
EUCLIDEAN AND NON-EUCLIDEAN NORMS IN A PLANE

BY

Introduction. Let L denote a 2-dimensional linear space. If f is any norm
on L, K (f) denotes the smallest number r > 0 such that for some Euclidean
norm g dominated by f, the norm r.g dominates f. Note that K (f) 1 or
K (f) > 1 according as f is Euclidean or not. The following are the main
results in this paper: (1) that

g(f) sup {[(/(ax + y/a) - /(bx y/b))/(a -5 1/a -5 b + 1/b)]1/:
a,b > 0,f(x) =f(y) 1};

(2) a theorem which shows how to construct all norms f with K (f) fixed; (3)
some improvements on known conditions for inner product spaces with the
change that they are required to hold only locally or in the limit.

Notation and preliminaries. For any linearly independent x and y in L,
C (x, y) denotes the set {ax + by: a, b

_
0} and W (x, y) denotes the set

{ax + by: ab

_
0}. We call a quadruple of points (x, y, x’, y’) interlocking

if the points are pairwise linearly independent, C (y’, y) :D C (x, y) D C (x’, y),
and the unit sphere of some norm contains them. If f is any functional on L
define S (]) and U (f) to be f-1 (1) and f-1 ([0, 1] ) respectively. Define a sub-
norm to be any restriction f of a norm on L such that dom f is closed,
R.dom f dom f, and there exists an interlocking quadruple of points of
S (f). Call a functional f on L a Euclidean pre-norm if either f is a Euclidean
norm orf g for some g 0 in La. Iffis any subnorm, EI (EI) denotes the
set of all Euclidean pre-norms dominating (dominated by) f over dom f,
and if g is in E] of E, d(f, g) denotes

sup g (x), 1/g (x) x e S (f) }.

If N is E] or E], d (f, N) denotes infg,N d (f, g). Note that the definition of
K (f) can be extended to subnorms by an obvious modification.

If w (x, y, x’, y’) is any interlocking quadruple, define

k(w) [(ab -5 cd)/(cd( + 53) -5 ab( -5 d))]1,
where x’ ax + by and y’ cx dy. Thus (a, b, c, d > 0). We list with-
out proof the following four properties of any interlocking quadruple
w (x, y, x’, y’):

(P1) There exists only one ordered pair (r, C) such that r > 0, C S (f)
for some Euclidean pre-norm f, C contains x’ and y’, and r. C contains x and y.

r
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(Pa) If f is a subnorm, x, y, x’, y’ e S (f),

x’ (ax W y/a)/f(ax + y/a), y’ (bx y/b /f(bx y/b),

hen

] (w) (f (ax + y/a) - f (bx y/b) )/(a -$- 1/a + b + 1/b

(P4) The quadruple w’ (x’, y’, x, y) is also interlocking and

THEOREM 1. If f is a subnorm, then
(a) Es and E have unique nearest elements g and h respectively to f.
(b) d(f,E) d(f,E) g(f) andg g(f)h.
(c) Each of the sets S (f r S (g and S (f n S (h ) contains two linearly inde-

pendent points and if W(x, y) contains one of these sets, it intersects the other.
(d) There is an interlocking quadruple w (x, y, x’, y’) such that x,

y e S(f) S(h), x’, y’ e S(f) S(g).
(e) K (f) k (w) sup,r k (v), where V is the set of all interlocking

quadruples of points of S (f).
(f) K(f) sup [(f(ax + y/a) + f:(bx y/b))/(a + 1/a + 5 + 1/b)]1/

a, b > O, f(x f (y 1, ax + y/a, bx y/b e dom f}

Proof. There is some Euclidean pre-norm h which is the pointwise limit of a
sequence of Euclidean norms in E] whose distances fromf converge to d (f, E),
and thus d (f, Er) d (f, h). If h is not a norm, then S (h) a u a for some
line a not containing 0. Suppose that either S (f) n S (h) does not contain two
linearly independent points, or that for some x, y, W(x, y) contains S (f) n S (h)
but contains no point z of S(f) such that d(f, E) lib(z). In either case,
there exist some two points x and y of S (h) such that S (f) S (h) is interior
to W (x, y) and such that

sup ll/h(p) p e S(f) W(x, y)} < d(f, E/).
There is some Euclidean norm/ such that/ (x) / (y) 1, (x y) <
h (x -t- y), and which is close enough to h to insure that

sup {1/(p) p e S(f) W(x, y)} < d(f, E) and U(/c) U(f).

