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Introduction

The -lgebras of Henriksen nd Johnson come equipped with nturl
topology clled the uniform topology. In this topology, the closure of n
/-idel need not be n/-idel; in prticulr, mximl/-idels which re not
closed my exist. Nevertheless, closed /-idels re of some interest. We
show here that, if I is an/-ideal in uniformly closed -lgebr A, then A/I
is (necessarily uniformly closed) -lgebr iff I is closed. As special cse,
mximl/-idel in uniformly closed -lgebr is rel iff it is closed.
A-lgebr A is clled normal if every proper closed/-idel in A is contained

in closed mximl/-idel in A. Using normality, we re ble to modify a
result of Henriksen nd Johnson which gives n/-lgebr characterization of
C(X), for X LindelSf. Our modification includes n erlier result of Brinerd.

1. Preliminaries

We begin by summarizing some of the definitions nd results of [2] nd
[12]. A fmilirity with the terminology nd bsic results of the Gillmn
nd Jerison text [11] will be ssumed. We adopt the convention that X
will always denote a completely regular Hausdorff space.
An 1-algebra is n lgebr A over n ordered field K which, under prtil

ordering >_, is lttice which stisfies

(i) a >_ bimpliesa+ c >_ b+ c,
(ii) a >_ 0ndb >_ 0impliesab >_ 0,nd
(iii) a >_ 0nda >_ 0impliesaa >_. O,

for a, b, c e A nd a e K. An/-lgebr A is clled n f-algebra if it stisfies

(iv) a/b 0ndc >_ 0 implies ca /k b ac/b O.

Aa/-lgebr A is sid to be archimedean if, for a, b e A, a 0 whenever na <_ b
for 11 integers n. A rel rchimeden f-lgebr with n identity is known as
-algebra; -lgebr is necessarily commutative [2, Theorem 13]. Simple

examples of -algebras are the trivial C-algebra {0} and the -algebra I of
real numbers, each with the obvious operations. Another example is the
-algebra C(X) of all continuous real-valued functions on X under the point-

wise operations.
An algebra and lattice homomorphism A --. B between the real/-algebras

A and B is called an 1-homomorphism; similarly we define 1-monomorphism,
1-epimorphism and 1-isomorphism.
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Let A be a nontrivial real f-algebra with identity 1. The mapping r --. r.1
is an/-monomorphism of the -algebra R into A; thus we shall consider R
as a sub--algebra of A by identifying r with r.1. For a, b e A, define

o(a,b) inf{reR: la-b[ /k 1_ r}

where [c] c / (-c) for each c e A. Then o is easily seen to be a pseudo-
metric on A. Define o in the obvious way on the trivial )-algebra.

If A is a real f-algebra with identity, then p is called the uniform pseudometric
on A and the topology induced by o is called the uniform topology. If A is
complete in the pseudometric o, then we say that A is uniformly closed. The
-algebras {0}, R and C(X) are uniformly closed.
If A and B are real f-algebras with identity and A -- B is an/-homomor-

phism with (1) 1, then is uniformly continuous with respect to the uni-
form pseudometrics on A and B.

If A is a -algebra, then p is a metric. Even in the case of A C(X), the
uniform topology need not make A into a topological algebra.

In the following, all topological properties of a real f-algebra with identity
will refer to the uniform topology.
By an ideal in an/-algebra, we shall mean an algebra ideal. An ideal I

in an /-algebra A is said to be an l-ideal if a e I whenever a e A, b e I and

Let I be an/-ideal in the/-algebra A, and let I A A/I denote also the
natural algebra epimorphism. By defining I(a) >_ 0 iff a/k 0 e I, A/I be-
comes an /-algebra and I an /-epimorphism. If A is a real f-algebra with
identity, then so is A/I; furthermore, I(1) 1, so that the/-epimorphism I
is continuous.

Let A be a O-algebra. The collection of all maximal/-ideals in A is denoted
by 9g (A). An/-ideal I in A is called a real 1-ideal if A/I is/-isomorphic to R.
The collection of all real /-ideals in A is denoted by (R(A); clearly
(R(A) c;(A). For aA, letorg (a) /M e(A) aeM}. If we take
the collection of all sets 9(a) as a base for the closed sets, then we obtain a
compact Hausdorff topology on (A). In the sequel, we shall consider (A)
as a topological space with this topology.

