A NOTE ON COBORDISM

BY
K. Varadarajan ${ }^{1}$

1. Introduction

In his paper "Cobordism and Stiefel-Whitney numbers" [6] Stong proves the following result.

Theorem (Stong). Let M be a closed differentiable manifold of dimension $5 \cdot 2^{s}$. Suppose that the Stiefel-Whitney classes $w_{1}, w_{2}, w_{2^{2}}, \cdots, w_{2^{8}}$ of M are zero. Then whenever $s \geq 4$ the manifold M is cobordant to zero.

He remarks that easy examples can be constructed to show that the above theorem is false for $s=0$ and $s=1$. He also comments that he does not know what the situation is like for $s=2$ and $s=3$. In fact the Dold manifold $P(1,2)$ is an example to show that Stong's result is false for $s=0$. The manifold $N^{10}=P(1,2) \times P(1,2)$ is a manifold with the property that all its Stiefel-Whitney numbers divisible by w_{1} and w_{2} are zero. Hence by a theorem of Milnor [4] N is cobordant to a manifold M^{10} for which w_{1} and w_{2} are actually zero. This manifold M serves as an example to show that Stong's result is not valid for $s=1$.

The object of this paper is to prove the following:
Theorem. If M^{40} is a closed differentiable manifold of dimension 40 with $w_{1}=w_{2}=w_{4}=w_{8}=0$ and further satisfying $w_{31}=0$ then M is cobordant to zero.

The method of proof lies in a finer analysis of the indeterminacy group occurring in Adams' formula [2]

$$
S q^{16} V=\sum_{0 \leq i \leq j \leq 3, i \neq j-1} a_{i, j} \Phi_{i, j}(V) \bmod \sum_{0 \leq i \leq j \leq 3, i \neq j-1} a_{i, j} Q_{i, j}(X)
$$

valid (independent of X) for any $V \in H^{n}\left(X ; Z_{2}\right)$ satisfying $S q^{1} V=S q^{2} V=$ $S q^{4} V=S q^{8} V=0$. We will state Adams' result more precisely in $\S 2$.

Throughout this paper by a manifold we mean a compact differentiable manifold without boundary. The cohomology groups considered are with \boldsymbol{Z}_{2}-coefficients. We denote the Steenrod Algebra $\bmod 2$ by \mathbb{Q}.

2. Adams' Result

J. F. Adams [2] has defined secondary cohomology operations $\Phi_{i, j}$ for each pair of integers $0 \leq i \leq j$ and $i \neq j-1$ having the following properties:
(2.1) Let X be a space. The operation $\Phi_{i, j}$ is defined on cohomology classes $u \in H^{*}(X)$ such that $S q^{2 r} u=0$ for $0 \leq r \leq j$.

[^0]If $u \in H^{m}(X)(m>0)$ then $\Phi_{i, j}(u)$ is an element in $H^{m+2^{i}+2^{i-1}}(X)$ modulo an indeterminacy subgroup $Q_{i, j}(X)$. Moreover if $i<j$,

$$
Q_{i, j}(X)=S q^{2 i} H^{m+2 j-1}(X)+\sum_{0 \leq l<j} b_{l} H^{m+2^{l}-1}(X)
$$

where $b_{l} \in \mathbb{Q}$ and $\operatorname{deg} b_{l}=2^{i}+2^{j}-2^{l}$.
Take an integer $k \geq 3$ and suppose that $u \in H^{m}(X)(m>0)$ is a class such that $S q^{2 r} u=0$ for $0 \leq r \leq k$. Adams' main result is
(2.2) Theorem (Adams). There is a relation

$$
S q^{2^{k+1}} u=\sum a_{i, j} \Phi_{i, j}(u)
$$

valid (independent of X) modulo $\sum a_{i, j} Q_{i, j}(X)$ where the summation is extended over all i, j such that $0 \leq i \leq j \leq k$ and $i \neq j-1$. Here $a_{i, j}$ denotes a certain element in \mathbb{Q} of degree $\overline{2}^{k+1}-\left(2^{i}+2^{j}-1\right)$.

