MULTIPLICATION ALTERATION BY TWO-COCYCLES

BY
Moss EISENBERG SWEEDLER!

0. Introduction

If U is an associative unitary algebra with a commutative subalgebra 4 and
c=2.0®b;®cied ® A ® A is an Amitsur 2-cocycle, then we can define
a new multiplication * on U by setting

0.1 uxv = Y, a;ubi;ve

forall w,ve U. The Amitsur 2-cocycle condition guarantees that U is associ-
ative and unitary with the * multiplication. If U was originally a central
separable (simple) algebra then U is still central separable under the new
multiplication. We show that the central separable algebra resulting from an
Amitsur 2-cocycle o is isomorphic to the Rosenberg Zelinsky central separable
algebra coming from the 2-cocycle o,

If K is an intermediate field (4 D K D k) we show how mapping 2-cocycles
inA ®, 4 ®; Ainto A ®x A ®x A corresponds to taking the centralizer of K
in central separable k algebras with maximal commutative subfield A. On the
way to these results we prove that if A is a finite purely inseparable field ex-
tension of k and U is an algebra containing A then U is isomorphic to 4 ®; A
a:; an A-bimodule if and only if U is a central separable k algebra of k-dimension
n.

By being careful about what we mean by a 2-cocycle we are able to obtain
an associative unitary algebra by means of 0.1 even when A is not a com-
mutative subalgebra of U. We prove that if U is a central separable n’-
dimensional k algebra and U is any n’-dimensional k-algebra then there is a 2-
cocycle in U ® U ® U making U isomorphic to U (via 0.1). Moreover we
show that if U is a central separable k algebra with simple subalgebra L which
has centralizer 4 then there is a 2-cocyclein 4 ® A ® A making U isomorphic
to U if and only if U contains a copy of L and is isomorphic to U as an L-
bimodule. If 4 is commutative and ¢ is a 2-cocyclein A ® A ® 4 thenoisan
Amitsur 2-cocycle if ¢ is invertible.

We define when two 2-cocyclesin 4 ® A ® A are cohomologous and show
that this is equivalent to the associated algebras being isomorphic by an iso-
morphism which is the identity on L. This gives a bijective correspondence
between a 2-cohomology set (not group) and equivalence classes of algebras.

1. Linear Algebra

Throughout this paper & is at least a commutative unitary ring (and some-
times a field). All k algebras are unitary. A subalgebra has the same unit
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as the over algebra. Unadorned ®, Hom and End mean ®; , Hom; and End;
respectively. We speak of a central separable & algebra in the sense of [8,
p- 330, footnote 9]. “Finite projective module” means ‘“finitely generated
projective module”. ®2% M means M ® 4 -+ ® 4 M (n-times).

Suppose U is a k algebra with subalgebras L and A, where A is in the cen-
tralizer of L in U. We consider U as a right L-module by

u-l=wul forueU,lelL.

Hom_. (U, U) denotes the set of right L-module morphisms from U to U.
Since 4 is in the centralizer of L in U there is a map

1.1 f:U® A— Hom_, (U, U), U ® a— fuga

where fuga (v) = wva foru,ve U,ae 4.
We say that (U, L, A) satisfies H1 if

0. A is the full centralizer of L in U,
1.2 1. fis a bijection,
2. A is a finite projective k-module.

We shall show in 1.6 that if k is a field and U a central separable k algebra, then
(U, k, U) satisfies H1.

1.3 Lemma. (a) If (U, k, U) and (U, L, A) satisfy H1 and ®" U has the
right L-module structure given by

('u/1® ce ®un)'lEu1® e ® Up ® (Unl)

then
@ U® A1 Hom 1 (® U, U),
U® @ U ® & fuig-Quaga
where
Ju1@-@unea @1 ® +++ ® vp) = UWV1UV2 *** UnVn @

8 a bijection.
(b) Since U is also a left L-module we can form U ®. U (where
ul ® v = u ® W) which is a right L-module by
u®v)l=u® @).
If (U, L, A) satisfies H1 then
U® @4 —— Hom_, (81U, U),
UG ® - ® tn— Jugue - @um
where
f:®a1®~-~®a,,(”1 ®---® vn) = UV1 A1 V20 ¢t Up Oy
18 @ bijection.
Proof. Since the proofs of (a) and (b) run parallel we work on both simul-
taneously and keep track in the margin.
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Given rings X, Y and modules Mx, x Ny, Oy (notation of [6]) there is a
natural correspondence

Hom_y (M ®x N, O) < Hom_x (M, Hom_y (N, 0)),
[6, p. 25, Prop. 5.2']. This gives natural correspondences
(&) Hom_. (®" U, U) <> Hom (U, Hom_, (®" U, U)),
(b) Hom_. (®; U, U) < Hom_; (U, Hom_, (®} U, U)).
By induction (taking f*~* and /" as identifications) the right hand sides are
equal to

(a) Hom (U, ®"'U ® 4),
(b) Hom L (U, U ® ®""A4),

where U ® ®" " 4 is a right L-module by
UWO®n® - @)l = W) ®u® - ® duy.

The hypothesis of (a) implies that ®"> U ® A is a finite projective k-module
and the hypothesis of (b) implies that ® "™ 4 is a finite projective k-module so
that the above terms are naturally equivalent to

(a) Hom (U,U) ® ®" U ® 4,
(b) Hom_. (U,U) ® ®" " A.

