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We shall be concerned with one-parameter families of analytic functions
F (z, t), 0 . More specifically, we are interested in conditions for
F (z, t) to be subordinate (definition below) to F (z, 0) in z 1 for each fixed. The idea of subordination of a whole family of functions is of frequent oc-
currence in geometric function theory. In fact we take the view that this
idea unifies the theory. For example, if J(z is univalent in Il i and
f(0) 0, then f(z) is starlike if and only if F (z, t) (1 )f(z) is subor-
dinate to F (z, 0) for each sutisfying 0 <_ <_ 1. (Throughout the paper,
as in this example, we shall have F (z, 0) ] (z).)
The origins of our technique are in the paper [2] of M. S. Robertson, and

our Theorem 1, which provides necessary condition for subordination, is
reformulation of Robertson’s theorem. However we are able to replace the
original ssumption thatf(z) is univalent by the simple requirementf’ (0) O.
One benefit of this modification is the acquisition (after Theorem 2) of whole
class of theorems of the form "Subordination implies univalence and convex-
ity". A member of this class of theorems is the recent result of T. H. Mac-
Gregor [1] in which

If.’F(., ) - J’(e) .
The four theorems presented here can be described briefly and fairly

cumtely with the terminology of Differential Clculus. Theorem 1 provides
"first-derivative" criterion necessary for subordination. However if the
"first derivative" "vanishes" it is possible and useful to make an assertion con-
cerning the "second derivative"; hence Theorem 2. Theorems 3 and 4 are
converses of Theorems 1 and 2 respectively. Thus they provide sufficient
conditions for subordination. Theorems "of order greater than 2" can be
stated, but it is not clear that they would be useful.
The bsic definition of subordination is s follows. If f(z) nd g (z) re

analytic in z < r, we say that g (z) is subordinate to f(z) in ]z < r if
g (z) J( (z)) for some "Schwarz function" (z). That is, (z) is analytic
in z <: r and l (z) -< z J. We shall write g (z) < f(z) to express this re-
lationship. A commonly occurring set of conditions sufficient for subordina-
tion is that f(z) be univalent, that range g range J, and that g (0) f(0).
We wish to thank Professor MacGregor for calling our attention to [2]

and for several helpful conversations.
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THEOREM 1.
(T > 0), let

(1)

and let

(2)

Let F (z, t) be analytic in z < 1 for each fixed in 0 <_ <_ T

F(z, O) f(z), f’(O) 0,

F(z,t) .<f(z) ([zl < 1,0_< t_< T).

Finally, let the partial derivative

F2 (z, 0) limt-*o+ (F (z, t) f (z It
exist for each z. Then

(3) Re (F2 (z, 0 )/zf’ (z)) <__ 0

whenever the denominator is different from zero.

Proof. For each there is an analytic function co (z, t) such that co (z, t) <
z and E (z, t) f (co (z, t). In particular f(z) f (co (z, 0) ). Since f is one-

to-one in a neighborhood of 0, co (z, 0) z for iz sufficiently small and hence
for all z. Next, we claim that limt-*0+ co (z, t) z for each z. If[z is suf-
ficiently small this follows from the equations

limt-0+ f( (z, t) limt_,0+ F (z, t) f (z)

and the existence of an analytic inverse of f that maps a neighborhood of f(0)
onto a neighborhood of 0. For ]z] not necessarily small we consider the
Taylor expansion

1 [ (z, t)
co(z, t)

-1
a,(t)z’*, a,,(t) i Jl,l-a z’+1

dz.

If t is sufficiently small, limt-*0+ co (z, t)/z’+1 1/z’. Hence we can use Lebes-
gue’s bounded convergence theorem to obtain the result

limt-*0+ a,(t)= 1, n 1

=0, n>l.

Since ]as (t) -< I for all n and t, we can, therefore, conclude from the Taylor
series that limt-*0+ co (z, t) z for all z.
We can now deduce (3)" If f’ (z) 0, it follows from the equation

F (z, t) f (co (z, t) that . (z, 0) .exists and that F2 (z, 0) f’ (z)co2 (z, 0).
Therefore

Re F(z, 0) Re co(z’ 0) Re lim
co (z’ t) z

Z t-.0+ tZzf’(z)

t-*0+lim [Re co(Z,z t)

as required.
Remarks. 1. In specific examples F. (z, O) is usually analytic.

lows that (3) holds for all z (I z[ < 1).
It then fol-
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2. An interesting and easy application of Theorem 1 is given by F (z, t)
tf(cz) - (1 t)f(z), where c

_
1.