3. Right action of the Steenrod Algebra on $H^{*}(M)$

Let M^{n} be a connected manifold of dimension n. Adams [1] has defineda right action of \mathfrak{Q} on $H^{*}(M)$ and this right action has been later exploited by Brown and Peterson [3]. We need the identities obtained by Brown and Peterson relating the usual left action of \mathfrak{a} on $H^{*}(M)$ with the above right action of a. We recall how this right action is defined.

Given any $\alpha \in \mathbb{Q}^{i}$ and any $x \in H^{k}(M)$ define $(x) \alpha \in H^{k+i}(M)$ by the property

$$
(x) \alpha \mathbf{u} y=x \cup \alpha(y), \quad \forall y \in H^{n-k-i}(M)
$$

Because of Poincare duality $(x) \alpha$ is well-defined.
Let $c: \mathbb{Q} \rightarrow \mathbb{Q}$ denote the canonical conjugation and $\nabla: \mathbb{Q} \rightarrow \mathbb{Q} \otimes \mathbb{Q}$ denote the usual diagonal map in \mathbb{Q}. (Refer, Chap. II of [5]). For any $\alpha \in \mathbb{Q}^{j}$ with $j \geq 1$ we can write $\nabla(\alpha)$ as $\alpha \otimes 1+1 \otimes \alpha+\sum \alpha_{i}^{\prime} \otimes \alpha_{i}^{\prime \prime}$ for some α_{i}^{\prime} and $\alpha_{i}^{\prime \prime}$ in \mathfrak{a} with $\operatorname{deg} \alpha_{i}^{\prime}>0$, $\operatorname{deg} \alpha_{i}^{\prime \prime}>0$. For the right action \mathfrak{a} on $H^{*}(M)$ we have the following identities:

$$
\begin{gather*}
(x) S q^{0}=x, \quad \forall x \in H^{k}(M) \tag{3.1}\\
(1) c\left(S q^{i}\right)=\bar{w}_{i}(M) \tag{3.2}
\end{gather*}
$$

where $\bar{w}_{i}(M)$ is the i-th dual Stiefel-Whitney class of M.
(3.3) For any $x \in H^{k}(M)$ and $y \in H^{l}(M)$ with $k \geq 0, l \geq 0$ arbitrary and for any $\alpha \in \mathbb{a}^{j}$ with $j \geq 1$ we have

$$
(x \cup y) \alpha=(x) \alpha \mathbf{u} y+x \mathbf{u} c(\alpha)(y)+\sum_{i}(x) \alpha_{i}^{\prime} \cup c\left(\alpha_{i}^{\prime \prime}\right)(y)
$$

where $\nabla(\alpha)=\alpha \otimes 1+1 \otimes \alpha+\sum \alpha_{i}^{\prime} \otimes \alpha_{i}^{\prime \prime}$ with $\operatorname{deg} \alpha_{i}^{\prime}>0 ; \operatorname{deg} \alpha_{i}^{\prime \prime}>0$.
The formulae (3.2) and (3.3) are due to Brown and Peterson. Actually
(3.3) is the analogue for the right action of \mathfrak{a} on $H^{*}(M)$ of the well-known Cartan-formula for the left action of \mathfrak{Q} on $H^{*}(M)$, namely

$$
\begin{equation*}
\alpha(x \cup y)=\alpha(x) \mathbf{u} y+x \mathbf{u} \alpha(y)+\sum_{i} \alpha_{i}^{\prime}(x) \mathbf{u} \alpha_{i}^{\prime \prime}(y) \tag{3.4}
\end{equation*}
$$

The identity of Wu which states that $S q^{i} x=v_{i} \cup x$ for any $x \in H^{n-i}(M)$ where v_{i} is the i-th Wu class of M can be stated in terms of right action as

$$
\begin{equation*}
\text { (1) } S q^{i}=v_{i} \tag{3.5}
\end{equation*}
$$

4. Manifolds M^{40}

Throughout the rest of this paper $M=M^{40}$ denotes a 40 -dimensional connected manifold such that $w_{1}(M)=w_{2}(M)=w_{4}(M)=w_{8}(M)=0$. We denote the j-th Stiefel-Whitney class of M by w_{j}; the j-th dual Stiefel-Whitney class of M by \bar{w}_{j} and the j-th Wu class of M by v_{j}.