Under the hypothesis of (a) and (b) these are isomorphic to

@) U®U)® @ U ® A4,
b) U®A)® " A,

Checking all the correspondences shows that they give f* and f*, Q.E.D.

With the right and left L-module structures on U, U is an L-bimodule.
Welet Hom;r, (U, U) denote the set of simultaneously right and left L-module
morphisms from U to U. Since A is contained in the centralizer of L in U
we have the map

A®A—Y s Hom,, (U, U), a®b=— gug

where gogp(u) = aub.
We say that (U, L, A) satisfies H2 if

1. ¢ is a bijection,

14 o U, L, A) satisfies HL1.

1.5 LemMa. If (U, L, A) satisfies H2 and @ 1 U has the L-bimodule structure
given by
Lum® - @un) = (lr) @ Ue ® -+ ® Un,

WM® - U l=U ® + ® U1 ® (Unl),
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Then
®" 4 -4 Homy s (®LU, U),
Ww® - ® a'n_)g:o ® - ®a,
where

Gao ® * @ A (U1 ® - @ Up) = AULAL U * * * A Un An
18 a bijection.
Proof. Given rings X, Y, Z and modules xMy, yNz, vOz [notation of 6]
there is a natural correspondence
Homyx (M ®y N, O) < Homx_y (M, Hom_; (N, 0))

induced by the correspondence in [6, p. 28, Prop. 5.2’]. This gives the natural
correspondence

Hom; ; (®1 U, U) & Hom;,, (U, Hom_, (®27 U, U)).
By the previous lemma and taking /' as an identification we have that
Hom_. (®:7'U,U) = U ® ®" 4.
Plugging this in above gives
* Hom, . (U, U ® ®"'4),
where U ® ®” " A has the L-bimodule structure given by
I u®a® - @apa)m= (lum) ® a ® -+ ® aps.
Since ®" " 4 is a finite projective k-module (%) is naturally isomorphic to
Hom;_, (U, U) ® ®" " A.
Since (U, L, A) satisfies condition 1 of H2 the above is isomorphic to
A®A4)® " A.
Checking through the correspondences shows that they give ¢", Q.E.D.

1.6 ProrositioN. If k 4s a field, U a finite-dimensional central separable
k algebra and L a simple subalgebra of U with A the ceniralizer of L in U then
(U, L, A) satisfies H1 and H2.

Proof. By [1, p. 53, Theorem 13],

1.7 L is the centralizer of A in U and A is simple,
1.8 (dlmk A ) (dlmk L) = dimy U,
1.9 A and L have common center F which is a field and

A®rL-U, a® L—al

induces an algebra isomorphism between A ® » L and the centralizer of F in U.
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It can easily be shown using [1, p. 42, Theorem 14]

U ® Uper -—M——» End U, U ® v°P = fue,

where fug, (W) = www is an algebra isomorphism. (U°P is the opposite algebra
to U, i.e., for u, ve U uPv°? = (vu)°r.)

Consider ¥ ® L°r < U ® U° in the natural way. Then—via M—
Hom_;, (U, U) corresponds to the centralizer of ¥ ® Lerin U ® U°r. Now
k ® LeP is a simple subalgebra of the central separable k algebra U ® U°r and
U ® Ac°rlies in the centralizer. Counting dimensions and applying 1.8 shows
that U ® A°r is the full centralizer of k¥ ® L°r. In view of the correspondence
M we have that condition 1 of H1 is satisfied. Condition 0 is satisfied by
hypothesis and condition 2 is satisfied since we assume U is finite dimensional
over k.

Consider L ® L°» < U ® I°° in the natural way. Then—via MC
Hom; . (U, U) corresponds to the centralizer of L ® L°v in U ® ker.
As shown above U ® A°r is the centralizer of £ ® Le°P and similarly A @ Uer
is the centralizer of L ® k°* = L ® kin U ® U°r. Thus the centralizer of
L ® Leris (U® A°°) n (A ® U°r) which is equal to 4 ® A°r. In view of
the correspondence M we have that the first condition of H2 is satisfied. We
have already shown that the second condition is satisfied, Q.E.D.

1.10 PropositTioN. Suppose k is a field with extension field L, U is a k
algebra containing L and (U, L, A) satisfies H1. Then L is a finite field exten-
ston of k, U s a finite-dimensional central separable k algebra, A is a simple
k algebra with center L and (U, L, A) satisfies H2.

Proof. L is commutative implies that L lies in its centralizer A. Since A
is a ‘finite projective’ k-module, L must be finite dimensional.

The composite
111 U@ A» > U ® A —1 s Hom . (U, U), u ® a® — u ® a

is an algebra homomorphism. It is an algebra isomorphism since the left
map is bijective and the right map is bijective because (U, L, A) satisfies
H1. If U has infinite dimension over k then the cardinality of dim, U ® Aer
equals the cardinality of dim; U since A has finite k dimension. U must also
have infinite dimension over L so that the cardinality of dim; Hom_. (U, U) is
greater than the cardinality of dim; U. This contradicts the fact that 1.11 is
an isomorphism. Thus U is a finite-dimensional & algebra and Hom_, (U, U)
is a finite-dimensional central separable L algebra. Thus the isomorphism
1.11 implies that U is a central separable &k algebra and A°r (hence A) is a
simple k algebra with center L, since L lies in the center of A (hence A°r).
(U, L, A) satisfies H2 by 1.6, Q.E.D.