Let ,R denote the two-point compactification of R. For a compact space
X, let D(X) denote the set of all continuous f X --. ,R for which

x f(z) R}

is dense. If, for f, g e D(X), there is some (necessarily unique) h e D(X)
such that h(x) f(x) -b g(x) for all x e (R(f) n (R(g), then we write h f -b g.
Similarly, we define fg, f k/ g, f/k g and rf for r e R. While f -}- g and fg
need not exist in general, f /g,f/ g and rf always exist in D(X). A subset
of D(X) which becomes a -algebra under these operations will be called a
sub-O-algebra of D(X).

Let A be a-algebra. It is shown in [12, Theorem 2.3] that A is/-isomorphic
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to a sub--algebra A’ of D((A)) via an isomorphism which carries each
element of the copy of 1 contained in A onto the corresponding constant func-
tion on (A). Furthermore, 6t(A) I"1 l(R(f) f A’} and, if F and K are
disjoint nonempty closed subsets of (A), then there exists f e A such that
f[F] 10/and f[K] 1}. We shall identify A and A; hence each a e A will
be considered as a continuous function on (A) into ,I. For
M el)(A), a eM iff (ab)(M) 0 for all b e A [12, Theorem 2.5]; thus, for
Me(R(A), aeMiffa(M) 0. The -algebra A is uniformly closed
iff C((A)) A [12, 3.2].
We shall let N denote the set {1, 2, 3, of positive integers considered

both as a countable discrete space and as an index set.

2. Closed/-ideals

Let A denote a nontrivial -algebra in this section. If I is an/-ideal in A,
then A/I is a commutative f-algebra with identity, but may fail to be archi-
medean.
Let I be an/-ideal in A. Following [7], we call an element I(a) e A/I an

infinitesimal if 1 (ha) - 1 for all n e N. If A/I is archimedean, then clearly
0 is its only infinitesimal; the converse fails, as is shown in 2.4.

2.1. LEMMA. Let a A, and let I be an 1-ideal in A. Then a is in the closure
of I iff I (a) is an infinitesimal in All.

Proof. We may assume that I is proper.
Suppose that a is in the closure of I. Then, for each n e N, there exists

b.eIsuchthat a b, - 1In. Hence

I(a) _< I(a b,)l-l-]I(b,)l I(I a b, I) <- l/n,

for euch n e .
Now suppose that I(a) is n infinitesimal in A/I. For n e , define

b (--l/n) k/ (a/ l/n),

whence b

_
1In and I(b) I(a). If we definec a b., theneach

c e I, and c - a uniformly.
This gives a rather nice characterization of closed/-ideals.

2.2. THEOREM. The following conditions are equivalent for an l-ideal 1
in A.

(a) I is closed.
(b) A/I contains no infinitesimals except O.
(c) All is Hausdorff.

Proof. The equivalence of (a) and (b) is immediate from 2.1. Condition
(b) is easily seen to be equivalent to the T-property for A/I; since A/I is a
pseudometric space, this in turn is equivalent to (c).
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It is clear by 2.2 that any M e (A) is closed.
prove the following.

M:ore specifically, we can

2.3. THEOREM. Let M e(A). Then M (R(A) iff A/M is archimedean.

Proof. For M e g.(A), A/M is a totally ordered integral domain [12,
1.6 (ii)]. If A/M is archimedean, then it is/-isomorphic to a subring of 1
[8, Chap. VIII, Theorem 1], so by [11, Theorem 0.22], M e (R(A).

If M e l) (A) and M is closed, then it need not follow that M e (R(A), as
the following example of Henriksen and Johnson shows.

2.4. Example [12, Example 3.6]. Let P,+ {y e R y >_ 0/, and let A de-
note the )-algebra of all f e C(R+) for which there exists a point x e 1+ and a
polynomial p such that f(y) p(y) for all y :> x. Now let M denote the
set of allfeA such that, for some xeI+,f(y) 0 for ally >_ x. Then
M e(A), and M is closed. But M (A), since M is not a maximal ring
ideal.

This C-algebra, however, is not uniformly closed. There is no uniformly
closed example. This will be a simple corollary of the next result, which seems
to have some independent interest.

2.5. THEOREM. Let A be uniformly closed, and let I be an 1-ideal in A.
A/I is a (necessarily uniformly closed) -algebra iff I is closed.

Then

Prooj. If A/I is a )-algebra, then I is closed, by 2.2.
Suppose that 1 is closed. Clearly A/I is a commutative real f-algebra with

identity. We must show that A/I is (a) uniformly closed and (b) archime-
dean. We may assume that I is proper.