Lemma 4.1. The only possible non-zero Stiefel-Whitney classes in positive dimensions of M are $w_{16}, w_{24}, w_{28}, w_{30}, w_{31}$ and w_{32}.

Proof. Immediate from Propositions 2 to 4 and Theorem 2 of [6].
Thus the only possible non-zero Stiefel-Whitney number is $w_{16} \cdot w_{24}[M]$. Sections 4 and 5 of this paper mainly analyse this Stiefel-Whitney number.

Lemma 4.2. For an M of the above type we have

$$
\begin{gathered}
S q^{8} w_{16}=w_{24}, \quad S q^{12} w_{16}=S q^{4} w_{24}=w_{28} \\
S q^{14} w_{16}=S q^{6} w_{24}=S q^{2} w_{28}=w_{30} \\
S q^{15} w_{16}=S q^{7} w_{24}=S q^{3} w_{28}=S q^{1} w_{30}=w_{31} \\
S q^{8} w_{24}=S q^{4} w_{28}=S q^{2} w_{30}=S q^{1} w_{31}=0
\end{gathered}
$$

Proof. Immediate from the Wu formula

$$
\begin{equation*}
S q^{i} w_{j}=\sum_{t=0}^{i}\binom{j-i+t-1}{t} w_{i-t} \cdot w_{j+t} \quad \text { for } \quad i<j \tag{4.3}
\end{equation*}
$$

Lemma 4.4. The dual Stiefel-Whitney classes of M are given by

$$
\bar{w}_{i}=0
$$

for

$$
\begin{aligned}
& 1 \leq i \leq 15 ; \quad 17 \leq i \leq 23 ; \quad 25 \leq i \leq 27 ; \quad i=29 \quad \text { and } \quad i \geq 33 . \\
& \quad \bar{w}_{16}=w_{16} ; \quad \bar{w}_{24}=w_{24} ; \quad \bar{w}_{28}=w_{28} ; \quad \bar{w}_{30}=w_{30} ; \quad \bar{w}_{31}=w_{31}
\end{aligned}
$$

$$
\bar{w}_{32}=w_{32}+w_{16} \mathbf{u} w_{16} .
$$

Proof. Immediate from the Whitney duality formula.

Lemma 4.5. For any $\alpha \in \mathbb{Q}^{i}$ with $i \leq 15$ we have

$$
\alpha\left(w_{j}\right)=\lambda_{\alpha, j} w_{j+i}
$$

for some $\lambda_{\alpha, j} \in \mathbf{Z}_{2}$.
Proof. Immediate consequence of (repeated application of) the Wu formula (4.3) and the fact that $w_{\mu}=0$ for $1 \leq \mu \leq 15$.

Lemma 4.6. For any $\alpha \in \mathbb{Q}^{i}$ with $1 \leq i \leq 15$ we have

$$
(1) \alpha=0
$$

where $1 \epsilon H^{0}(M)$ is the unit element.
Proof. It suffices to show that

$$
(1) S q^{d_{1}} \cdots S q^{d_{r}}=0
$$

whenever $d_{1}+\cdots+d_{r} \leq 15$ and $d_{1} \geq 1$. But

$$
(1) S q^{d_{1}} \cdots S q^{d_{r}}=\left(v_{d_{1}}\right) S q^{d_{2}} \cdots S q^{d_{r}}
$$

by (3.5). Since $w_{\mu}=0$ for $1 \leq \mu \leq 15$ we get from the inductive formula

$$
w_{\mu}=v_{\mu}+S q^{1} v_{\mu-1}+\cdots+S q^{[\mu / 2]} v_{\mu-[\mu / 2]}
$$

the relation $v_{\mu}=0$ for $1 \leq \mu \leq 15$. Hence (1) $S q^{d_{1}} \cdots S q^{d_{2}}=0$ whenever $1 \leq d_{1}$ and $d_{1}+\cdots+d_{r} \leq 15$.