Thus ] e E/ and d (f,/) < sup 1/h (p) p e S (f)} d (f, E/), a contradiction.
Therefore S(f) S(h) contains two linearly independent points and if
W(x, y) contains S (f) n S (h), then it contains a point z of S (f) such that
d(f, E

Suppose that in E there is a Euclidean pre-norm h such that d (f, Er)
d(f, ). Let m (h - k)1. Note thatm eE, d(f, m) d(f, E), andre
is a norm even though h and/or/c may not be. There is some point x of
S (m) dom f such that d (f, m) f(x). We have that h (x) >_- 1 because
](x)/h (x) _-< d (f, h) d (f, m) f(x). A similar argument shows that
/c(x) >= 1. Butm(x) 1= (h(x)-]c(x))/2,soh(x) =k(x) 1. There
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is some point y where S (m) touches S (f), but y +/-x because d(f, m)
f(x) 1. It follows that S (h) n S (k) +/-x, +/-y}. There is some Euclidean
norm n such that n(y) re(y) 1, n(x - y) m(x - y), n(x) > m(x),
and which is close enough to m to insure that n e E and d (f, n) < d (f, h).
Since this is a contradiction, h is the unique nearest member of Er to f. Now
define g d(f, h)h. It is easily checked that g e E/, that d(f, g) d (f, h),.
and that g is the unique nearest member of E] to f. This completes parts (a)
and (b).
With slight modification, the argument used to show S (f) n S (h) has two

linearly independent points will also work for S (f) S (g). It has been shown
that if W(x, y) contains S (f) n S (h), then it contains a point z of S (2") such that
d (f, h) 1/h (z), and this implies that z S (g). A similar argument shows
that if W(x, y) contains S (f) n S (g), then it intersects S (f) S (h). This com-
pletes (c).

Part (d) is obvious iff is Euclidean, so supposef is not. There exist linearly
independent points x and y* of S (f) n S (h) such that W (x, y* S (f) S (h).
By (c) and the symmetry of S (f) n S (h), C (x, y*) intersects S (f) S (g).
There is some point y of S (f) n S (h) n C (x, y*) such that C (x, y) contains
some point x’ of S (f) S (g) but such that if z is any point of S (f) S (h)
interior to C(x, y), then C(x, z) contains no point of S (f) n S (g). Suppose
that W (x, y) S (f) n S (g). Then C (x, y) contains some two linearly inde-
pendent points zl and z2 of S (f) n S (g) such that W (zl, z.) S (f) S (g).
There is a point z of S (f) S (h) in C (z, z). Thus z is interior to C (x, y)
and C (x, z) contains either z or z, so it intersects S (f) n S (g), a contradiction.
Therefore, W (x, y) does not contain S (f) n S (g), and this implies that there
is some point y’ of S (f) S (g) not in C (x, y) and such that C (y’, y) C (x, y).
The points x, y, x’, y’ have the required properties. This completes (d).

According to property (P) of interlocking quadruples, there exists only one
pair (r, C) such that r > 0, C S (f) for some Euclidean pre-norm f, X’, y’ e C,
and x, y e r.C. By property (P), r k (w), where w (x, y, x’, y’). The
pair (K (f), S (f)) has these properties of the pair (r, C), so ](w) K (f).
Suppose the quadruple u (p, q, p’, q’) is in V. Let m be the subnorm such
that S (m) -4-p, .+-q, +/-p’, -+-q’}. Since m is a restriction off, K (m) =< K (f).
Just as it has been shown that K (f) /(w), it may be proved that
K(m) k(u). Thusk(u) K(m) <- K(f) k(w)andk(w) sup,vl(v).
This completes (e). Part (f)follows from (d)and property (Pa).
The following corollary shows how to construct all the subnorms f with a

fixed K (f). (For any f, 1 <- K (f) -<_ 2/, as may be checked by finding the
maximum of the expression in part (f) of Theorem 1.) This corollary is
stated without proof since it is a straightforward consequence of Theorem 1
and the four properties of interlocking quadruples.

COROLLARY. Suppose 1 < r <__ 2ll. Let C be some ellipse in L with center O.
Let W be the set of all subnormsf such that: (a) S (f) c [1, r]C and (b) there exists
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an interlocking quadruple (x, y, x’, yr) of points of S (f) such that x, y e rC and
x’, y C. Finally, let W’ denote the set ofall subnormsf’ such thatS (f’ T (S (f
for some reversible linear T and some f in W. Then W’ is the set of all subnorms
f such that K (f) r.