(a) Suppose that (I(a,)) is a Cauchy sequence in A/I. By going to a
subsequence, if necessary, we may assume that

I(an+l) I(an) - 2- for all n 1.

For each n ell, define bn -2 / ((an+l a) / 2-), whence

b - 2- and I(b,) I(a,+ a,).

If we define c a and c, a bl b= bn-1 for n >_ 2, then
(Cn) is clearly a Cauchy sequence in A. So there is some a e A such that
cn -- a uniformly. Then I(c,) I(a) uniformly in A/I, and I(cn) I(a,)
for all n e ll.

(b) Suppose nI(a)

_
I(b) for all integers n. Since A is uniformly closed,

1 ibl has an inverse ceA [12, 3.3]. But thennI(a)I(c)

_
I(bc)

_
1

for all integers n, whence I(a)I(c) - 1In for all n e ll. Since I is closed,
we must have I(a) I(c) 0 by 2.2. Clearly then I(a) 0.

2.6. COROLLARY.
iff M t(A).

If A is uniformly closed and M (A), then M is closed

Proof. By 2.5, M is closed iff AIM is archimedean. Now apply 2.3.
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2.7. Example. Let denote the uniformly closed C-algebra of Lebesgue
measurable functions on R. If I {fe2" f,o fldu 0}, then I is a
closed/-ideal in o, and 2.o 2/I is a C-algebra, the algebra of Lebesgue mea-
surable functions modulo null functions. Similarly, if we replace 2 by its sub-
algebra 6 of Baire functions on R, then 6o 6/I is a C-algebra, the C-al-
gebra of Baire functions modulo null functions. (See [12] for a discussion of
20 and 60 .)

3. Normal c-algebras
Let A denote a nontrivial -algebra in this section. We present now a

variation of a theorem of Henriksen and Johnson which characterizes C(X),
for X Lindelhf. The result hinges on the following observation.

3.1. THEOREM. If every proper closed 1-ideal in A is contained in some real
1-ideal, then t A is a dense Lindel6f subspace of(A).

Proof. Suppose that (A) is not dense in 9T (A). Let U be a nonempty
open subset of (A) whose closure is disioint from the closure of 6t(A).
Define

I {aeA:a[U] {0}}.

Since each b e A is real-valued on a dense subset of (A), I is an/-ideal;
clearly I is closed. By [12, 2.3 (ii)], there is some a e A such that a[U] {0}
and a[6t(A) {1}. So a e I while a M for all M e (R(A).
Suppose that every proper closed /-ideal in A is contained in some real

/-ideal, and let t be an open cover of 6t(A). Let I denote the set of all a e A
for which there is a countable subfamily ta of t such that (J ta contains all
M e 6t(A) with a M.

I is an /-ideal. Clearly 0 e I, so that I is not empty. If a, b e I, then
a b e I (take -b t u tb). If a e I, b e A, then ab e I (take Cab a).
IfaeI, beA,]b] _< la],thenbeI(takeb t).

I is closed in A. Suppose aneI for neN and an--*aeA uniformly.
Define X) (J:=l a, a countable subfamily of . To see that a e I, it
suffices to take t X). To show this, suppose a cM e(R(A). Then
M(]a]) eforsome eeR, e > 0. Let (en) be a decreasing sequence of
positive real numbers such that a an _< en for each n e N and lim en 0.
Now

for all heN, so that M(laml) > 0 for some meN. Hence amcM and
M eU c::

Suppose that I is a proper -ideal. Then, by hypothesis, here is som
Mo e (A) such that I Mo. Choose Uo e q such tha Mo e U0, and hoose

e A suCh that Mo e (A)\(a) Uo. Then letting a U0}, we have
e I Mo, nd this ontradiCts our ChoiCe of Mo.
Thus, I is not proper, so we mus have 1 e I. 8o here is a ountbl
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subfamily tl of t such that U ql contains all M e $t(A) with 1 M. That is,
6(A) U.
For a e A, let <a) denote the smallest /-ideal in A containing a. If A is

uniformly closed, then <a) A iff a has an inverse a-1 e A [12, 3.3 and 3.4].
We say that A is closed under inversion if <a) A whenever a e A, a is not a
zero-divisor of A, and a M for all M e 6(A).

Following Michael [15, Definition B.1], we make the following definition.

3.2. DEFINITION. A -algebra A will be called normal if every proper closed
/-ideal in A is contained in a closed maximal/-ideal in A.