1.12 LemMma. Suppose A is a commutative k algebra. If (U, L, A) satisfies
H1 (H2) then so does (U ® A, L ® A, A ® A). If A is a faithful finite
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projective k-module and (U ® A, L ® A, A ® A) satisfies H1 (H2) then so
does (U, L, A).

Proof. 1If Bis ak algebra and M and N are left B-modules then
Homyz (M, N) ®: A — Homp (M, N ®; A),
f®a— (m—fim) ® a),

is an isomorphism when 4 is a finite projective k-module.

1.13

Suppose B, C, D and E are subalgebras of U and U is a left B ® C°P-module
by
®®c?)u=>buc forbeB,ceC,uel.

If B centralizes D and C centralizes E then we have the map

114 D@ E— Homagyew (U, U), d® ¢— (u— due).
If we “base extend” by A the map in 1.14 becomes

’

115 (D ®:4)®4 (B ®kA)-i—> Homsgnecerar (U @xA, U @1 A).

The left hand side in 1.15 is naturally isomorphicto D ® » E ®; A. For the
right hand side we have the sequence of natural isomorphisms

Hom sg,aeaccorner (U ®r 4, U @ 4)
= Hompg,corgpa (U @1 4, U @1 A) = Hompgyer (U, U @i A).
The map &’ in 1.15 corresponds to
D ®: E ®r A — Hompg,eor (U, U ®; 4),
d®e®a— (u—due ® a),

which factors
D@ E®:A -—M—)Homswncop U, U) @ A
b d H0m3®kcon (U, U ®r A )

(The right hand map in 1.16 is the map in 1.13 and is an isomorphism when A
is a finite projective k-module.)

Thus we have that b’ is bijective if & is bijective and 4 is a finite projective
k-module. Also, if A is a finite projective k-module and 4’ is bijective then
h ® I (in 1.16) is bijective. If A is also a faithful k-module then - must be
bijective.

The three interesting cases are

1.16

(1) B=L,C=UD=A,E =k,
(@) B=kC=LD=U,E =4,
(1) B=LC=LD=AE=A4A
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For Case I bijectivity of 1.14 is equivalent to (U, L, A) satisfying condition
O of H1 and bijectivity of 1.15 is equivalent to (U ® 4, L ® A, A ® A)
satisfying condition 0 of H1. Similarly Case II covers condition 1 of H1 and
Case III covers condition 1 of H2.

Finally A ®; A is a finite projective A-module when 4 is a finite projective
k-module, Q.E.D.

2. Constructions
Suppose U is a k algebra.

2.1 DEFINITION. o = > u; ® v; ® w; eU ® U ® U is called a
2-cocycle if

22 iUk ® v ® wivi ® wi = Di Ui ® viu; ® v; ® wiwi,
and there is an element e, ¢ U where

2.3 Ziuie,vi Quw;=1®1= Z,-ui ® Ve, W;.

If ¢ is a 2-cocycle and both e, , fr € U satisfy 2.3 then considering

E Ui € Vi fo W;
shows that e, = f,.

Suppose U is commutative. If ¢ is an Amitsur 2-cocyelein U ® U ® U
[8, p. 327] where o> = >, %; ® 5; ® Wie U ® U ® U then one easily checks
that ¢ is a 2-cocycle in the above sense with e, = 2 @;0;w;. Clearly, if o
is a 2-cocycle—in the above sense—which is invertible then ¢ is an Amitsur
2-cocycle.

If U is a flat k-module and A is a subalgebra of U which is a flat k-module
then the natural maps

ARARA-UR®ARA-UR®UBR®A—-URUBU
are injective and we take them for identifications.

2.4 DeriniTioN. We say that o is a 2-cocyclein U ® U ® A (respectively,
U®A®A,A®A®A)if Aisa subalgebra of U, both U and A are flat
k-modules, o is a 2-cocyclein U ® U ® U andoliesin U ® U ® A, (respec-
tively, U® A ® A, A ® A®A).

If ¢ is a 2-cocycle we can define a new k-algebra U’. As a set U’ is equal
to U. For an element u ¢ U we write 4" to indicate that we are considering
it as an element in U°. The multiplication in U’ is given by

2.5 wy = (O usuviow;)”

where u, v e U, 0 = D u: ® v; ® w; and the multiplication on the right hand
side takes place in U. Associativity follows from 2.2. The unit of U’
is eg by 2.3.
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Suppose o is a 2-cocyclein U ® U ® A. We define

26 -V U@ dn, U S uiun ® w,

One easily checks that N is an algebra homomorphism. N is injective since
the k-module morphism

U® A» T, U, U ® a®— (ue;a)’

has the property mN = I.
Suppose ¢ = >ui® v ® Wi, T = Er,-@ $;®tieU ® U® U are two
2-cocycles and ¢ = > ®yeU®U.

2.7 DEFINITION. o~* 7—read “o is cohomologous to = via ¢”—if

2.8 Zi,jxiuj ® v; ® wiy; = Zi,nhx,- ® y;8:x1 ® Yils
and
29 er = ziivieayi.

This relation ~ is not reflexive without further assumptions.
If ¢ ~% 7 we have the algebra homomorphism
2.10 U — U, uw = Oimiuys).
2.11 DEFINITION. A 2-cocycle ¢ = Dui® v, ® wieU ® U ® Uis
vertible with verse s = > 4; ® 3, ® W;e U ® U ® U if
212 D iithiu; ® 050 @ Wiw; = 1@ 1@ 1 = D ijuilly ® 7;0; ® will;.