Suppose that is one of the relations -< and _. Say that a subnormf has
property (D, ) provided that if (x, y, x, y) is any interlocking quadruple
of points of S (f), then there exists an interlocking quadruple w (x, y, xp’, y"
of points of S (f) such that k (w) 1. M.M. Day proves in [2] that every
norm with property (D, -) is Euclidean. Calling a subnorm f Euclidean
whenever K (f) 1, we prove:

THEOREM 2. Every subnorm with property (D, ) is Euclidean.

Proof. Letf be a subnorm with proper;y (D, -). Suppose f is not Euclid-
ean. Let g and h denote the nearest members to f of E] and E respectively.
Using part (d) of Theorem 1 and that S(f), S(g), and S (h) are closed, there
exists an interlocking quadruple (p, q, p, q’) such that

C(p,q) nS(f)nS(h) {p,q} and C(p’,q’)S(f),S(g) {p’,q’}.

If w (p, q, x, y) is an interlocking quadruple of points of S(f), then
k (w) > 1, and if w’ (p, q, x, y) is an interlocking quadruple of points of
S (f), then k(w) < 1. Since this yields the contradiction that f does not
have property (D, ), it follows that f is Euclidean.

In what follows, !] denotes a norm on L and S its unit sphere. We are
concerned with conditions which make 11 Euclidean. Brief surveys of the
results of this type may be found in [1] and [3] and a more extensive survey in
[51.

THEOREM 3. Let denote one of the relations

_
and >-. Suppose that there

exists some > 0 such that if I! x I! II Y 1 and II x y !1 < , then there exist
a, b 0 such that

[! ax - by ][ - ab I! x y (a + b )3.

Then !1" is Euclidean.

Proof. Suppose that is

_
and that 11" 11 is not Euclidean. Let g and

h be the nearest members to !! !! of E II. and E II-il respectively. By Theorem
1, there exists an interlocking quadruple (p, q, p’, q such that p, q e S (f) n S (h)
and p’, q’ e S (f) n S (g). If g (p’ q’) <_- 21, let u p’ and v q’, and if
g(p’ q’) > 211, let u pr and v -q’. In either case, u, veSnS(g),
g (u v) -<_ 21/, and S S (g)n C (u, v) S C (u, v) because S C (u, v)
contains either p or q.
For every r >_- 1, let g be the Euclidean norm such that g(u) g (v) 1

and g (u -P v) g (u - v )/r. Let

M sup{r

_
1 g(z) > lforsomezinSnC(u,v)}.
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For every r

_
1, let

Sr {z e S n C (u, v) gr(z)

_
1}.

Ifl =<r_M, let

l(r) sup {]! x y ]I x and y are in the same component of S},

and if 1 -< r < M, let u and v be points such that I] u vr ]1 l(r) and the
arc C (u, v) n S is a component of S. Note that each of the points u and
vr belongs to S (g) and that the function is nonincreasing over [1, M]. One
of the following two statements is true" (a) (M) > 0; (b) lim (r) 0.
If (a) is true, S contains an arc of S (g). If (b) is true, there is some r,
1 < r < M, such that ilu v, ll < . In either case, there is some r,
1 < r =< M, and some two points x and y in C (u, v) n S n S (g) such tha
l] x y 11 < and such that if a, b > 0, then ll ax - by =< gr(ax - by).
But since g (u v) <= 2112 and u, v e S n S (g), x y is interior to W (u, -v)
implying that x y il < g (x y). Therefore, if a, b > 0, then

llax’ by ll + ab llz y ll<g(ax+by)-abg(x-y) (a W b ).
This is a contradiction. Therefore 1]" II is Euclidean if is .

If is =<, an argument similar to the preceding one may be used. The
main differences are that u and v are picked from S n S (h) instead of S n S (g),
the norms g are replaced by Euclidean norms h defined by h, (u) h, (v) 1
and h(u + v) rh(u + v),

M sup{r

_
1" h(z) < lforsomezinSnC(u,v)},

and S, {z e 8 n C(u, v) h(z) <= 1}.

THEOREM 4. Suppose that if ]1 x !1 1 there exist a, b > 0 (depending on x)
and a sequence (y) in S\x converging to x such that

lim (a - b) ax + by ii )! (ab II x y, ]1)
_

1.

