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1. Introduction
In this paper we first give a unified account of invariant tensor methods

in Riemannian geometry and their application to the study of isometric im-
mersions of Riemannian manifolds. The ideas presented here are more or
less implicit in classical work, but the details are usually erroneously over-
simplified or treated incorrectly in the more recent literature. For this
reason, we give our treatment in some detail.
We first discuss, in Section 2, covariant differentiation of tensor fields

over mappings, proving the generalized structural equations in detail. This
material is indispensable to our treatment of the immersion theory in Section
3, where we develop analogues of the classical Gauss, Codazzi, and Ricci
equations. Our version of these equations is, on the one hand, completely
index-free, so the roles of the various operators (connection, normal connec-
tion, second fundamental form, etc.) in describing the geometry of the im-
mersion is made clear. At the same time, these equations are valid for vector
fields over arbitrary mappings; thus they retain all the flexibility of the
classical equations.
We then use these equations to prove the following theorem, pausing to

note the most general conditions needed at each stage of the proof.

THEOREM. Let I M --> /I+ be an isometric immersion of a complete
d-dimensional Riemannian manifold M in a d - )-dimensional Riemannian

manifold /I+ of constant curvature K. Then there exists a complete n-dimen-
sional totally geodesic submanifold L of M which has constant curvature K in
the induced metric, and which is totally geodesically immersed in /I by I. Here
n is the minimal value of the index of relative nullity.

This theorem generalizes a result of B. O’Neill and E. Stiel [7], where both
M and M have constant curvature K. P. Hartman [5, Lemma 3.1 (v)]
proved our theorem for the K 0 case, generalizing the previous result of
O’Neill [6] for M and 21 fiat (see also S. B. Alexander [1]). The index of
relative nullity was defined by Chern and Kuiper [3], who also showed,
essentially, that if M and M both have constant curvature K, then
so the theorem is not vacuous for d ] positive.
We wish to thank B. O’Neill for his encouragement, and the referee for

pointing out errors in a previous version of this work.
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2. Tensor fields over mappings
In this section we develop standard material on covariant differentiation of

vector fields over mappings. For alternative treatments, see Gromoll, Kling-
enberg, and Meyer [4, p. 46] or Bishop and Goldberg [2, p. 227].

In the sequel, all manifolds will be of class C. (M) denotes the set of C
functions on M.

Let F M -- N be a C mapping of a manifold M into a manifold N which
has a linear connection operator V. A vector field Y over F (or a vector field
parametrized by F) is a C mapping Y M -- T(N) such that r o Y F,
where T(N) is the tangent bundle of N and r the bundle projection. We
denote the set of vector fields over F by ](N).

If Y is a vector field on N, then Y o F e (N). The set of vector fields
over F of form Y o F, denoted ] o F, forms a vector space over 1 and a module
over F, the ring of C functions on M of form g o F, g e (N). o F also
has a Lie algebra structure over R, with the bracket defined by

[XoF, YoF] [X,Y]oF.

Also, if A is a vector field on M, then F.A e e(N). Vector fields of form
F.A are said to be tangent to F, and the set of such vector fields we denote by
(M). (M) and e(N) have natural module structures over (M), and
vector space structures over 1.

If Y1, ", Y, form a local field of bases for the tangent spaces on a neighbor-
hood U of N, then on V F-l(U) any vector field Y over F has a local repre-
sentation YIv y(Y o F), where y e (M), and we are using the summation
convention on repeated indices.

If YoFeioF, then YoFIv (yoF) (YoF) where now ye(N).
Hence we see that ] o F is generated locally by the Y o F, using coefficients
from o F, while (N) is obtained by enlarging the coefficient ring to (M).
The elements of (N) can be defined to operate on (N) as derivations: if

X e (N), g e (N), p e M, then set X(g) (p) X(g). The elements of
oFoperateonoFaswell:set Y o F(g o F) Y(g) o F.
Note that if M N, and F is the identity, then vector fields over F are

simply vector fields on N. The covariant derivative V (N)
(N) will now be extended to a function, also denoted by V, mapping
(M) (N) --, F(N), the two V’s agreeing when F is the identity.
We first define V for fields of form Y o F, Y e (N). If p e M, A e (M)

set V(Y o F) V. Y. Now if X e (N) is arbitrary, and X has a local
representation XI x(Y o F), then on V we define

V X A(x) (Y o F) - xV(Y, o F).

