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1. Introduction and definitions
If A (a,) is an infinite matrix and S {S} is a sequence then A is

applicable to S if all of the series

y --0 a S, n 0, 1, 2,

converge. If, in addition, {y} is a convergent sequence, then A sums S to
lim y,. Whenever A sums every convergent sequence S to lim S. then A is
regular. If A and B are two matrices and A sums every sequence that B
sums then A is stronger than B.
Many useful matrices in the theory of summability are obtained from non-

constant functions f (z) that are analytic in a neighborhood of the origin by
setting

[](z)] %A z, n 1, , ..., / , 0 0, 1, , ....
The matrix (f) is said to be generated by f(z). For example f(z)
1 r - rz generates the Euler E method [1] and f(z) (1 r)/(1 rz)
generates a method studied by W. Meyer-KSnig [3] and P. Vermes [6].
A natural generalization of these methods is the matrix generated by

/(z) ( + (1 )z)/(1 z).

Such a method is called a Karamata matrix and will be denoted by K[a, ].
B. Bajsanski [2] has studied these matrices and determined conditions that
they be regular when a and B are real. He has also investigated the relative
strength of different Karamata matrices.
The conditions for regularity of K[a,/] have been generalized to complex

values of a and [5], and Bajsanski’s theorem about the relative strength of
Karamata matrices is a corollary of a more powerful result in his paper. It is
then reasonable to hope that more specialized techniques together with more
information on regularity will yield other theorems about the relative strength
of Karamata matrices. Results of this type will be found in Section 3. Sec-
tion 2 is devoted to some preparatory theorems, and Section 4 to closing re-
marks.

:2. Some preparatory theorems
The Weierstrass theorem on uniformly convergent series of analytic func-

tions will be a primary tool, and when reference is made to Weierstrass’
theorem it is this theorem which is being cited.
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THEOREM 2.1. If f(z) and g (z generate matrices F and G, respectively, and
if f (z) is analytic on an open disc which contains g (0), then h (z) f(g (z)
generates a matrix H and H FG.

Proof. Since f (z) is analytic at g (0) then h (z) is analytic in a neighborhood
of the origin and hence generates a matrix. Ii’f (z) is analytic in {z z < R}
then since ]g(0) < R, there is, a neighborhood N of the origin where
Ig(z) -< R1 < R. Applying Weierstrass’ theorem

--0 hk zk [h (z)] [f (g (z))]" =0f[g (z)] z -0fg
inN. Soil FG.

CorolLarY 2.2. U[a[ < 1 then K[, ]K[a, ] K[, ] where

v= (+a(1--))/(1-aS) and ( + 8(1- a ))/(1-- a).

Proof. This result is a direct consequence of Theorem 2.1.

THEORE 2.3. U K[a, ] () then

ft (1 a)(1 )t + (1 a-- )t
1,2,

=0 (1 at) 1 at

0Ao t" 1/(1 .t),

Proof. Letf(z) (a + (1 a-- )z)/(1 z). If0 < R < 1/[
then there is a p > 0 such thtif[t] p and z{ R then{tf(z)[ i < 1.
Fix It[ g p and let

,(z) 1/(1 tf(z)) o t[f(z)].
Since this series converges uniformly in[z R, we muy upply the Weier-
strass theorem and write

But

i-(+ (i--
1 at

z

and for sufficiently small zl and It[ this may be expanded into the series

%-,i-z +(i--)t’
zk

-o i at 1 at

Equating coefficients of the two power series for t (z) then completes the
proof.

THEOREM 2.4. (a) If 0 then K[a, ] is applicable to Sn} if and only if
S, O (n--’), p O, 1, 2,....
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(b) /f {S} is summed by K[a, 0] then

/ ,oI)S =0

Proof. (a) By Corollary 2.2., K[a, 0]K[0, f] K[a, t]. The matrix
K[a, 0] is normal, i.e. all of its terms which lie above the diagonal are zero and
those terms on the diagonal are not zero. If K[a, 0] (a), K[0, ] (b)
and K[a, ] (c) then.

k--1 )k-’nb,,= (.- (1--), n,k 1,2,
and

c, S =0 S =0 any bye.

Since a 0, mathematical induction may be used to establish that
converges for each n if and only if bv S converges for each p. But it is
known [4] that a necessary and sufficient condition that all these latter series
converge is that S 0 (n--), p 0, 1, 2, ....

(b) It is well-known [1] that if K[a, 0] (a) and
n 0, 1, 2, then

Since {} converges and hence is bounded, then

Is l =o =o

Coaoxa 2.5. If K[a, ] sums the sequence {S=} then S converges in
some neighborhood of the origin.

Proof. This follows from the estimates obtained in Theorem 2.4.

3. The principal results

THEOREM 3.1. Suppose K[a, ] and K[v, g] are regular Karamata matrices,
and that there is a regular Karamata matrix K[% ] such that

KN, ]K[a, ] K[v, g].

If K[a, ] sums the sequence {S} to L and S z is analytic at , and if
K[v, ] is applicable to {S} then K[v, ] also sums {S} to L.