Lemma 4.7. For any $\alpha \in \mathbb{Q}^{i}$ with $i \leq 15$ we have

$$
\left(w_{j}\right) \alpha=\mu_{\alpha, j} w_{j+i}
$$

for some $\mu_{\alpha, j} \in \mathbf{Z}_{2}$.
Proof. If $\operatorname{deg} \alpha=0$ there is nothing to prove since $\left(w_{j}\right) S q^{0}=w_{j}$. Where $1 \leq \operatorname{deg} \alpha \leq 15$ an application of formula (3.3) together with Lemma 4.6 yields

$$
\left(w_{j}\right) \alpha=\left(1 \mathbf{u} w_{j}\right) \alpha=c(\alpha)\left(w_{j}\right)
$$

But $c(\alpha)\left(w_{j}\right)=\lambda_{c(\alpha), j} w_{j+i}$ by Lemma 4.5. Hence $\mu_{\alpha, j}=\lambda_{c(\alpha), j}$ satisfies the requirements of Lemma 4.7.

Corollary 4.8.

$$
\left(w_{24}\right) Q^{i}=0 \text { for } i \neq 0,4,6,7,8
$$

and

$$
\left(w_{31}\right) Q^{i}=0 \quad \text { for } i \neq 0,1
$$

Proof. Immediate consequence of Lemma 4.7 and Lemma 4.1.
Lemma 4.9. $\left(w_{24}\right) Q^{8}=0$.
Proof. The elements $S q^{8} ; S q^{7} S q^{1} ; S q^{6} S q^{2} ; S q^{5} S q^{2} S q^{1}$ form a basis for a^{8} over \mathbf{Z}_{2}. Hence it suffices to verify that $\left(w_{24}\right) \alpha=0$ when α is one of the above four basis elements.

By Corollary (4.8) we have (w_{24}) $S q^{5}=0$ and hence ($w_{24} S q^{5} S q^{2} S q^{1}=0$).
Take any $x \in H^{8}(M)$. We have

$$
S q^{8}\left(w_{24} \mathbf{u} x\right)=v_{8} \mathbf{u}\left(w_{24} \mathbf{u} x\right)=0
$$

Cartan's formula and Lemmas 4.1 and 4.2 give

$$
\begin{equation*}
w_{24} \mathbf{u} S q^{8} x+w_{28} \mathbf{u} S q^{4} x+w_{80} \cup S q^{2} x+w_{31} \mathbf{u} S q^{1} x=0 \tag{i}
\end{equation*}
$$

Similarly we have $S q^{4}\left(w_{28} \cup x\right)=v_{4} \mathbf{U}\left(w_{28} \cup x\right)=0$ yielding

$$
\begin{equation*}
w_{28} \mathbf{U} S q^{4} x+w_{30} \mathbf{\cup} S q^{2} x+w_{31} \cup S q^{1} x=0 . \tag{ii}
\end{equation*}
$$

Adding (i) and (ii) we get $w_{24} \mathbf{u} S q^{8} x=0$. Thus $\left(w_{24}\right) S q^{8} \cup x=0$ and this $\forall x \in H^{8}(M)$. Poincare duality for M^{40} now yields

$$
\left(w_{24}\right) S q^{8}=0
$$

Also we have $S q^{7}\left(w_{24} \mathbf{U} S q^{1} x\right)=v_{7} \mathbf{U} w_{24} \mathbf{U} S q^{1} x=0$ yielding

$$
\begin{equation*}
w_{24} \text { u } S q^{7} S q^{1} x+w_{28} \mathbf{u} S q^{3} S q^{1} x+w_{31} \text { u } S q^{1} x=0 \tag{iii}
\end{equation*}
$$

Similarly $S q^{3}\left(w_{28} \cup S q^{1} x\right)=0$ yields

$$
\begin{equation*}
w_{28} \mathbf{\cup} S q^{3} S q^{1} x+w_{31} \cup S q^{1} x=0 \tag{iv}
\end{equation*}
$$

Adding (iii) and (iv) we get $w_{24} \mathbf{U} S q^{7} S q^{1} x=0$. This means (w_{24}) $S q^{7} S q^{1}=0$.
The proof for $\left(w_{24}\right) S q^{6} S q^{2}=0$ is similar and hence omitted.