The usual computation shows this definition is independent of local representa-
tion.
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PROPOSITION 2.1. V has the following properties, for A, B (M); X,
Y e F(N);fe (M).

(i) Va(X+ Y) VaX+ VaY.
(ii) Va fY fVa Y + (Af) Y.
(iii) Va+,Y VaY+ V.Y.
(iv) VfA Y fV Y.

Now let *(N) denote the dual module of F(N). An (r, s)-tensor field
over F is an (M) -multilinear mapping T: v(N) }’ X v(N) }* -- {(M).
T is a function of r + s variables; by choosing fixed values for certain of these
variables, tensors of lower degree can be defined. Also if S is tensor field
on N then S o F defines a tensor field over F in a natural manner"

S: o F(X, ..., X, X ..., X,) (p)

S:(Z(p), ..., X(p), X(p), ..., X,(p)),
for X *e (N), X e(N), and p e M. Finally, a tensor field over F is
completely determined by its local coordinates

T.:: "’’’,. T(Y’ o F, ., Y o F, Y., o F, ., y o F)

where Y.}, {Y} are dual local base fields for (N) and *(N) respectively.
We may now extend Va to be a derivation on the tensor algebra over F,

since we know V Y for Y e F(N), and we set V(f) A (f) by definition,
for A e (M) andf e 3(M). Then we have a unique extension of V commut-
ing with contractions, and satisfying

V(T(R) S) VT(R) S+ T(R) VS.

An important special case of this theory is where F a (a, b) --* N is a C
curve. Then if denotes the canonical coordinate function of the interval
(a, b), and X is a vector field over a, we have the covariant derivative VX
of X along a. We will sometimes write V,,X for V/, X. If V/ X 0 (i.e.
is the zero vector field over a) then X is said to be parallel along a, and X(t)
is called the parallel translate of X(t) from t to t along a, for t h in (a, b).
The theory of ordinary linear differential equations guarantees a uniquely
defined smooth parallel vector field X along a, for each choice of vector X(t)
ut a(t), and parallel translation from tx to t. along a defines a nonsingular
linear transformation from N,(,) to N,(,). See for example [2, pg. 224] for
more details.
The following is a useful characterization of V/X. If (e(t), ..., e,,(t))

is a parallel frame field along , and X(t) x(t)e(t), then Vd/ X
d/dt(x) e(t). Hence V/t X 0 if and only if the x(t) are constant.
It is worth remarking that the definition of V as a map (N) X (N) --(N) is inadequate even to define V/t X. The usual idea is to attempt to

extend a’ and X to vector fields Y and . respectively on a neighborhood of
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a(to), and set V/t X Io (V2)(a(to)). But, for instance, a might be a
constant curve a(t) p, in which case X(t) is a parametrized curve in M,
which cannot in general be extended to a neighborhood of p. It is easy to see
that X(t) is parallel along a in this case if and only if X(t) is a constant curve
in M. Hence we may well have V,X 0 even though a’ 0.
We are now in a position to extend the structural equations to vector fields

over mappings. Let

Rz(Z) Vz.]Z Vz V Z + V V Z

denote the curvature tensor of N, and

T(X, Y) VY- VrX [X, Y]

the torsion tensor. To simplify notation, we 11 adopt the following conven-
tions, to remain in force in the sequel wherever needed. We write A,, B,,
etc. instead of F,A, F, B, for A, B e(M). Similarly, we write S* (or
simply S, if no confusion is likely) in place of S F, where S is a tensor field
on N. However, if Y (N) and f (N) then we write and ] in place of
y F and f F, respectively.

PnOPOmTION 2.2 (generalized structural equations).

(i) R,,, Y Vi.] Y V V. Y W V Va Y
(ii) T*(A, B,) V B, V A, [A, B],

where A, B (M), Y y(N).

Proof of (i). First note that the right side of the equation is linear in A
and B, by Proposition 2.1, so we can assume that A and B are local coordinate
vector fields, or [A, B] 0. Now let {y} denote local coordinates on a neigh-
borhood in N, so {Y O/Oy} denote a local base for (N), and {F} is a

B, b where a A()local base, for (N). Then A, a ,
b B(), and we are using the Einstein summation convention as usual.
We also have

(V ) V,()Y (a(V, Y)-)(p) (a’rY) (p),

where F Y Vr Y by definition.
() Now

v. V(F) V.( -
(B(a) -

(b) Interchanging the roles of A nd B, we find

V V() (A(b) - "" ’r + ba( Yr,) + b r a r,) ,
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(c) Therefore

(v v v v.)