If o is a vertible 2-cocyclein U ® U ® A with verse 6¢ U ® U ® A4 and
A is commutative then

213 N U ®A->U®A wW®a— Diuuw ® wia
is an algebra isomorphism with inverse
N U®A-U'®4, u®a— o (@ud) ® bia.

2.14 Example. Suppose A is a commutative k algebra which is a finite
projective k-module. Suppose V is a finite projective and faithful A-module.
We can consider V as a k-module and have the injective algebra representation
m:A — End V. Identify A4 with its image under =. If ¢ is a vertible
2-cocycle in End V ® End V ® A with versein End V ® End V' ® A then
as algebras

EndV)Y@®A=EndV ® A

by 2.13. If the unit mapping k¥ — A, N — X-1 is a split monomorphism then
(End V)’ is a central separable k algebra by [8, p. 330, Lemma 3.1].

2.15 Remark. Suppose p is a prime, k has characteristic p and A is a k
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algebra which is purely inseparable over k in the sense that for any a ¢ A there
is an n with ¢ ¢ K. Then for any 2-cocycle ce A ® A ® A there is a high
enough m with ¢*" ¢k ® k ® k. One easily checks that ¢ ® 1 ® 1is an
inverse to ¢”” so that ¢ is invertible, i.e. ¢ is an Amitsur 2-cocycle.
Suppose ¢ is a 2-cocycle in U ® U ® A and L is a subalgebra of U which
centralizes A. The map
H

216 L—=5U, 1= (el
is easily checked to be an algebra homomorphism. H is injective since
Ziui ® vieslw; =1 ® 1

ifo = D u; ® v;: ® w;, le L. The algebra homomorphism H gives U° a
right, left and b¢ L-module structure in the obvious fashion.

2.17 Lemma. (&) Ifoisin U ® U ® A (as above) then
U—-U’, u—u

18 a right L-module tsomorphism.
®) IfaisinU ® A ® A then
U—-U’, u—u’
s an L-bimodule isomorphism.
Proof. The map is bijective since U’ equals U as a set. If ueU, leL,

u’ (e, l)a = (Ziu; UY; € lwi)ﬂ

which is equal to
Qi (wiuvieewi)l)°
since L centralizes A. By 2.3 the above equals
(ul)’.

A similar calculation shows that the map is also a left L-module homomorphism
ifeeU ® A ® A, QE.D.

If A centralizes L and A < L then A is commutative and we have a copy

of A in U’ via
A—L -——E-—» U.

2.18 LemmA. Suppose A and L are subalgebras of U where A centralizes L
and A C L. Furthermore, suppose A s a faithful k-module and o is a vertible
2-cocycle in U ® A ® A. Then (U, L, A) satisfies H1 (H2) of and only if
(U°, H(L), H(A)) does.

Proof. 1If either (U, L, A) or (U°, H(L), H(A)) satisfies H1 or H2 then
A (or H (A)) is a finite projective k-module. Thus we may assume that 4 is a
faithful finite projective k-module. By 1.12, (U, L, A) satisfies H1 (H2) if
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and only if (U ® 4,L ® A, A ® A) does. An easy calculation shows that
the isomorphism & in 2.13 gives rise to the commutative diagram

U'® A N U® A
N
H@I\ //@I
L®A.

Thus (U ® A, L ® A, A ® A) satisfies H1 (H2) if and only if
U ® A,H(L)® A,H(A) ® A)

does. By 1.12 this is equivalent to (U°, H(L), H(A)) satisfying H1 (H2),
Q.E.D.

3. Characterizations of U°

In the sequel U and A are always assumed to be flat as k-modules.
We define algebra homomorphisms

e:U® Ar > U ® A® ® Aor, U®a®—>u®1® ar
e:U® A® - U ® A® ® A°r, U®a®—>u®a*®1
3.1 ProrosITION. Suppose o s a 2-cocycle in U ® A ® A. If
o= 2 u ® v; ® w

let " denote D u; ® v3® ® win U ® A® ® A, Then N (see 2.6) induces
an isomorphism between U’ and

V={zeU ® A%|d’(z) = e1(z)d’}

Proof. We have shown at 2.6 that N is injective so it remains to prove that
the image is precisely V. Supposez = D #; ® ai® ¢ V. We shall show that
3.2 =N zie a:).

Since x e V,

Zi,j s 5 @ (a; ;)P ® wi® = 0'062 @)=e (:v)cr° = ZM Tiu; ® v‘}" ® (w;a;)°r.
Thus
N izmiesa:)” = 2iiUiTiesa;0; ® w
3.3 o
= DT e v; ® (Wia)® = Dz ® af® = 2.

We have shown that V € Im N. The first cocycle condition 2.2 implies
that V O Im N, Q.E.D.

In [8, p. 339, Theorem 2] Rosenberg and Zelinsky give a correspondence
from Amitsur 2-cocycles to central separable algebras. If A is a commutative
algebra over k which is a finite projective k-module and where the unit mapping
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k — A is a split monomorphism then by example 2.14, (End A4 ) is a central
separable k algebra, if ¢ is an Amitsur 2-cocyclein A ® 4 ® A. Since 4 is
commutative A = A°P and Proposition 3.1 shows that (End A )" is isomorphic
to a subalgebra V of (End A) ® A. Since A is a finite projective k-module
the two maps

(End A) ® A — Endigs (4 ® 4),

f®a— b®c—f0)® ac)
(EndA) ®A®A —->End1®.4®4 (A ®A ®A),

f®a®b— (c®d®e—f(c) ® ad ® be)

are A and A ® A algebra isomorphisms respectively. (See [8] for the nota-
tion End;gs and Endigags .) Moreover with these isomorphisms 7, and #s
[8, p. 339, Theorem 2] correspond to our e; and e, respectively. Thus if o is
an Amatsur 2-cocycle the subalgebra V of (End 4) ® A is isomorphic to
A @) [8, p. 339, Theorem 2] with the isomorphism induced by 3.4.

