
ON THE INVERSE FUNCTION THEOREM IN COMMUTATIVE
BANACH ALGEBRAS

BY

BARNETT W. GLICKFELD

Introduction
Let A be a complex commutative Banach algebra, and D a domain in A.

An analytic isomorphism of D is an injective, L-analytic (i.e. analytic in the
sense of Lorch [4] mapping f: D --. A so that f(D) is also a domain, and
is L-analytic on f(D). It is known that if f D -* A is L-analytic and fr (a0)
is invertible, then there is some open neighborhood U of a0 in D so that f[ U
is an analytic isomorphism of U. This result sets the classical inverse func-
tion theorem for analytic functions of a complex variable in the Lorch theory
of analytic functions of an A-variable. It is an immediate consequence of
the remarks of Arens and Calderon [2, p. 214] on the inversion of a power
series with coefficients in A, and was first explicitly given by Mibu [5, p. 333].
The central goal of this paper is to prove the following two theorems, which

are both related to, and corollaries of, the above inverse function theorem.

THEOREM 1. If f" D A is L-analytic and injective, f(D is a domain,
and f- is continuous on f(D ), then f is an analytic isomorphism of D.
THEOREM 2. Suppose A C (X), where X is a compact Hausdorff space.

Iff" D --> A is L-analytic and injective, then either f is an analytic isomorphism
of D, or there is some fixed x e X so that f(g ) (x is identically constant, all g D.

In a preliminary section, we discuss the quotient function fF (which may
or may not exist) and the general quotient (possibly multiple-valued) func-
tion fF (which always exists) of an L-analytic f: D -- A by a maximal ideal
F of A. Both f and f will be used in the proofs of Theorems 1 and 2, and
are of interest in their own right. In this regard, we will prove that if D is
star-shaped, then fr exists, and then give an example where f does not exist
even though D is simply connected.
The author would like to raise the following questions.

(a) Can the hypothesis thatf- be continuous be removed from Theorem 1?
(b) Can Theorem 2 be generalized to other Banach algebras?

Notation and terminology
1. A will denote a complex, commutative Banach algebra with identity.
2. D will denote a domain in A, i.e. an open, connected subset of A.
3. D is simply connected iff each loop in D is homotopic to a point in D.
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D is star-shaped iff there is some a0 e D so that the line segment connecting
a0 and a is contained in D for all a e D.

4. As is usual, we identify the maximal ideals M of A with the associated
complex homomorphisms F A C. 9 the maximal ideal space of A.

5. As is usual, we identify the complex number 1 with the identity element
of A. Thus C is considered to be a subset of A.

6. z will be used to denote complex numbers and complex variables, while
a will be used to denote elements of A and A-variables.

7. If A-domains and C-domains are under consideration at the same time,
the C-domains will be called complex domains, while the A-domains will
simply be called domains.

8. Except when preceded by "general", "function" will have the same
meaning as "single-valued function".

9. The composition of two functions g and h will be denoted by g o h.
10. If a0 e A, and R is a non-negative number, B (a0 R) denotes the open

norm ball in A of radius R about a0. For simplicity, we will use B in place
of B(O :R).

11. If z0 e C, and R is a non-negative number, K(z0:R) and/(z0:R)
respectively denote the open and closed discs of radius R about z0 in C. For
simplicity, we will use K in place of K (O:R). C (z0:R) will denote the
circumference of/ (z0: R).

12. If K is an open disc in C, dK will denote the boundary of K.

1. Quotient functions

Suppose that f D --* A is L-analytic, and F is a maximal ideal of A. If
there is a (necessarily unique) complex analytic function g defined on the
complex domain F (D) so that g o F F of on D, we say g is the quotient
function of f with respect to F, and write g re. (This definition first
appears in [3, p. 16].)
WhenD is a norm ball B (a0 R), fe exists. In fact, iff is given on B (a0 R)

by the Taylor series ]a (a a0), then f is defined on

F(D) g(F(ao) :R)
by

fr (z) ]F(a) (z F (a0)).

For general D, however, we need the following construction. For each
a e D, let Ba be the largest norm ball with center at a which is contained in D,
and let fa be the restriction to B of f. Define if, the quotient general func-
tion of f with respect to F, to be the set of all function elements [1, p. 209]
(f, F (Ba)), where a varies over D.
Notice that if [0, 1] --* D is a curve in D starting at (0) a and ending

at B(1) b, then the function element (fb, F (Bb)) is obtained by analytic
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continuation of the function element (/aF, F (Pa)) along the curve F o in
F (D). Thus/F is a general analytic function [1, p. 210].
We can now obtain the followin lemma, which will be useful n the proof

of Theorem 2.