5. Thom class of the normal bundle of M^{40} in S^{40+d}

We want to bring into force the relationship between Stiefel-Whitney classes and the Steenrod squares via the Thom isomorphism. For this purpose we imbed M^{40} differentiably in S^{40+d} for some d. Let $\nu=\nu^{d}$ denote the normal bundle of M^{40} in S^{40+d}. Let E denote a closed tubular neighborhood of M in S^{40+d} with \dot{E} as the boundary. E can be identified with the total space of the disk bundle associated to ν.

Let $p: E \rightarrow M$ denote the projection and $\Phi: H^{i}(M) \rightarrow H^{i+d}(E, \dot{E})$ the Thom isomorphism. Then $H^{d}(E, \dot{E}) \simeq \mathbf{Z}_{2}$ with $\Phi(1)=U$ as the generator and

$$
\Phi: H^{i}(M) \rightarrow H^{i+d}(E, \dot{E})
$$

is given by $\Phi(x)=p^{*}(x)$ บ U where $p^{*}: H^{*}(M) \rightarrow H^{*}(E)$ is induced by the homotopy equivalence $p: E \rightarrow M$. As is well known, $\bar{w}_{i}=\Phi^{-1}\left(S q^{i} U\right)$. Let $T(\nu)$ denote the Thom space of ν and $\eta:(E, \dot{E}) \rightarrow(T(\nu), \infty)$ the canonical projection. If $k: T(\nu) \rightarrow(T(\nu), \infty)$ denotes the inclusion, the composite isomorphism

$$
H^{i}(M) \xrightarrow{\Phi} H^{i+d}(E, \dot{E}) \xrightarrow{\left(\eta^{*}\right)^{-1}} H^{i+d}(T(\nu), \infty) \xrightarrow{k^{*}} H^{i+d}(T(\nu))
$$

will be denoted by Ψ. Sometimes we will refer to Ψ also as the Thom-isomorphism

Let us denote the class $\Psi(1) \in H^{d}(T(\nu))$ by V. Then $\Psi^{-1}\left(S q^{i} V\right)=\bar{w}_{i}$. From Lemma 4.4 we have $\bar{w}_{i}=0$ for $1 \leq i \leq 15$. It follows that $S q^{i} V=0$ for $1 \leq i \leq 15$. Thus we are in a position to apply Adams' result to V. We get

$$
\begin{equation*}
S q^{16} V=\sum_{0 \leq i \leq j \leq 3,0 \neq j-1} a_{i, j} \Phi_{i, j}(V) \bmod \sum_{0 \leq i \leq j \leq 3, i \neq j-1} a_{i, j} Q_{i, j}(T(\nu)) \tag{5.1}
\end{equation*}
$$

where $Q_{i, j}$ is the subgroup of indeterminacy corresponding to the secondary operation $\Phi_{i, j}$.

Set $P_{i, j}=\eta^{*} k^{*-1}\left(Q_{i, j}(T(\nu))\right)$ and $\theta_{i, j}=\eta^{*} k^{*-1} \Phi_{i, j}(V)$. Then equation (5.1) yields

$$
\begin{equation*}
S q^{16} U=\sum_{0 \leq i \leq j \leq 3, i \neq j-1} a_{i, j} \theta_{i, j} \bmod \sum_{0 \leq i \leq j \leq 3, i \neq j-1} a_{i, j} P_{i, j} . \tag{5.2}
\end{equation*}
$$

We are interested in the Stiefel-Whitney number $w_{24} \cdot w_{16}[M]$. From Lemma 4.4 we have $\bar{w}_{16}=w_{16}$ and $\bar{w}_{24}=w_{24}$. We have

$$
S q^{16} U=p^{*}\left(\bar{w}_{16}\right) \text { บ } U=p^{*}\left(w_{16}\right) \cup U
$$