3.5 TueorEM. (a) Assume (U, k, U) and (U, L, A) satisfy H1. Let
U be a k algebra and b : L — U an algebra homomorphism, (giving U a right
L-module structure.) If ®: U — U is a right L-module isomorphism then there
is a unique 2-cocycle c e U ® U ® A and algebra isomorphism ¥ : U° — U
where the following diagram is commutative:

L
/
Yo

U

(b) Assume (U, L, A) satisfies H2. Let U be a k algebra and h: L — U
an algebra homomorphism (giving U and L-bimodule structure.) If®:U — U
s an L-bimodule isomorphism then there is a unique 2-cocyclece A ® A ® A
(with e, € A) and algebra isomorphism ¥ : U° — U such that 3.6 is commuta-
twe. In particular h is injective.

(¢) Assume (U, L, A) satisfies H2, A C L (so that A ts commutative) and
h:L— Uisan injective algebra homomorphism giving U an L-bimodule struc-
ture. If ®:U — U is an L-bimodule isomorphism and (U, h(L), h(4))
satisfies H2 then there is a unique tnvertible 2-cocycle ce A ® A ® A (with
e. € A) and an algebra isomorphism ¥ : U° — U such that 3.6 is commutative.

Proof. Since ® : U — U is a right L-module isomorphism it is a k-module
isomorphism and we have defined

= Q":®"U—e"U.

34

3.6
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Similarly for ' : U — U, the right L-module isomorphism inverse to ®, we
have defined

" =% :0"U—e"U.
If ®"U and ®"U have the right L-module structure given by
W ® - @uUa)l=U ® @ U1 ® (Unl)
I ® OUn)l = ® - ® Un1 ® (fhn-l)
then ®" is a right L-module isomorphism with inverse & ".

We use @ to give U a new algebra structure by “pulling back” the algebra
structure of U. Let C be the composite

2 o e . —1
37 Ue U ® Te 0 multiplication i ® .U
and let
3.8 e =& (1g).

Then C is an associative multiplication with uniteand ® : U —>~(7 is an algebra,
isomorphism between U with this new algebra structure and U.

All the maps in the composite 3.7 are right L-module morphisms so that C is.
Thus by 1.3 there is a unique element ¢ = D ® ;@ wie U@ U ® A
where

Cu®v) = D susuvi vw;
forallu ® veU ® U. ThemapC(C ® I): U ® U ® U — U is a right
L-module homomorphism. However,
UeoeU®U—-U, T® Y ® 2—> D Uity TV YWj 05 2W;
is precisely C(C ® I), so that Zi,j uit; ® v; ® w;v; ® w; is the unique ele-
mentin U ® U ® U ® A corresponding to C(C ® I), per 1.3. Similarly
Doiits ® viu; ® v; ® wiwi

is the unique element corresponding to C (I ® C). By associativity of C it
follows that o satisfies 2.2.
Since e is the unit for C the map

U—-U, u—-Cu®e)
is the identity. This map is precisely
U—*U, T —> Ziuixv;ewi.
Thus Y u; ® v;ew; is the unique element in U ® U corresponding to the
identity, per 1.3. (Here we are using that (U, k, U) satisfies H1 and using
U, k, U) for (U, L, A)in 1.3). But 1 ® 1 corresponds to the identity so

that 2 u; ® v;ew; = 1 ® 1. Similarly using that C (¢ ® u) = u we have that
usev; ® w; = 1 ® 1. Thus o satisfies 2.3 and ¢ is a 2-cocycle.
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If
04 \I, r T o
U — U, u — d(u)
then
0 ¥ i
BN %
N
AN /
U u

is commutative and ¥ is the unique map U° — U making the diagram com-
mutative. ¥ is an algebra isomorphism by the definition of C and ¢. Since
o is uniquely determined by C it is the unique 2-cocycle making ¥ an algebra
homomorphism.

By definition of the right L-module structure on 7 we have that

RQ) =
Thus
1) = 7 (1y0) = 7 (1y)l = el.

This gives commutativity of
h/ \H
<——— U
and we have proved (a).
Now we prove (b). We define

=®1®:;U—®10.

Note we are tensoring over L. @" is well defined since ® is an L-bimodule
isomorphism. We have

T

=% :®;0—>®LU.
If ®2 U and ®} U have the L-bimodule structure given by
I ® - @up)m= () U ® *+* ® U1 ® (Upm)
(i ® - @) m= () @ h® ® g ® (fhm),

then ®" is an L-bimodule isomorphism with inverse &
As in the proof of part (a) we give U a new algebra structure by letting
C be the composite

2 o e . —1
U®,U & 0®,0 multiplication o ® U

and let
e=&"(y)
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Clearly, l1y = 1y lforallle L. Since ®isan L-bimodule isomorphism we have
that le = el for alll ¢ L. This implies that e is in A4, the centralizer of L.

The rest of the proof of part (b) is analogous to the proof of part (a) except
that we rely on Lemma 1.5 instead of Lemma 1.3.