(This limit may be .) Then II II is Euclidean.

Proof. Suppose that ]I" is not Euclidean. Let g and h be the nearest
members to of E II. and Eli" respectively. By an affine transformation,
we may assume that L is the plane, S (g) and S (h) are circles, S (g) with radius
1 and S (h) with radius R > 1, (1, 0) e S n S (g), and that C ( (1, 0), (1, 1 ) )
contains a point of S n S (h). We use the following notation" r and p are the
functions such that for every a, (r(a I cos , r(a) sin a) p() S;
0 -atan (r’/r), and 0_ -atan (r-/r), where r- denotes the left-hand
derivative of r.
Letlcdenote 1 1/R. 0 < k -< 1/2. Suppose that (0_)’(a) => -kfor

every a in dom (0_)’. The function 0_ (a) - a - r/2 gives the direction of
the left-hand tangent to S at p (a), so it is nondecreasing. Thus 0_ (a) a

is nondecreasing and if a e dom (0_)’, then (O_)’(a) -t- 1

_
1 It. Since

(1, 0)e S n S (g), _(0) 0. These conditions imply that for every a,
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(a) >_- (1 k)a, so

_
(a) >= --/ca and we get the inequalities

)"atan (r (a)/r ()) <= la, (ln r (a) < tan (/a) and

r(a) <= exp (f tan (kt)dr) cos (/ca)-.
But there is an a in [0, /4] such that r (a) R. Since R (1 /)-,
(1 ]c)- _<_ cos (ka)-, (1 -/)

_
cos (/ca) -> cos (1/4), and f(k) >- 0,

where for every in [0, 1/2],

f(t) (ln (1 t) )t/2 In (cos (tr/4 ).

To get a contradiction, we observe that f(0) f’(0) 0 and thatf (t) < 0
if e [0, 1/2]. These conditions imply thatf(t) < 0 if e (0, 1/2], and, in particular,
that f (It) < 0. Thus there is some a such that (0_) (a) < It. By a rota-
tion, we may assume that a 0.
By the hypothesis, there exist a, b > 0 and a sequence of numbers (a)

converging to 0 and all different from 0 such that

lim ( (a -[- b) II up (0) + bp (a) ll)/(ab P (0) p (a) >- 1.

By replacing a and b by a/(a + b) and b/(a -t- b) respectively in the above
expression, we may assume that a W b 1.
Let i" be the norm for the plane; i.e., (c, d) (c + d). For any

pointy 0, denote y/ [l y bysgn (y). Ify 0, llYll ]Y]/]sgn (y) l.
Also, if la < r/2, then

sgn (an (0) + bp ()) r (atan (br (a) sin a/(ar (0) + br () cos a) ).

lim (1 an(O) + bp(a) ]])/(ab lip(O) p(a) )
lim (I sgn (p(0) p(a))]/] sgn (an(O) -t- bp(a))[)F(a)/G(a),

where for every a in [-r/2, r/2],

F (a) r (atan (br (a) sin a/(ar (0) -[- br (a) cos a)

(ar (0) + 2abr (O )r (a cos a -{- br (a))
and

G(a) ab(r (0) 2r(O)r(a) cos a -[- r (a)).

For every a, 1 _-< r(a) <-_ R, so lim F(a)/G(a) >- 1/R. The function G
is both left- and right-differentiable because it is the sum of three functions of
this type. The same is true about the second half of the expression for F.
Since the function

atan (br (a sin a/ (ar (0) + br (a cos a)

is increasing over an open subinterval s of (-r/2, v/2) containing 0, the sec-
ond half of the expression for F inherits from r left- and right-differentiability
over s.

Let F" and G" denote the derivatives of F and G" respectively. We note
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that F and G are differentiable at 0 and that since 0_ is differentiable at 0, so
r’ F" G"are and A computation shows that F (0) G (0) (0)

G’ (0) 0 Gt’ (0). Thus we have the following three properties:
F"(a) s c dora F n dom n dora F n dom G n dora G- n dom G+

(b) 0 e dom F’ dom Ft’ n dom G’ dom G"; and
(c) F(O) G(O) F’(O) G’(O) 0 Gt’(O).

These three conditions on any real functions F and G imply that

lim,0 F (a)/G(a) F (O)/G (0).
Therefore, lim F (a)/G(a) F (O)/G (0) >- 1/R. The computation
referred to above also shows that Et (0)/G’ (0) 1 - O’ (0). But 0’ (0_),
so (_)’ (0) => 1/R 1, which is contrary to what we have shown above.
Therefore [I" II is Euclidean.
The following three corollaries are less general versions of Theorem 4.