3.3. THEOREM. Let A be uniformly closed.
(a) If A is normal, then 6(A) is a dense Lindelaf subspace of (A).
(b) If A is closed under inversion and 6 A is a dense LindelSf subspace

of A then A is normal.

Proof. (a) This follows immediately from 2.6 and 3.1.
(b) Let A be closed under inversion, and let 6t(A) be a dense LindelSf

subspace of 9E (A). Suppose that I is a closed/-ideal which is not contained
in any M e 6(A) we will show that I is not proper. Clearly then 6(A) is a
union of open sets of the form

U(a) {M e 6t(A) a M}
where a e I. Since 6(A) is LindelSf, there is a sequence (an) in I such that
6t(A) 0:=1 V(an). For each n e 11, an and an(1 + Jan ])-1 are associates
in A by [12, 3.3], so we may assume an _< 1. Now let a 7=1 2-hi an I;
a e 1, since I is closed. But each M e 6t(A) is in some U(an), whence

[M(a) i>_ 2-n]/(an)[> 0 and aM.
Since (A) is dense in (A), a is not a zero-divisor of A, and therefore
(a) A; that is, I A.

3.4. COIOLLARY. The following conditions are equivalent for a uniformly
closed -algebra A.

(a) A is normal.
(b) A/I is normal for each proper closed 1-ideal I in A.
(c) Every proper closed l-ideal in A is an intersection of closed maximal

(i.e., real) 1-ideals.

Proof. (a) implies (b). Let A be normal, and let I be a proper closed
/-ideal in A. Any/-ideM in A/I is of the form J/1 where J is an/-ideal in A
containing I; furthermore, since (A/I)/(J/I) ---A/J, J/I is closed iff J
is closed, by 2.5. It follows that A/I is normal.

(b) implies (c). Let I be a proper closed/-ideal in A, and suppose that
A/I is normal. By 3.3, $t(A/I) is dense in 9(A/1) which means that
f 6t(A/I) (0). Since, foranl-ideal J/IinA/I, J/I e 6t(A/I) iffJ e6(A),
we havel VI{Me6t(A) :IcM}.

(c) implies (a). Obvious.
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The converse of 3.3 (a) is false if we do not assume that A is closed under
inversion; the following example illustrates this.

3.5. Example. Let X be any (non-normal) realcompact space with dis-
joint nonempty closed subsets X0 and X1 which are not completely separated
and such that X0 is LindelJf. One such example would be the Sorgenfrey
plane X P, X 1 described in [14, 1 L and 4 I], where a basic neighborhood
of the point (a, b) e X is of the form [a, c) X [b, d); define

X0 {(x, 1 x):xrational} and X1 {(x, 1 x):xirrational}.

Let A C(X) Xo, the uniformly closed -algebra of restrictions f X0,
where f e C(X). One easily checks that (A) clxX0 and
((A) clvx X0 X0, so that (A) is a dense LindelOf subspace of (A).
But A is not normal; for let

I {geA :g =fiX0 for some feC(X) with X1cZ(f)}.

Then I is a closed/-ideal in A;I is proper, since X0 and X1 are not completely
separated. For each x e X0, there exists f C(X) such that X1 c Z(f) and
f(x) 1, so that I is contained in no real/-ideal.

In [12], Henriksen and Johnson give an/-algebra characterization of C(X),
for a LindelJf X. We can now prove a modification of this result which has a
slightly more algebraic flavor.

3.6. THEOREM. A nontrivial -algebra A is 1-isomorphic to C(X), for some

Lindel6f space X, iff
(a) A is uniformly closed,
(b) A is closed under inversion, and
(c) A is normal.

Proof. In [12, Theorem 5.4], it is shown that A is/-isomorphic to C(X),
for some LindelOf X, iff (a) and (b) hold together with the condition that
(A) be a dense LindelOf subspace of i) (A). The theorem now follows from
3.3.
An equivalent version of 3.6 is obtained if we replace "l-ideal" by "ideal"

when defining (A), (A) and "normal". This is clear by the following
result.

3.7. THEOREM. If I is either a closed or a maximal ideal in the uniformly
closed -algebra A, then I is an 1-ideal.

Proof. Let A be uniformly closed, let I be either closed or maximal, and
suppose that a e A, b eI satisfy la[ _< b I.

