the spectral level, this is the homotopy product induced by the maps

T'® " ®CNATH @ (v ® ()
=TO)AT@'®C)ATG)ATH" ®C)
!
T ® (0 ®C) = TO™) ATG™ @ 0)
and this being compatible with T, the homomorphism
A O4F - @@= B (TBO,)
is a ring homomorphism, where the product is given by the maps
TBOs, N\ TBOy — TBO,ys .

In turn, one has the cofibrations

BO.+ > B0, B TBo,
with the maps p defining a ring homomorphism
Pyt @m0 Uil (BO,) = @m0 032, (TBO,)
where the product in the first term is induced by the Whitney sum maps
BO, X BOy — B0,y .

Tensoring with Z[}], N becomes an isomorphism and pg becomes epie, with
kernel given bv the image of the homomorphism

iy @m0 B, (BO,) = @022, (BO,)

induced by the maps ¢ : BO,.1 — BO, adding a trivial line bundle. It is,
of course, clear that @ =2, (BO,) ® Z[4] is the polynomial ring over
03° ® Z[&] = Z[3][24] on the classes u; = [pt, 1] e 2%° (BO;) (the class of the
trivial line bundle over a point) and wuye = [CP(25), £ e %7 (BOs), § > O,
given by the canonical complex line bundle over CP (27) thought of as a real
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2-plane bundle. It is clear that 7 is precisely multiplication by u, , and hence
@ &L, (TBO,) ® Z13] = Z[3lye; |j > 1]
where y4; = Py (24) and yujse = Py (Uajya), j > 0.%*
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