LEMMA 1.1. Let f D ---. A be L-analytic, F a maximal ideal and c a complex
constant. If there is a norm ball B contained in D, so that F (f (a) c, all
a B, then F (f (a)) c, all a D.

Proof. Let b be the center of B. Then since f o F F of on B, f is
identicMly c. Since f is general nlytic function,f is identically c for M1
aeD. But then foraeD,

F if(a) faF(F (a) c.

We turn to showing that fr eists when D is str-shped.

bEMMA 1.2. Let f D A be L-analytic, F a maximal ideal, suppose that
D is s tar-shaped. If a, b, e D and F (a) F (b), then F (f (a)) F (f (b)).

Proof. For x, y e A, let L. [0, 1] -- A be defined by

L,(t) (1 t)x -{- ty.

Choose a’ e D so that range L (a’ a) is contained in D, all a e A. Now
(f, F (B.)) and (f, F (B)) are both obtained by analytic continuation of
the function element (f.,r, F (B.,)) along the curve

F L(a’ a) F L(a’: b).

Thus fF f in a neighborhood of F (a) F (b), so

Eft(a)) fa(F(a)) f(F(b)) Eft(b)).

THEOREM 1.3. If f D ----> A is L-analytic, D is star-shaped, and F is a
maximal ideal, then f exists.

Proof. It follows from 1.2 that ff defines a single-valued function g on
F (D): g is esily seen to be f.
We present an example which shows that the hypothesis that D be star-

shaped in 1.3 cannot be replaced by the hypothesis that D be simply connected.
Let A C C, with pointwise algebraic operations and the sup norm. Fix
s so that 0 < < /4. Set

D {(z,w):0 < Rez < 2, w0,- < Argw < - },

D {(z,w): 1 < Rez < 3, w 0,- 2e < Argw < 2-

D {(z,w):2 < Rez <4, w 0,2r- 3s < Argw < 2r-t-

Clearly each D is convex, since D D 0, D D 0 and D n D 0,
D D u D u D. is simply connected.
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Define, for i 1, 2, 3, f D --+ A via

f(z, w (z, Log w where Logl 0,

f2(z,w) (z, Logw) where Log (-1) ri,

f3 (z, w) (z, Log w) where Log 1 2ri.

Definef D A byf (z, w) f (z, w) if (z, w) e D. Let F be the maximal
ideal of A defined by F (z, w) w. Suppose there is a functionf F (D) --* C
which satisfies the quotienting relation fro F F of on D. Then

0 F(f(1, 1)) f(1) F(f(3, 1)) 2ri;

clearly no such f. can exist.

2. The proof of Theorem

Suppose that f D --+ A is L-analytic and injective, f(D) is a domain, and
f-1 is continuous on f(D). In view of the inverse function theorem, to prove
Theorem 1 it is sufficient to show that f’ (a) is invertible for all a in D. Two
translations enable us to assume without loss of generality that 0 e D and
f(0) 0, and to reduce the problem of showing ft (a) invertible for all a e D
to that of showing ft (0) invertible.

Choose some i > 0 so that B c D. For each maximal ideal F let fr
be the quotient function of fiBs with respect to F. Obviously f (0) 0
but f is not identically zero because of the quotienting relation f o F F o f
and the openness of f. Since (f)’ (0) F (f’ (0)), to prove f’ (0) invertible
it is sufficient to prove (f)’ (0) 0, all F e

Fix a maximal ideal F. Choose positive numbers c and so that t <
and

(1) f.(K) /(B) and f.(K,) f(B),

(3) (fF)’(z) 0when0 < |Z.] < .
Define h K, --+ K by h F of-ore. Clearly hr is continuous, and maps
K, into K,. The two crucial properties (4) and (5) of hr are directly ob-
tained via the quotienting relation fro F F

(4) he(hr(z)) hr(z) when[z] < ,and
(5) <
Now by (2), (5) and fr (0) 0, we see that

(6) h(z) 0when0 < zl < e.

Set
S {z" h(z) z nd 0

Obviously S is closed in K {0}. h(/2) e S via (4) nd (6), so S is non-
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empty. But S is also open, in view of (5) and the local conformality (via
(3)) off at each z where 0 < z < c. Thus S ge 10}, i.e.

hs(z) z when0 <[zl<e.
But since hs is injective on Ke 0}, so is fs. Therefore by classical function
theory, (fs)’ (0) # 0, Q.E.D.