Now we prove part (¢). By part (b) we only need to show that ¢ is invert-
ible. The correspondence

39 ®"A—>Hom, (®:T,T), a® - ® au— fag o

where
fa0®...®an(ﬁ1 ® e ® ﬁ”) = h(ao)ﬁl h(al)ﬁz e ﬁm h(an)

is bijective by 1.5 since (T, & (L), h(A)) satisfies H2 and % is injective by part
(b).
The composite D

—2

Te,.0-2 sveU LIy

U U
is an L-bimodule morphism and so there is a unique element

7 U !
o = Zi%@vs@’wi

multiplication

ind ® A ® A where
D@ ® b)) = i h(us)ith (v:)oh(w:)

forallt ® 9e U ®, U.
In view of the fact that ¥ is an algebra isomorphism and 3.6 is commutative
we have that for u, v e U

V((uw)’) = d(w) = D(@W) ®.W))
= D00 h(ui)®w)h ()@ ()b (wi)

= v (i H (ui yuH (0:)V° (wi))
s0 that
(uo)” = > H (ui W’H (vi)0"H (wi)

where the indicated multiplications on the right hand side taken place in U°.
Sinceced ® A ® A we can use (2.17, b) to simplify the right hand side and
obtain (recall A C L)

)’ = D (ui uvi)’ (owi)’.
Applying the multiplication formula 2.5 we obtain
Wo)” = iy (a5 ui uvy g vwg w;)°
for all u, v e V. Then by 1.5 we have that
Siiuiu @i ®wiw=1010®1cA®A®A

and ¢’ = ¢, QE.D.
Note that in the proof of part (b) we showed that e ¢ A by considering e as
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& (1). Actually if o is a 2-cocycle in U ® A ® U then e lies in A since for
alll e L,

el = Ei Uz elvi ew; = Z,‘ Uz €V; lew; = le

where the first and third equalities follow from (2.3) and the second from the
fact that A4 is the centralizer of L. Thus e centralizes L so lies in A.

3.10 CororrARY. Assume (U, L, A) satisfies H2. IfoeU ® A ® Aisa
2-cocycle then actuallyc e A ® A ® Aande, e A.

Proof. We let
h:L—>U, I—>(@)’; &:U->U, u—u

By 2.17 (b), this is an L-bimodule isomorphism. By the theorem, part (b),

there is a unique 2-cocyclere A ® A ® A with e, ¢ A and algebra isomorphism
¥ : U — U’ where

L
hS N\H

// \\.

U° L4 U w
N / /"
w,

U
u

is commutative. The commutativity of the bottom triangle implies that ¥ is
the map

U—-U, u-—>u.
Since ¥ is an algebra isomorphism it follows from 1.3 (b) that ¢ = =, Q.E.D.

3.11 CoroLrARY. Suppose A and L are subalgebras of U where A centralizes
L, A C L, A is a faithful k-module and o 7s a 2-cocyclein A ® A ® A. Then if
any two of the following conditions hold so does the third :

(a) (U, L, A) satisfies H2,

(b) (U°, H(L), H(A)) satisfies H2,

(¢) o 18 tnvertible, i.e. o is an Amitsur 2-cocycle.

Proof. This is just a combination of 2.18 and 3.5(¢), Q.E.D.

4, Coboundaries

Recall the definition 2.7 for two 2-cocycles to be cohomologous. If ¢, 7 are
2-cocyclesin U ® U ® A we have the algebra homomorphisms

H :L->U, - (l); H:L—>U, l— (¢l)

as at 2.16. Suppose 0 ~°* 7 and ¢ ¢ U ® A. There is the algebra homo-
morphism R? : U” — U" as defined at 2.10. One easily checks that with the
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additional assumption that ¢ ¢ U ® A we have commutativity of
L\
7N
4.1 y «: \\
U —F& ur

Weecallg = D iz ® yie U ® U vertible if there is
p=250®GeU®U

where
4.2 DB ®yiGi=10® 1= 20,28 ®Jjyi.

(Of course this is equivalent to 2, &; ® §°P being the inverse to ) 2; ® .°P.)
If ¢ is vertible then R? : U° — U’ is an algebra isomorphism with inverse

R?.:U —-U, W= O & ugi)’.

4.3 Taeorem. (a) Assume (U, L, A) and (U, k, U) satisfy H1 and o, 7 are
two 2-cocycles in U ® U ® A. Ifr : U’ — U 4s an algebra homomorphism
where

L
44 /
r

Ue—--—7-—-U

s commutative then there is a unique element o e U ® A wheres ~* v andr = R®.
Also, r is an algebra isomorphism if and only if ¢ is vertible. In this case if o is
the verse, then v ~% g,

(b) Assume (U, L, A) satisfies H2 and o, 7 are two 2-cocyclesin A ® A ® A.
Ifr : U — U’ is an algebra homomorphism where 4.4 s commutative then there is
a unique element o e A ® A whereo ~°randr = R®. Also, r is an algebra iso-
morphism if and only if ¢ is vertible. In this case if & is the verse then r ~% g,

(¢) Assume (U, L, A) satisfies H2, A < L and o, 7 are two invertible 2-
cocyclesin A ® A ® A. Ifr: U — U’ is an algebra homomorphism where 4.4
18 commutaltive then there is a unique element o e A ® A wheres ~° randr = R°.
Moreover, r ts an algebra isomorphism and ¢ s vertible, which is the usual notion
of nvertibility since A is commutative. If & is the tnwerse then v ~% .