Hence

$$
p^{*}\left(w_{24}\right) \mathbf{U} q^{16} U=p^{*}\left(w_{24}\right) \mathbf{u} p^{*}\left(w_{16}\right) \mathbf{\cup} U=\Phi\left(w_{24} \cdot w_{16}\right)
$$

Since Φ is an isomorphism it follows that $w_{24} \cdot w_{16}$ is zero whenever $p^{*}\left(w_{24}\right) \mathbf{u}$ $S q^{16} U$ is zero. Motivated by this we analyse the class $p^{*}\left(w_{24}\right)$ u $S q^{16} U$ further.

Proposition 5.3. We have $p^{*}\left(w_{24}\right)$ u $S q^{16} U=\lambda p^{*}\left(w_{31}\right)$ u $\theta_{1,3}$ for some $\lambda \in Z_{2}$.

For the proof of this proposition we need the following
Lemma 5.4. For any $x \in H^{i}(M)$ and $\alpha \in \mathbb{Q}^{j}$ with $1 \leq j \leq 15$ we have

$$
\alpha\left\{p^{*}(x) \cup U\right\}=p^{*}(\alpha(x)) \mathbf{\cup} U
$$

Proof. Let $\nabla(\alpha)=\alpha \otimes 1+1 \otimes \alpha+\sum \alpha_{i}^{\prime} \otimes \alpha_{i}^{\prime \prime}$ with $\operatorname{deg} \alpha_{i}^{\prime}>0$, $\operatorname{deg} \alpha_{i}^{\prime \prime}>0$. Then by Cartan's formula we have
$\alpha\left\{p^{*}(x) \cup U\right\}=\alpha\left(p^{*}(x)\right) \cup U+p^{*}(x) \mathbf{u} \alpha(U)+\sum \alpha_{i}^{\prime}\left(p^{*}(x)\right) \mathbf{u} \alpha_{i}^{\prime \prime}(U)$.
But since $S q^{j} U=0$ for $1 \leq j \leq 15$ it follows that $\beta(U)=0$ for any $\beta \in \mathbb{Q}^{j}$ with $1 \leq j \leq 15$. Hence

$$
\alpha\left\{p^{*}(x) \cup U\right\}=\alpha\left(p^{*}(x)\right) \cup U=p^{*}(\alpha(x)) \cup U
$$

Proof of Proposition 5.3. From (5.2) we get

$$
\begin{align*}
& p^{*}\left(w_{24}\right) \cup \mathbb{S q}^{16} U \\
& \quad=\sum_{0 \leq j \leq j \leq 3, i \neq j-1} p^{*}\left(w_{24}\right) \cup a_{i, j} \theta_{i, j} \bmod \mathrm{p}^{*}\left(w_{24}\right) \cup \sum a_{i, j} P_{i, j} \tag{5.5}
\end{align*}
$$

To prove Proposition (5.3) we have only to prove the following three state-
ments:
(a) Each of the groups $p^{*}\left(w_{24}\right)$ u $a_{i, j} P_{i, j}$ is zero.
(b) For $(i, j) \neq(1,3)$ the element $p^{*}\left(w_{24}\right) \cup a_{i, j} \theta_{i, j}$ is zero.
(c) $p^{*}\left(w_{24}\right)$ บ $a_{1,3} \theta_{1,3}=\lambda p^{*}\left(w_{31}\right)$ u $\theta_{1,3}$ for some $\lambda \in \mathbf{Z}_{2}$.