3. The proof of Theorem 2 (beginning)
The setting of this section is the realm of classical function theory; the

prime tool is Rouch’s theorem. No mention will be made of abstract func-
tion theory. The goal is to prove Lemmas 3.2 and 3.3, from which Theorem
2 will be directly obtained in Section 4.
Let H be the metrizable space of complex-valued analytic functions defined

on the unit disc K, with the topology of uniform convergence on compacta.

DEFINITION. A fundamental pair is an ordered pair (h, K), where h e H,
K is an open complex disc whose closure/ is contained in K, and there is
some (unique) complex number so that

(1) h’(k) =0,
(2) z/ and h’ (z) 0 implies z , and
(3) z/ and h (z) h (),) implies z k.

), is called the analytic center of (h, K).
The order J of a fundamental pair (h, K) with analytic center ), is defined

to be the order of the zero of h (z) h (),) at z ),. Clearly J 1 is the
order of the zero of h’ (z) at z k, and J >_ 2.

DEFINITION. Let (h, K) be a fundamental pair with analytic center .
A non-negative number is free iff

< inf {[ h(z) h(,)l" z edK}.

The following two basic remarks can be proved by standard winding
number, local conformality, and piecing together arguments, and are thus
left to the reader.

Remark 1. If (h, K) is a fundamental pair with analytic center k and order
J, and is free, then h (z) (h (),) + ) has exactly J zeros (counting mul-
tiplicity) in K and none on dK. When > 0, condition (2) above thus
guarantees that h (z) (h ()) -t- ) has J distinct zeros in K, each of mul-
tiplicity 1.

Remark 2. Suppose that (h, K) is a fundamental pair with analytic
center ), and order J, and that :> 0 is free. Let be one of the J distinct
points of K which h maps onto h (),) -t- . Then there is a unique curve
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fl" [0,/] --* K which ends at i" (i.e. fl (/) ), and satisfies

h((t)) h(X) -t- t, 0

_ _ .
Furthermore, if is another point of K which h maps into h () -t-/,
and fl" [0, ] --. K is the unique curve which ends at and satisfies

h(’(t) h(X) -t- t, 0 <_

_
,

then
(range fl) n (range fl’) {X}.

DEFinITION. Suppose that (h, K) is a fundamental pair with analytic
center X and order J, and that > 0 is free. Let i’1, "", i’J be an enumera-
tion of the J distinct points of K which h maps into h () -F . For each i,
1

_
i

_
J, let fl" [0,/] --. K be the unique curve which ends at and satisfies

h((t)) h(X) -F t, 0

_ _ .
The set of curves A {ill, ..., flj} is called the -system of (h, K). Note that
it follows from Remarks 1 and 2 that

U_ range fl.K n h- (h(X) -F [0, ]) "
We need the following technical extension of Rouch’s theorem.

LEMMX 3.1. Suppose that h e H, h is not identically zero, and that
Z c U K, where Z is compact and U is open. Then there is an open
neighborhood N of h in H, and an open set V in C, so that when g e N,

h(Z) V

Proof. For each w e Z, choose w > 0 so that /(w’w) U, and
h (z) h (w) has no zeros z on the boundary C (w" ). Set

p inf {! h(z) h(w) z e C(w )}
and

N {g" geH, ig(z) h(z) < p/2, allzC(w’)}.

By Rouch6’s theorem, each g e N assumes the value h(w) on K(w’,).
But

p/2

_
inf {I g(z) h(w) z eC(w’a)l.

Thus for all g e Nw,
g(g(w’a)) g(h(w)’p/2).

Now choose w, ..., w. Z so that the K(h(w)’p/2), i 1, ..., n,
are an open cover of h (Z). Set

N N, and V UIK (h (w) p,/2).

IfgN, andl

_
i_n,

g(U) g(g(w "p,)) g(h(w,)’pw,/2),
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SO

g(U) V h(Z).

LEMMA 3.2. Let S be a subset of H so that

(1) no h S is identically constant, and
(2) there is some h S, and lz < 1, so that h’(z) O.

Then there is a non-empty, open (in S) subset U of X, a complex disc K, a
positive integer J, and a positive number so that

(3) (h, K) is fundamental with order J, all h U, and
(4) is (h, K)-free, all h U.