Proof. rinduces 7 : U — U where

r
WU e——U v

I I

u U e—U u

IR
I
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iscommutative. By 3.4 (a) the vertical maps are right L-module isomorphisms
and by the commutativity of 4.4, r is a right L-module morphism. Thus
e Hom_; (U, U) and since (U, L, A) satisfies H1 there is a unique element
¢ = Zm@ yie U ® A where

Flu) = Di @i uys
for allu e U. Thus

4.5 r@’) = Qi i uy:)
for all u’ e U°.
Since r is an algebra homomorphism we have that for all u, v € U,

(s @ ug uv; vw; i) = r (@) = r@)r")

4.6

= (i 75 (@5 uy;)si(@q vy )ti)"
and
4.7 e = lgr = r(lye) = Di i yi,

where ¢ = Z.-ui ® v; ® w;and 7 = Eri ® 8 ® t;.
By 4.6 and 1.3(a),

DT ® 0 ® Wiy = D Ti % ® Yisi%y ® Yyt

This and 4.7 show that ¢ ~° 7. Equation 4.5 shows that » = R®.
The remarks just before the theorem plus the fact » = R® imply that r is an

isomorphism if ¢ is vertible. If r is an algebra isomorphism with inverse +~*
then

L
15/ NH*
N \
7;—-1
U U’
is commutative and by what we have just shown there is a unique element
=25 ®FeU®A

where r ~® g and v = R?. Thenforallue U

(205 & i uy; )" = 177 () =
and
Qi i & ugyys) = m (W) = o
Thus, since (U, L, A) satisfies H1 we have that
2T ®yfi=101 =228 ® 7y
and ¢ is vertible.

The proof of part (b) is analogous to the proof of part (a). We leave the
details to the reader.
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It follows from part (b) that under the hypotheses of part (¢) there is an
element ¢ ¢ A ® A where ¢ ~* 7 and r = R®. If we show that ¢ has inverse
& then r is an algebra isomorphism with inverse R* and r ~@ o by part (b).

Say ¢ = Ziui ®v; ® wy, T = Zi"'i ® s; ® tiand ¢ = Zixi ® y:.
Since ¢ ~? 7 we have from 2.8 that

Doid Tt © 0 ® WiYs = DigaTi% ® Yy 8i%g ® Yo i
This and the commutativity of 4 imply
4.8 D YU W @ v = Diga B Yo T bi ® Yy Ty S
By hypothesis, ¢ and 7 are invertible so that
a=2, uw®v, b=2,rit:®s, ¢ and e
are all invertible. Also,

ere = Zixiyi

by 2.9. Thus 4.8 implies that

(e,.—le, ® l)ba—l (Z Ye® 2) e A®A
is the inverse to ¢, Q.E.D.

5. Formalities

‘We can now apply our theorems to show what is classified by the 2-cohomol-
ogy.

5.1 Case A. Assume (U, L, 4) and (U, k, U) satisfy Hl. Consider pairs
(U, 1) where U is a k algebra and & : L — U is an algebra homomorphlsm
making U isomorphic to U as a right L-module. Two pairs (U, h) and
(T, 1) are equivalent if there is an algebra isomorphism r : T — U’ where
rh = k.

By 3.5(a) and 4.3 (a) the equivalence classes of such pairs are in bijective
correspondence with the equivalence classes of 2-cocycles in U @ U ® A
where two 2-cocycles are considered equivalent if they are cohomologous via a
vertible element of U ® A (with versein U ® 4).

5.2 Case B. Assume (U, L, A) satisfies H2. Consider pairs (U, b) where
U is a k algebra and h : L — U is an algebra homomorphism making U iso-
morphic to U as an L-bimodule. Two pairs (U k) and (07, #’) are equiva-
lent if there is an algebra isomorphism » : T — U’ where rh = &’

By 3.5(b) and 4.3 (b) the equivalence classes of such pairs are in bijective
correspondence with the equivalence classes of 2-cocyclesin A ® A ® A where
two 2-cocycles are considered equivalent if they are cohomologous via a vertible
elementin 4 ® A.

5.3 CasE C. Assume (U, L, A) satisfies H2, A C L (so that A is com-
mutative) and A is a faithful k-module. Consider pairs (U, &) where U is a
k algebra and h : L — U is an algebra homomorphism making (&7, h (L), h(4))
satisfy H2 and making U isomorphic to U as an L-bimodule. Two pairs
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(T, h) and (0", 1’) are equivalent if there is an algebra isomorphismr : T — 0’
where rh = &',

By 2.18, 3.5(c) and 4.3(c) the equivalence classes of such pairs are in bi-
jective correspondence with the second Amitsur cohomology group of A over k.

6. Applications

6.1 THEOREM. Assume k is a field and U is an n’-dimensional (n* < )
central separable k algebra. If U is any n”-climensional k algebra then there is a
2-cocyclec e U @ U ® U where e, = 1 and U = U’ as an algebra.

Proof. By 1.6 (U,k,U)satisfies Hl. LetL = kand A : L — U the “unit”
map. Since U and U have the same dimension they are isomorphic right L-
modules and we can choose such an isomorphism & : U — U which has the
further property that ®(1y) = 1y. By Theorem 3.5(a) there is a 2-cocycle
ceU ® U® U where U & U’ as an algebra. From 3.8 in the proof of 3.5
we see that ¢, = 1, Q.E.D.