We obtain the conclusion

le f,(cz) f(z) <_ o.
z’(z)

In particular, this holds for all such c if f(z) is univalent and convex. As an
application of Theorem 3 we shall show that this inequality is also sufficient
for convexity of a univalent function. Thus Theorem I has generated a non-
standard criterion for convexity. The geometric interpretation of our cri-
terion is that an analytic Jordan curve is convex if and only if the angle between
the outer normal at any point and the vector from this point to any other point
on or inside the curve is always obtuse.

TEORE 2. In addition to the hypotheses of Theorem 1, assume that for all z

(4) F2 (z, O) aizf’ (z ),

where a is a real constant, and the second derivative F2 (z, O) exists.

(5) a[1 -t- Re zff (z)If’ (z)] + Re F (z, O)/zf (z)

_
0

Then

for all z for which zf’ (z) O.

Proof. Again we conclude from the relations F(z, t) f(co(z, t)),
lim0+ (z, t) o (z, 0) z, and f (z) 0 that o (z, t) is as smooth as
F (z, t) at 0. In particular, if F2 (z, 0) exists, so does (z, 0). There-
fore

(z, o) + o (t),(z, t) z + .(z, o)t +
(k, t)

1 + air
1 2(z, O)

_
o(t)

z + z

Consequently

(z’ t) l 1+ ReC2(z’O)
z z - a1 + o(t

le ,(z, O)/z + < O.

This and (4) lead directly to inequality (5).

Remark. We did not actually require the existence of F:. (z, 0), but oaly
the finite Taylor formula thereby implied. It follows from this remark that
Theorems 1 and 2 are meaningful even if F (z, tn) is defined only for a positive
sequence tn} approaching 0. Indeed, the derivatives F (z, 0) and F2 (z, 0)
can then be understood as the limits

F.(z, O) lim
F(z, t,,) f(z)

.-00 t
F(z, t,) f(z) F(z, O)t,F(z, 0) lira
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or simply as coefficients in a Taylor formula. The existence of the second
limit, for instance, is equivalent to the Taylor formula

F (z, 0)t W o (t).F (z, t) f(z) -t- F. (z, 0)t -This in turn is equivalent to the corresponding formula

(z, ,) z + ,(z, o)t + 1/2.(z, 0) + o(t)
(by applyingf- or f), with the usual relations among the various derivatives.
Thus all the previous reasoning remains valid.

COROLLARY (MacGregor). Let f(z be analytic in z < 1, f (0) 0. /f

F(z, t) - /(ze’) dO .</(z)

for small positive t, or even for a positive sequence {$} approaching O, then f (z)
is univalent and convex.

Proof. Calculations yield

f (z, O) 1/2izf (z) and f. (z, 0) 1/2[zf (z) T zf11 (Z)].

Inequality (5) then reduces to the usual criterion for convexity, and this to-
gether with f (0) 0 gives the desired conclusion.

Remark. Theorem 2 leads to more general results of the form

F (z, t) < f(z ) f (O ) 0 1 W Re (zf’ (z /f (z >_ O.

For instance, if

F (z, O) aizf (z), F. (z, O) b[zf (z) - zf1 (z)],

where a and b are real with b -a, then (5) becomes

(a -{-b)[1 W Re (zfn(z)/fl(z))] <_. 0 (]z] < 1).

The second factor is positive for[z[ small, so a -{- b <: 0. Therefore

1 + Re (zf’(z)//’(z)) > o
as required.
Another special case is F (z, t) 1/2If(z) - f(ze)], and we again obtain

1 - Re (zf1’ (z)/f (z)) >_ 0 from the assumptionsf (0) 0 and f (z, t) < f(z).
On the other hand, if it is known in advance that f(z) is univalent and convex,
it is obvious that F (z, t) < f(z). Hence Theorem 2 serves the elementary
purpose of showing that univalence and convexity imply the usual inequality
1 W Re (zf (z)/f (z)) >_ O. The sufficiency of this inequality can be deduced
from our Theorem 4.