Proof. Let Q be the set of all fundamental pairs (h, K), where h e S.
Conditions (1) and (2) above guarantee that Q is non-empty. Choose a
fundamental pair (ho, K0) of Q with minimal order J and analytic centero.
By Rouch’s theorem and the continuity of the mapping h - h of H into H,
choose an open neighborhood U0 of h0 in S so that when h e Uo, h has no zeros
on dKo and exactly J i zeros (counting multiplicity) in K0. Since (h0 ,Ko)
has minimal order, no zero of h, when h e Q, has order less than J 1. Thus
when h Uo, h’ has exactly one zero zh (of multiplicity J 1) in K0. Clearly
,o Zho.

It follows from Rouchi’s theorem and the continuity of h h’ that h --. zh
is a continuous mapping of U0 into Ko. Furthermore, it is not hard to see
that the mapping h --* h (z) of Uo into C is also continuous.

Set
p inf {[ ho(z) ho(0) z e dKo}.

Since (ho, Ko) is fundamental, p > 0. Choose an open neighborhood U of h0
in Uo so that when h e U,

(5) h (z) ho (z) <- p/3, all z e dKo, and
(6) h(z) h(),o) <_ p/3.

(5) and (6) yield that when h e U and z dKo,

ho(Z) + ho( o) h(z )l < h0(z)

Thus by Rouch4’s theorem, when h e U, h (z) h (z) has no eros on dKo,
and J eros (counting multiplicity) on K0. Since h (z) h (za) has a zero
of order J at z., z e/o and h (z) h (zh) implies z z. Therefore when
h e U, (h, Ko) is a fundamental pair of order J with analytic center za.

(5) and (6) also yield

[h(z) -h(z)[ _> p/3 whenheUlandzedK0.
Fix some positive number < p/3. is obviously (h, K0)-free, all h e U1.

I,EMA 3.3. Suppose that U is a non-empty subset of H, K a complex disc,
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J a positive integer, and t a positive number so that

(1) (h, K) is fundamental, with order J, all h U, and
(2) t is (h, K)-free, all h U.

Then there is a non-empty, open (in U) subset V of U, so that we can prescribe,
for each h U, an enumeration fib1, "", hJ of the -system (.) of (h, K),
so that for each i, 1

_
i

_
j, the mapping a" V X [0, t] "-’* K defined by

,(h, t) ,(t)
is continuous.

Proof. For each h U, let be the analytic center of (h, K), and set
w f(),). It follows from Roueh’s theorem and the continuity of h --* h’
that h -- is a continuous mapping of U into K and thus h --, w is a con-
tinuous mapping of U into C.

Now fix some function h0 U, write 0 h, and w0 w. Let , ...,
be u fixed enumeration of the J distinct points of K whieh h0 maps into w0
Choose a positive number p so that each (i’" p) is contained in K, and the
K (i’ P) are pairwlse disjoint. Choose, via Lemma 3.1, an open neighborhood
V of h0 in U so that when h V and 1 _< i _< J,

wa -at- t e f K (, p ).

For h e V, since the order of (h, K) is J, there is exactly one point a in each
K (i’" P) which h maps onto wa + u" for each i let/3 be the unique element
of the u-system A(,) which ends at i’h. Define, for 1 _< i _< J,
ai" V X [0, ] -- K by

a(h, t) Sa,(t).

Fix (g, s) e V [0, u], where s > 0, we will now show that each a is con-
tinuous at (g, s). For each i set

z, o, ([/2, u]).

Each Z is a compact subset of K, the Z are pirwise disjoint (by Remark 2),
and

g(Z,) w + Is/2, u].
For each i, set

Y {z" z e C, dist (z, Z) < r},

where r is a fixed positive number small enough so that the Y are pairwise
disjoint subsets of K, and

(1) K(o" r) K(’" p), all i.

By Lemma 3.1, choose a neighborhood W of g in V so that when h V,

(2) h (Y) ::) w + [s/2, t], nd
(3) wa + u e h (K (’ r) ), all i.
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Since each w e wh q- [s/2, ] is taken on by h at exactly J distinct points of K,
and the Y are disjoint, it follows from (2) that

U_Y,h.W.(4) h-x (wh -t" [s/2, z]) fl K J

For h e W and i 1, ..., J let f denote the restriction of #a to [s/2, t]. It
follows from (3) that each f ends in some K (i’g’: r). But t ends at

K (’: p), thus by (1) and the disjointness of the K (’j p), # ends in
K (i’g" r) c Y. Now via (4) and the connectedness of range #, we see
that

(5) range/ c Y, h e W, 1 _< i _< J.