6.2 THEOREM. Assume k s a field and L a finite n-dimensional extension field
of k. Let L ® L have the L-bimodule structure given by

Ilm®n)l= (m) ® @l).

Let U be a k algebra with subalgebra L which gives U and L-bimodule structure.
If U is an n’-dimensional central separable & algebra then U is isomorphic to
L ® L as an L-bimodule. If k has positive characteristic and L is a purely in-
separable extension of k, then U is an n’-dimensional central separable k algebra if
U 4s isomorphic to L ® L as an L-bimodule.

Proof. Suppose that U is an n’-dimensional central separable k algebra.
U is a projective left L-module _(since L is a field ) and v is a projective left
Ler = L-module so that T ®; T°r is a projective left L ® L-module.

U@ Ur—End U, @ ® 10— frg;

where figs (W) = @b is an algebra isomorphism so that—by the induced ac-
tion—U is a projective faithful 7 ® Uer-module. Thus considering U as an
L ® L-module by

l®m)d = ldm

we have that U is a projective faithful #n*-dimensional L ® L-module. (Here
we have used “projective over projective is projective.”)

L ® L is a commutative Artinian algebra so that as an algebra L ® L =
®,”, R; where each R; is a primary hence local algebra. Following the de-
composition of L ® L we have that

U=~ U

where each U is a projective R;-module. Since R, is local each U.is a free
R:-module and so dim T; = n; dim R;. Since U is a faithful L ® L-module
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no U, is equal to zero. Thus for each ¢ = 1, --+, m, n; > 1. With the
equalities

SrunidimRi =dim U = dimL ® L = ) dim R;
we have that each n; = 1 and
U~ ®/R;=L®L

as an L ® L-module. Thus U is isomorphic to L ® L as an L-biomodule.

Conversely suppose =~ L ® L as an L-bimodule. As in 2.14 we consider
L as a subalgebra of U = End L. Since U is an n’-dimensiona] central separ-
able k algebra we have that U = L ® L as an L-bimodule by what we have
already shown. Thus U = U as an L-bimodule. By 1.6, 2.15 and 3.5 (b)
there is an invertible 2-cocycle ¢ in L ® L ® L where U = U’ as an algebra.
By 2.14, U hence U is an n’-dimensional central separable k algebra, Q.E.D.

We first announced Theorem 6.2 without the hypothesis of L being purely
inseparable over k; whereupon Chase gave a direct proof of the theorem with
the hypothesis of pure inseparability and then Waterhouse gave an example
showing that the hypothesis is needed. The example of Waterhouse shows
that there is a 2-cocycle in C ® z C ® » C which is not invertible. (C is the
complexes and R the reals.)

6.3 LEmmaA. Assume that L is an n-dimensional field extension of the field k,
U and U’ are n’-dimensional central separable k algebras and h : L — U,
W : L — U are algebra homomorphisms. Then U = U’ as algebras if and only
if there is an algebra isomorphism r : U — U’ where rh = 1.

Proof. This follows immediately from [5, p. 110, Theorem of Skolem-
Noether].

If K is an intermediate field L D K O k there is a natural map
6.4 X:L®L®L“')L®KL®KL

which maps Amitsur 2-cocycles for L over k to Amitsur 2-cocycles for L over K.
The collection of maps of the form

®"L— ®xL
induces a homomorphism from the Amitsur cohomology of L over k to the
Amitsur cohomology of L over K.

If U is a central separable k algebra with maximal subfield L then by 1.7
and 1.9 the centralizer of K in U is a central separable K algebra. Let us de-
note the centralizer of K in U by £(U). If [L:K] = ny and [K:k] = n, then
[L:k] = nmyne and dimy U = nf n3. By 1.8, dimy £(U) = nf np so that
dimg £(U) = n}. This implies that L is a maximal subfield of & (U).

We now are in a position to prove how x and ¢ correspond.

Consider two central separable k algebras with maximal subfield L equiva-
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lent if they are isomorphic as k algebras. Let @(L, k) be the equivalence
classes of the central separable k algebras with maximal subfield L. Let U be
End L so that (U, L, L) satisfies H2, By 1.6, 1.10, 6.3 and 6.2 the equiva-
lence classes of pairs in 5.3 correspond to the “elements” of @(L, k). And by
5.3 we have a bijective correspondence with the second Amitsur cohomology
group of L over k. Explicitly, this correspondence is
[o] & [U°]

where [ ] denotes “equivalence class” and o is an Amitsur 2-cocycle.

Recall H : L — U’ is given by I — (e, 1) (3.3).

In U = End L we have Endg L whichisin fact § (U). Forxze¢Endg L, A e K,

HM\)2" = (A\z) = (@\)" = zH (),
the first and third equality follow from 2.17(b). Thus
(Endg L)’ = {2° ¢ (End L)’ | 2 ¢ Endg L}

is contained in £ ((End L)°). Counting K dimension shows that (Endz L)’
is exactly £((End L)°). Clearly the (sub) algebra structure induced on
(Endg L) is the same as if we had taken

x(©@)eL ®x L ®x L

and formed (Endg L)*, by 2.5. Thus we have the commutative diagram

HY(L, k) > (L, k)
(o] [U°]
" 1 |
I
[x(a)] Ewnl .
HY(L,K) < e(L, K)

where H? (L, —) denotes the second Amitsur cohomology group of L over —,
and ¢ is an Amitsur 2-cocyclein L ® L ® L.
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