Denote the groups $H^{d+2^{i}+2^{i-1}}(E, \dot{E})$ and $H^{2^{i+2 i-1}}(M)$ by $L_{i, j}$ and $B_{i, j}$ respectively. Since $\theta_{i, j} \in L_{i, j}$ to prove (a) and (b) it suffices to prove statements (a^{\prime}) and (b^{\prime}) mentioned below:
(a^{\prime}) For $(i, j) \neq(1,3)$ the group $p^{*}\left(w_{24}\right) \cup a_{i, j} L_{i, j}$ is the zero subgroup of $H^{40+d}(E, \dot{E})$.
$\left(\mathrm{b}^{\prime}\right) \quad p^{*}\left(w_{24}\right) \cup a_{1,3} P_{1,3}=0$.
First consider $p^{*}\left(w_{24}\right) \cup a_{i, j} L_{i, j}$ with $(i, j) \neq(1,3)$. Let $e_{i, j} \in L_{i, j}$ be an arbitrary element. We can write $e_{i, j}$ as $p^{*}\left(x_{i, j}\right) \cup U$ for some $x_{i, j} \in B_{i, j}$. Hence

$$
\begin{aligned}
p^{*}\left(w_{24}\right) \cup a_{i, j} e_{i, j} & =p^{*}\left(w_{24}\right) \cup a_{i, j}\left\{p^{*}\left(x_{i, j}\right) \cup U\right\} \\
& =p^{*}\left(w_{24}\right) \cup p^{*}\left\{a_{i, j}\left(x_{i, j}\right)\right\} \cup U
\end{aligned}
$$

by Lemma 5.4 , because $\operatorname{deg} a_{i, j}=16-\left(2^{i}+2^{j}-1\right)$ and for $0 \leq i \leq j \leq 3$ we have $1 \leq \operatorname{deg} \alpha_{i, j} \leq 15$. Thus

$$
p^{*}\left(w_{24}\right) \cup a_{i, j} e_{i, j}=p^{*}\left(w_{24} \cup a_{i, j}\left(x_{i, j}\right)\right) \cup U
$$

Now $\operatorname{deg} a_{i, j}+\operatorname{deg} x_{i, j}=16$ and since M is of dimension 40 by the definition of right action of \mathbb{Q} on $H^{*}(M)$ we have

$$
w_{24} \cup a_{i, j}\left(x_{i, j}\right)=\left(w_{24}\right) a_{i, j} \cup x_{i, j}
$$

The $a_{i, j}$'s occurring in the sum (5.5) with $(i, j) \neq(1,3)$ are $a_{0,0} ; a_{0,2} ; a_{0,3}$; $a_{1,1} ; a_{2,2}$ and $a_{3,3}$ and their respective degrees are $15,12,8,13,9$ and 1 . By Corollary 4.8 and Lemma 4.9 we have $\left(w_{24}\right) \mathbb{Q}^{\mu}=0$ for $\mu=15,12,8,13,9$ and 1. Hence $\left(w_{24}\right) a_{i, j} \cup x_{i, j}=0$ and it follows that $p^{*}\left(w_{24}\right) \cup a_{i, j} e_{i, j}=0$ for every $e_{i, j} \in L_{i, j}$ with $(i, j) \neq(1,3)$. This proves statement (a^{\prime}).

As for statement (b^{\prime}) we have

$$
\begin{aligned}
P_{1,3} & =\eta^{*} k^{*-1} Q_{1,3}(T(\nu)) \\
& =\eta^{*} k^{*-1}\left\{S q^{2} H^{d+7}(T(\nu))+\sum_{0 \leq l<3} b_{l} H^{d+2^{l-1}}(T(\nu))\right\}
\end{aligned}
$$

by (2.2).
Setting $b_{3}=S q^{2}$ we have

$$
P_{1,3}=\eta^{*} k^{*-1}\left\{\sum_{0 \leq l \leq 3} b_{l} H^{d+2 l-1}(T(\nu))\right\}
$$

with $b_{l} \in \mathbb{Q}$ of $\operatorname{deg} 10-2^{l}$. However

$$
\eta^{*} k^{*-1} b_{l} H^{d+2^{l-1}}(T(\nu))=b_{l} H^{d+2^{l-1}}(E, \dot{E})
$$

and

$$
\begin{aligned}
p^{*}\left(w_{24}\right) \cup a_{1,3} P_{1,3} & =p^{*}\left(w_{24}\right) \cup a_{1,3}\left(\sum_{0 \leq l \leq 3} b_{l} H^{d+2^{l-1}}(E, \dot{E})\right) \\
& =\sum_{0 \leq l \leq 3} p^{*}\left(w_{24}\right) \cup a_{1,3} b_{l} H^{d+2^{l-1}}(E, \dot{E})
\end{aligned}
$$