Now fix i, set (s) a (g, s); obviously g () wg + s. Consider
an e > 0 and small enough so that K( e) c Y. Choose, by 3.1, a neigh-
borhood W1 of g in W, and an interval I about s in Is ] so that

(6) w -t- teh(K(:s), heW and teI.

By (4) and (5) the only point of Y which h maps onto wa -t- is f (t) #h (t).
Since K(:e) c Y, it follows from (6) that /a(t) e K(: e). In other
words, when h W and e I,

Therefore a is continuous at (g, s).
The proof, via Rouch!’s theorem, that each a is continuous at (g, 0) is

straightforward, and is left to the reader.

4. The proof of Theorem 2 (conclusion)
We return to the proof of Theorem 2 per se. Let A C (X), where X is a

compact Hausdorff space, and suppose that f:D A is L-analytic and
injective. Lemma 1.1 enables us to reduce Theorem 2 to the special case
whenD is a norm ball. Two translations and a normalization reduce Theorem
2 further to the special case when D is the unit norm ball B and f(0) 0,
we will now prove Theorem 2 for this case. More specifically, we will show
that if f" B --, A C (X) is L-analytic and injeetive, f(0) 0, f is not an
analytic isomorphism, and there is no x e X so that f(g)(x) 0, all g e B,
then there are two distinct functions g and g in C (X) so that f(gl) f(g).
For each x e X, let f K -- C be the quotient function of f with respect

to the maximal ideal "evaluation at x". The equations

(1)
(2)

f(g(x)) f(g)(x), and
f’ (g)(x) (g(x)), g ,B, xeZ,

are immediate.
Sets {f:xeX} H. Since there is no xeX so thatf(g)(x) O,

all g e B, it follows from (1) that no f is identically constant. Since f is
not an analytic isomorphism, by the inverse function theorem there is some
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g e B1 at which fP (g) is singular. This, together with (2), implies that there
is some x X and z e K1 so thatf: (z) 0. Therefore S satisfies the hypotheses
of Lemma 3.2.

Choose, by 3.2 and 3.3, a non-empty open (in S) subset V of S, a complex
disc K and a positive integer J so that (h, K) is fundamental with order J
for all h e V, a positive number which is (h, K)-free for all h e V, and an
enumeration/h, "",/hJ of the t-system of each (h, K), h e V, so that for
each i, 1 _< i _< J, the mapping a" V X [0,/] --. K defined by

(3) a,(h, t) #,(t)

is continuous.
Now fix a point x0 e X so that f, e V. Choose, by the continuity of the

mapping X --. H defined by x --* f [3, p. 17] a compact neighborhood Z of
x0 so thatf V, all x e Z. Select an open neighborhood W of x0 whose closure
W is contained in the interior of Z. By Urysohn’s lemma, choose a con-
tinuous function " X [0, u] so that (x0) u and q (X W) 0. For
i 1, 2 define g" Z --. K by

From (3) and Remark 2 of Section 3 we have that

(4) a,(f,0) ,, and
(5) fx(g,(x)) f(X,) - (x), z, Z, i 1, 2,

where )x is the analytic center of the fundamental pair (f, K). But it
follows from (4) that g (x) g2 (x), all x e Z W. Extend g to a continuous
mapping of X into K via Tietze’s theorem, then extend g2 to a continuous
mapping of X into K by defining g (x) gl (x), all x e X K. Now by (5),

f (g, (x f, (g: (x ), all x, X,

so f (gl) f(q). But since g (x0) g (x0), g g. Theorem 2 is proved.

1 L. AaLORS, ffoe McGraw-Hll, New York, 1953
2 R. AREAS I . P. CIDERON, (CC08 0SrSr7, Ann.

of Math., vol 62, (155), pp. 204-216.
3. B. V. GIICKFED, Sr 0 0 Sr, Trans. Amer.

Math. Soc., vol. 134 (168), pp. 1-28.
4. E. R. LORCH, The theory of analytic functions in normed abelian vector rings, Trans.

Amer. Math. Soe., vol. 54 (1943), pp. 414-425.
5. Y. MxBv, On the theory of regular functions in Banach algebras, Mere. Coll. Sci. Univ.

Kyoto, Set. A math., vol. 33 (1960), pp. 323-340.

COLUMBIA UNIVERSITY
Nmw YORK, Nmw YORE

UNIVERSITY OF WASHINGTON
SEATTLE WASHINGTON