THEOREM 3. Let F (z, t) be analytic in z < 1 for each fixed in 0 <_ <_ T
(T > 0, let

(6) F (z, 0) f(z), f (0, ) f(0), ] (z) 0 (I z < ),
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and let

(7) F(z, 0) lim F(z, t) f(z)
-0+

exist uniformly on compact subsets of the dis] z < 1. If
(8) Re (F. (z, O /zf (z ) < 0 (0 < z < 1 ),

then for each r, 0 < r 1, there exists a corresponding > 0 such that

(9) F(z, t) .< f(z) (Izl < r, 0 <_ <_ ).

Proof. For any such r, a compactness argument yields a positive number
a such that f is one-to-one in any open disk {z" z z, <: a} with z, -< r.
In fact we can choose a small enough so thut if is one-to-one in the union of uny
two such disks that overlap. The images of these disks cannot get arbitrarily
small. That is, there is a positive t such that

{f(z) z-- z[ < ot :D {w" w- f(z,) < }

for each such zl. Finally, since lim.0+ F (z, t) f(z) uniformly on compact
sets, there are positive numbers and % , < a, such that

IF(z, t) f() <
if lz z < , 0 <_ <_ , and z <- r. We now define (z, t)in each disk
z z < , and for 0 < E by (z, t) f- (F (z, t) ), where f- maps

{" f(,) < } i.to {z. z z,I <
This definition is consistent in overlapping disks by our choice of a. Hence

(z, t) is well defined and analytic in {z" zl < r -[- ,} for each t, 0
We conclude the proof by showing that (z, t) is a Schwarz function for suf-

ficiently small t. First, from the identity F (0, t) f(0) and the definition of
(z, t) we obtain (0, t) 0. Next, we deduce from (7) that

(z, 0) lim_0+ ((z, t) z)/t

exists uniformly in some neighborhood of each point of {z" z -< rl. By com-
pactness it follows that this limit is uniform for lz _< r. Therefore

lim.,0+ ( (z, t) z)/tz F2 (z, O)/zf (z)

uniformly for lz r. By (7), F. (z, 0) is analytic, so (8) implies that there
is a positive e such that

Re (F (z, O )/zf (z <_ (I z r ).
Hence if we set

(,(z, t) z)/tz u(z, t) + iv(z, t) u + i,,

then for all small positive we have u _< --e/2 and u -t- v _< M for sine

constant M, (I z r). Thus

[(z, t)/zl (1 W tu)2 tv <_ 1 et + Mt (l z r).
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Therefore there is a i > 0 such that I (z, t)[ < r for z r and 0 <
and the proof is complete.

Remarks. 1. A convenient sufficient condition for (7) is that F2(z, t)
be continuous.

2. The example F (z, t) z + z (z -}- 2z)t shows that the assumption
f (z) 0 cunnot be repluced by f(0) 0. Indeed, if r > 1/2 and is small
there does not exist a function (z, t) analytic in z < r such that f
F (z, t). This equation would imply

[1 + 2(z, t)] 4(1 2t)z + 4(1 t)z -}- 1,

u contradiction because the quadratic function has two simple zeros in
Iz[<r.

3. The conclusion (9) of "subordination of subfamilies on subdisks" is
that can be expected in Theorem 3 because this condition, rather than (2), is
the only assumption required to prove Theorem 1. The example F (z, t)
z zt + zt/(1 z) shows that there need not exist a positive such that
F(z,t) -<f(z) inlzi <: l for0_< t_ .

4. In spite of the limited nature of the conclusion (9), Theorem 3 has vari-
ous applicutions. As a first illustration we return to the example F (z, t)
tf(cz) -[- (1 t)f(z), c _< 1. We shall show via Theorem 3 that the in-
equulity

le F(z, 0______) le f(cz) f(z) < 0
z2(z) z2(z)

discussed earlier is sufficient for the convexity of f(z) if f(z) is univalent, or
even under the assumption that f (z) is nonvanishing. We assume the in-
equality for all c with c[ 1. If f(z) is not convex, then the image by f of
some closed disk zi _< s, 0 < s < 1, is not convex. It follows that there
exists z0 with z01 s and Co with Co 1 such that tf (Co zo) -}- (1 t)f (Zo)
does not belong to the image of the disk zl _< s for any with 0 1.
Since co - i we deduce that

Ref(cz) f(z) < 0
z2(z)

for z small, and therefore for z < 1 generally. Thus we can use Theorem 3
to obtain > 0 corresponding to r > s such that

tf(c0 z) + (1 t)f (z) < f(z) (I z < r, 0 <_ <_ ).