If $e_{l} \in H^{d+2^{l-1}}(E, \dot{E})$ is an arbitrary element we can write it as $p^{*}\left(x_{l}\right)$ u U with $x_{l} \in H^{2 l-1}(M)$. Then we have

$$
p^{*}\left(w_{24}\right) \cup a_{1,3} b_{l} e_{l}=p^{*}\left(w_{24}\right) \cup a_{1,3} b_{l}\left\{p^{*}\left(x_{l}\right) \cup U\right\}
$$

Since $1 \leq \operatorname{deg} b_{l} \leq 15$ and $\operatorname{deg} a_{1,3}=7$ applying Lemma 5.4 twice we have

$$
p^{*}\left(w_{24}\right) \cup a_{1,3} b_{l} e_{l}=p^{*}\left(w_{24} \cup a_{1,3} b_{l}\left(x_{l}\right)\right) \cup U
$$

By Lemma 4.7 we have $\left(w_{24}\right) a_{1,3}=\lambda w_{31}$ for some $\lambda \in \mathbf{Z}_{2}$. Hence

$$
\left(w_{24}\right) a_{1,3} b_{l}=\left(\lambda w_{31}\right) b_{l}=\lambda\left(w_{31}\right) b_{l}
$$

Since deg $b_{l}=10-2^{l} \neq 0$ and 1 we see from Corollary 4.8 that $\left(w_{24}\right) a_{1,3} b_{l}=0$.
Hence

$$
p^{*}\left(w_{24}\right) \cup a_{1,3} b_{l} e_{l}=p^{*}\left(\left(w_{24}\right) a_{1,3} b_{l} \cup x_{l}\right) \cup U=0 .
$$

This completes the proof of statement (b^{\prime}).
As for statement (c) we can write $\theta_{1,3}$ as $p^{*}\left(x_{1,3)} \cup U\right.$ for some $x_{1,3} \in B_{1,3}$. Then as before

$$
\begin{aligned}
p^{*}\left(w_{24}\right) \cup a_{1,3} \theta_{1,3} & =p^{*}\left(w_{24} \mathbf{\cup} a_{1,3}\left(x_{1,3}\right)\right) \cup U \\
& =p^{*}\left(\left(w_{24}\right) a_{1,3} \mathbf{\cup} x_{1,3}\right) \mathbf{\cup} U \\
& =p^{*}\left(\lambda w_{31} \cup x_{1,3}\right) \cup U \\
& =\lambda p^{*}\left(w_{31}\right) \cup p^{*}\left(x_{1,3}\right) \cup U \\
& =\lambda p^{*}\left(w_{31}\right) \cup \theta_{1,3}
\end{aligned}
$$

This completes the proof of Proposition 5.3.

6. The main theorem

As remarked earlier the main result proved here is
Theorem 6.1. If M^{40} is a 40-dimensional closed differentiable manifold with $w_{1}=w_{2}=w_{4}=w_{8}=w_{31}=0$ then M is cobordant to zero.

Proof. Follows immediately from Lemma 4.1 and Proposition 5.3.

References

1. J. F. Adams, On formulae of Thom and $W u$, Proc. Lond. Math. Soc., vol. 11 (1961), pp. 741-752.
2. - , On the non-existence of elements of Hopf-invariant-one, Ann. Math., vol. 72 (1960), pp. 20-104.
3. E. H. Brown and F. P. Peterson, Relations among characteristic classes I, Topology, vol. 3 (1965), pp. 39-52.
4. J. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology, vol. 3 (1965), pp. 223-230.
5. N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, no. 50, Princeton, 1962.
6. R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology, vol. 4 (1965), pp. 241-256.

University of Illinois
Urbana, Illinois
Tata Institute of Fundamental Research
Bombay, India

[^0]: Received November 4, 1968.
 ${ }^{1}$ Work done while the author received financial support through a National Science Foundation grant.