Since C((A)) A, I*= I n C((A)) is an ideal in C((A)). If I is
maximal, then I* is prime, hence is an/-ideal by [11, Theorem 5.5]. If I is
closed, then I* is closed, and by [11, 40.4] is therefore an/-ideal.
Letc (1 - Ibl)-leC((A));thenlacl <- IbclandbceI*. Thus,

ace I*, and therefore a e I.
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4. -rings
An/-algebra A is said to be a-complete if every countable subset of A which

is bounded above in A has a supremum in A. A topological space is basically
disconnected if the closure of every cozero-set is open. Nakano [16] and Stone
[17] have proved that C(X) is a-complete iff X is basically disconnected.
A ring A is said to be regular if, for each a e A, there exists b e A such that

aba a. We call a topological space a P-space if every cozero-set is closed.
A theorem of Gillman and Henriksen says that C(X) is regular iff X is a P-
space [10, Theorem 5.3].

In [4], Brainerd defines an F-ring to be a a-complete commutative/-algebra
with a positive identity which is a weak order unit. By [2, Theorem 19], an
F-ring is precisely a a-complete g-algebra, and as such, is uniformly closed
[6, Theorem 2.1].

In [3], [4] and [5], special attention is paid to regular F-rings. Since every
P-space is basically disconnected, C(X) is a-complete whenever it is regular.
More generally, any regular, uniformly closed (I)-algebra is an F-ring [6,
Theorem 2.1]. In a regular F-ring, every ideal is an /-ideal [13, Corollary
1.10].
An ideal I in an F-ring A will be called a-closed if, whenever a countable sub-

set of I has a supremum in A, this supremum is in I.

4.1. THEOREM. Let A be an F-ring.
(a) Every a-closed ideal in A is closed.
(b) If A is regular, then every closed ideal in A is a-closed.

Proof. (a) Suppose that I is a a-closed ideal in A, and (a,) is a sequence
in I which converges uniformly to a e A. Then bm /:-m am exists in I,
for m e N, and likewise we can define c /-1 b e I. We will show that
a c. LeteeRwith>0;thenforsomeneN, wehavea- _< /-nb
_< a -t- e. But (b) is a decreasing sequence, so that c /,= bin, and
Ic-al -< e. Since e is arbitrary, a ceI.

(b) Let A be a regular F-ring, and let I be a closed ideal in A; we may as-
sume that I is proper. Suppose that (am) is a sequence in I with
a /7-1aneA. Defineb =2-n(lan] / 1) eI. Then

0 (b) c (a,),

and (b) is open, since A is regular [9, Theorem 3.13]. If f is the charac-
teristic function of (A)\9(b), then f e C(9(A)) c A. For each c e A,
(R(c) is dense, so that ()c)(M) 0 for all M e (b); that is, f e M for all
M el) (b) [12, Theorem 2.5]. Since in a regular commutative ring with iden-
tity any proper ideal is an intersection of maximal ideals (see [1, p. 459]),
f e I. But a, <_ af <_ a for all n e N, and therefore a af I.

Combining 2.6 and 4.1, we see that a maximal ideal in a regular F-ring is
real iff it is a-closed; this has been observed by Brainerd [5 p. 83]. Regularity
is needed here (hence in 4.1 (b)), for let A C(II). Then A is an F-ring
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which is not regular. If, for n e N, we let a be the characteristic function of
In}, then for any p e gN\N, each a is in the real maximal idea!
M {f A f(p) 0}. ButV..a IM.

In [5, Theorem 6], Brainerd gives an/-algebra characterization of C(X),
for X a LindelSf P-space, using the equivalent of our normality with "closed"
replaced by "a-closed". Since, in a regular F-ring, closed ideals and z-closed
ideals are the same (4.1), the following corollary to 3.6 is merely a restatement
of Brainerd’s result.

4.2. THEOREM (Brainerd). A nontrival -algebra A is 1-isomorphic to
C(X), for some Lindel6f P-space X, iff

(a) A is a-complete (i.e., A is an F-ring),
(b) A is regular, and
(c) A is normal.

Proof. Clearly (a) (b) and (c) are satisfied for C(X), where X is a Lin-
delSf P-space.

Suppose that A is a -algebra satisfying conditions (a), (b) and (c). By
(a), A is uniformly closed. Since, in a regular commutative ring with iden-
tity, every non-zero-divisor is a unit, A is closed under inversion, by (b).

Thus, by 3.6, A is/-isomorphic to C(X) for some LindelSf space X. Since
A is regular, X is a P-space.
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