But then tf (co Zo + (1 )f (zo f(o (Zo t) ), where
and this contradicts our choice of z0 and Co.
Another application is given by F (z, t) f()e ’, the defining family for

spiral-like functions. We suppose f(0) 0, f (z) 0 for all z ([ z < 1 ), and

Re (Fo. (z, 0 )/zf (z) Re (- ei"f (z)/zf (z)) < O.
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We shall show that
F(z,t) .<f(z) ([z[ < 1,0_ < ).

For any r, 0 < r < 1, our theorem gives F (z, t) f(co (z, t)) (! z < r, 0
_

i). The definition of co(z, t) can be extended to the domain (z) < r,
0

_
< with co (z, t) remaining a Schwarz function for each fixed and still

satisfying f (co (z, t) F (z, t). Indeed, suppose these two properties hold for

zl <r, 0_ t_ S, anyS > 0. We then define

The extended function is still a Schwarz function. Moreover

f (co (z, - ti F (co (z, it ), t) f (co (z, i) )e-te" F (z, )e-re’" F (z, - ).
Thus for each r we have an equation F (z, t) f (co (z, t) (I z < r, 0

_
< ).

For any fixed t, the Schwarz functions co (z, t) vary with r, but since f is one-to-
one in a neighborhood of 0, it follows that any two of these functions agree
wherever both are defined. Therefore we can write F (z, t) f(co(z, t)),
([z < 1,0_ < ).
The key to the above argument is the fact that F (z, t) is a function only of

F (z, t). Therefore Theorem 3 may have further, more general applications.

THEOREM 4. Let F (z, t) be analytic in z < 1 for each fixed in 0

_ _
V

(T > 0), let the initial conditions (6) hold, let

(10) F (z, t) f (z) + F2 (z, 0)t + 1/2F2 (z, 0)t -t- s (z, t),
where

limt_.0+ (z, t)/t 0

uniformly on compact subsets of the disk zl < 1, and let

(11 F (z, O) aizf (z ([ z < 1 ),
where a is a real constant. If

I zfii (Z) F. z, O)(12) a 1 + Re fizz)-.] +Re zfl(z)
<0 (0 ( zl < 1),

then for each r, 0 < r < 1, there exists a corresponding > 0 such that

(13) F(z, t) .< f(z) (] z < r, 0 _< t_< 8).

Proof. Our hypotheses again imply limt_0+ F (z, t) f(z) uniformly on
compact sets. Hence, given r we obtain co (z, t) with co (0, t) 0 exactly as
the proof of Theorem 3. Now, from (10) and the definition of co(z, t) we
obtain

t) z + 0)t + (z, 0)t + t),

where limt_0+ v (z, t)/t 0 uniformly on some neighborhood of every point of
/z" z <- rl, z --<

o(z, t)
1 - air - w:(z, O) v(z, t)

z z z
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Since F. (z, 0) and F2 (z, 0) are analytic, so is o22 (z, 0), and therefore 22 (z, 0)
is bounded on iz r. Thus

(z,t) l I(z,O) A_alt1 + Re2 +0(z,t),
z z

where limt.,o+ O(z, t)/t 0 uniformly on z r. By (12),

Re (o (z, O /z -+- a < O,

and therefore Re (o2. (z, O)/z) -4- a <_ - for] z[ r and some > 0.
we obtain i} > 0 such that o (z, t) < r for 0 < <_ and z r.

Thus

Remarks. 1. In applications (10) is virtually automatic. For instance, the
continuity of F (z, t) is sufficient for (10).

2. Theorem 4 can be used to show that the classical inequality
1 Re (zfn (z)/f (z)) > 0 implies the convexity of a univalent function f (z).
Let F(z, t) 1/2[f(z) + f(zet)]. Then (6), (10), (11), and (12) all hold.
Hence Theorem 4 implies that if 0 _< s < 1, there exists 5 > 0 such that

1/2[f(z0) -t- f(zoe’t)le {/(z) Izi <- s} (lz01 s, o _< < ).

We take for granted that this implies the convexity of {f(z) ]z < s}.
Therefore f(z) is a convex function.
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