Proof. Without loss of generality assume that S0 0. For if not, let
S’. S.- S0andL’ L- S0. Since K[a, ] is regular, then] < 115]

k.so that K[a, ] sums the sequence {S. to L. Moreover S s analytic at, and since K[v, g] is applicable to {S}, it is also applicable to {S’}. Through-
out the proof let K[a, ] (a), K[% ] (Cn), and K(V, g] (bn). The
estimates of Theorem 2.4 show that S and all of its derivatives converge
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uniformly in a closed disc about the origin whose radius is I/1 if f 0 and is
1 a ]/2 (1 + a I) if 0. (We exclude from our consideration the case

where/ 0anda 1.) Thusif

a() (+ (1 a- ))/(1 a)

then S,[a ()]* converges uniformly together with its derivatives in u closed
region which contains the origin. By Theorem 2.3 if

U() (1 a) (1 ) S[a()]_
(i a) -i

then
H () - S -0 a, - S, a, ().

If Weierstrass’ theorem is applied to H () it follows that
) ()H(’) () -i S a

and the uniform convergence of this series implies that

H(-) () a)(0)
lim Z S Z
0 n -i n -i

But since S is analytic at and a (0) then H () is analytic at the
origin. So

Since {} is bounded, H () is analytic at least where < 1. Let

G(z) (1 )(1 )zH(c(z))
where c(z) + (1 )z.

(i z)( + (i )z) i z
Now K[, ] is regular, so ] < 1 [5] andif 0, thenc(0) 0. Since
H (0) 0 then G (z) is analytic in neighborhood of the origin. By Theorem
2.3

G (z) ZT- SZa ZT c z

and for sufficiently small [z ,
a0c z z c a b z.

Using Theorem 2.3 again shows that

G(z) (1 )(1- )Z Si[b(z)]_l where b(z) +(1 --)z.
(1 vz) -i 1 vz

Now by hypothesis K[v, ] is applicable to {S}, so the argument used earlier
may be duplicated on G (z) to show that

G() (O)/n b S.
But

(i )(i )zG(z)
(i z)( + (i )z) -, [c(z)]
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when Ic(z) < 1, so by Theorem 2.3 G (z) ,-1 , -0 c., z and it fol-
lows that

a( (O)/n c,
so that

Since K[% i] is regular and {as} converges to L, then K[v, ] sums {S,} to L.

COROLLaV3.2. Suppose that a( < I1- a - a and

l a f + al- 17(1 -/) a(1 )[
> (1- a)(1-)(1- #)(1- ) > 0

and that K[a, ] sums {S,} to L. If S is analytic at and K[v, ] is ap-
plicable to {S,} then K[, ] sums {S} to L.

Proof. The conditions on a, , , v are those needed to use Corollary 2.2
and to insure that K[% ], as given in Theorem 3.1, be regular [5].

4. Closing remarks
In Theorem 3.1 it was necessary to assume that

To see this we use the fact [4] that if 0 / 1 then there is an infinite-
dimensional linear space of sequences S {S,} such that K[0, ]S 0. It is
readily seen that if S is such a sequence and if S, is analytic at then
S. 0 for each n. Now let , and -f/(1 f) so that u 0. Let
S 0 be a sequence for which K[0,/]S 0 and let 0 < f < 1/3 so that
there is a number v satisfying

The left-hand side of this inequality implies that K[% 8] is regular but the
right-hand side implies that (1 v)/(1 -t- ) > 5. Consequently if

s,, o(( + )/(

then S, t" is analytic at . So by Theorem 2.4 K[n, 0] cannot sum
It is also necessary to assume that K[v, ] was applicable to the sequences in

question. That the other hypotheses of the theorem do not always guarantee
this may be seen by considering the case where 0 < a < 1, 0 < <: 1 and

A K[, 0], B K[a(1 8)/(1 aS), 8(1 a)/(1 )], C K[0, i].

Then C is a regular matrix [5] and by Corollary 2.2, CA B. But if S
r’((-1 a)/(1 a)) and0 < r <= 1then {S} is assumed to zero by
K[a, 0] while if r and are chosen near enough to 1, then

.a ( >I

so that by Theorem 2.4, B is not applicable to
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However, there are relatively common situations where the applicability of
K[a, ] to Sn! implies the applicability of K[, ]. It may be seen that if z
satisfies

(I) Izl <
and

(II) I(a + (1 a )z)/(1 z) < 1

then K[a, ] sums {z} to zero. If a < 1, then an easy application of Weier-
strass’ theorem implies that K[, ] also sums/z} to zero. But if there are
values of z which satisfy (II) but not (I) and if ]] > ]1 then there are
values of z which satisfy (II) and zl > 1 > Iz !. Then K[, ] sums {z} to
zero but K[, ] is not applicable. Consequently] -< and so by Theorem
2.4, K[, ] is applicable to every sequence to which K[a,/] applies. Condi-
tions on K[a,/] that there be a z satisfying (II) but not (I) are complicated
in general, but in the case where a and are real and K[, ] is regular,
these conditions become

+ <
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