COROLLARY 1. Suppose that if x !I 1, there exist a, b > 0 such that if
> O, there is a point y such that IlYii 1, 0 < llx yli < , and

II ax - by 1] W ab l] x y -<- (a W b). Then il is Euclidean.

COROLLARY 2. Suppose that if 11 x 11 1, there exist a, b > 0 such that

lim,s (a + b) 11 ax + by [Is)/ (ab 11 x y )
exists and is >= 1. (This limit may be .) Then is Euclidean.

Let the modulus of convexity for 11" be the function i defined by

(e) inf{1-- li (x-t-y)/211 l]xll IlYll 1,[Ix-- y

where 0 -< -<_ 2. Nordlander [4] has proved that (e) _-< 1 (1
Thus if (e) is any sequence of positive numbers converging to 0, lim
2e _-< if the limit exists.

COROLLARY 3. If there exists a sequence () of positive numbers converging
to 0 such that lim (e)/e , then [I 11 is Euclidean.

Next, using methods inspired by Nordlander’s argument in [4], we obtain a
stronger result.

TEOREMS. Let a, b, c, d > O, c d < c - d, and let

W {(cd 11 ax + by - ab !1 cx dy II)/(cd( + b) - ab(c - d))

Then 1 e W and W contains a number < 1 if and only if it contains a number > 1.

Proof. By an affine mapping, we may assume that L is the plane. Let r
be the positive function such that for every 0, (r (0) cos 0, r (0) sin
letx r.cos, y r.sin, andp (x,y). For each0,

ll cP() dp(O) ll c-- d and llcP(O) dp(O W r) ll c T d,
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so there is a least number k (0) in [, 0 + r] such that cp (0) dp (k (0)) !I e.
Now defineu xok, v yok, andq (u,v) pok. Then p and q are
continuous, both have range S, and [I cp (0) dq (0) !1 e for all 0. For any
a and/, let A (a, B) denote the area of the curve traced by ap q. Then

(a +/)A (1, O) A (a,/) ( + )A(1, O)

+ (#2 + f)A (0, I) A (a, f)

((x" + ) x dy + ( + ) u dv

( +)( + )

(x ) d( ) .,t (1, 1).

Since cp (0) dq (0) II e for all O, A (c, -d) eA (1, 0). This fact and
the above yield the equations

(a + b)A (1, O) A (a, b) abA (1, -1),

(c d)A (1, O) e2A (1, O) -cdA (1, 1)
from which we conclude

cdA (a, b)/A (1, 0) + abe cd (a + b) + ab (c + d).
Let s be the positive function such that for each 0, (s (0) cos 0, s (0) sin 0) is a
point of the curve ap + bq. Then

(/0 )/(/.’- )cd s(O) 40 r(O) dO + abe cd(a + b) + ab(c + 4).

Thus there is a 0 such that

cds (O)/r (0) + abe < cd(a + b2) + ab( + d)
if and only if there is a 0 such that

cds (O)/r2 (0) + abe > cd(a + b) + ab (c +
and there is a 0 where equality holds. This is the desired result, because for
every 0, s (O)/r (0) !1 ap (0) + bq (0) !] for some 0. This completes the
proof.
One geometric interpretation of Theorem 5 is worth stating explicitly"

Given, in the plane, any four points of the unit circle and any convex and
symmetric about 0 simple closed curve C, there exists a linear mapping carry-
ing all four points into C.

In [6] this author proves that II I! is Euclidean if there is a function F de-
fined on [0, 2] such that F (11 x y !]) il x + y !1 whenever x and y are in S.
The following stronger result is an easy consequence of Theorems 4 and 5.
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THEOREM 6. Suppose that there exist numbers a, b > O, a subset M of [0, 2]
having 0 as an accumulation point, and a function F defined on M such that
F (ll x y l[ ax " by ll whenever x, y S and [] x Y II M. Then ll il
is Euclidean.

Frog. By Theorem 5, E (ii x y l] ( (a - b) ab [ix- y ll) if
II x y ]1 e M. Theorem 4 then asserts ]] ]] is Euclidean, since for any x e S,

lim.,s, ll-ll, ((a T b)- ]lax W byl])/(ab ll y[I) 1.
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