(B(a) A(b) " " F) Fr, + ab(Yr Yr + r, rs, r r,,).
But B(a) A(b) (BA AB) 0 since [A, B] 0.

(d) On the other hand,

(R, , ) (p) (ab(Rr,r Y) F)(p)

a’b((YF + r r, Y r ri rL) F)r,(p),
as follows from the definitions of R and F. This formula agrees with (c).

Proof of (ii). (a)

T*(A, B,) ab( "r,
(b)

V B, V, A, [A, B],

(A (b) + r,) (B() + ,) ( (AB BA))
ab( " _-r r,)F.

Remarks. (1) We apologize for this proof, but a simpler one in this context
does not seem to be possible. See (2, pg. 227) for an alternative approach
using derential forms.

(2) One important advantage of our notational conventions is that the
map F does not appear explicitly in equations (i) and (ii). Hence those
equations are valid for arbitrary parametrization, th the understanding that
the variables A and B are chosen tangent to the parametrizing manifold, and
the *’s are intereted appropriately.

If V is the Levi-Civitk connection coesponng to a Riemannian metric
( on Y, then T*(A,, B,) 0 and V(Z, f)* (VX, f}*
+ (X, V Y)* for A, B e(M) and X, Y e (N), as is easily verified. The
second equality is equivalent to" parallel translation along a curve a from t to
t is an isometry.
For simplicity, we will only consider Riemannian mafolds N with Levi-

Civita connection from now on.

PROPOmTIO 2.3. The rvature nsor has the following properties.

r2 <.:...(r), x>,
(ii) A,,

(i) (a,,(c,), ,) (**o,(A,),
(iv) ,,(c,) o,
(v) (V *),, O, here A, B, C, D (M) X, e (N) and

deotes cyclic summaio er A, B, ad C.
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Proof. (i) and (v) follow from the generalized structural equations; (ii),
(iii), and (iv) are trivial consequences of the corresponding facts for the curva-
ture tensor on N. As a sample, we prove (v) in detail. First we may assume
that A, B, and C are local coordinate vector fields on M, since (v) is (M)-
linear in A, B, and C. Thus [A, B] [A, C] [B, C] 0. Now

(V R*).c. Y (V(R**c. Y)

Rv.,.c, R,.vc. R.c, V Y).

Writing out and regrouping the terms on the right, using the structural equa-
tions, gives

(V Vc V Y V V Vc Y)

The terms involving brackets vanish by assumption, and by writing out all
terms in the first cyclic sum and regrouping, we see it is just R.c.V. Y.
We conclude this section by remarking that given an arbitrary (real) vector

bundle E over a manifold N, a connection on E can be defined as an operator
V (N) X I(E) -* I(E), where F(E) denotes the module of sections of E.
V is assumed to have the properties of Proposition 2.1. Then if F M -- Nis a mapping of a manifold M into N, V can be pulled back to define a connec-
tion F*(V) in the induced bundle F*(E) over M, in essentially the way we
proceeded above. An analogue of the first structural equation can be proved,
but torsion is not definable in this context. The pullback F*(V) has the
following crucial functorial property: if G K --, M is a map of another mani-
fold K into M, then (F o G).V G*(F*V).
More explicitly, note that if Y I(E), Y o F can be identified with an ele-

ment in F(F*E). Now we proceed exactly as before, defining F*V(Y o F)
V. Y (we are using the general fact that a connection V Y in a vector

bundle over a manifold M can always be evaluated at a point p M to give an
element V$ Y in the fibre over p, by (M)-linearity in A). Now every sec-
tion X of F E is locally of form x(Y o F) where YI denote a local trivializa-
tion of E, and x (M). Now F*V is defined on X using the same local
formula as before. To prove the functoriality property, it suffices to consider
(F o G)*V evaluated on sections of (F o G)*E of form (Y o F o G). Then

((F,G)*V.(Y o F oG)) V(oa). Y

F*Va,,(Y o F) (G* o F*) V Y
where A e E(K) and p e K.

If we define the curvature operator of V by R, V,. [V,, V] for
A, B (N), then the generaliaed structural equation says that given
F M --+ N, then F*R. (R o F)... where F*R is the curvature operator
of F*V and here A, Bit!(M). If E is of the form F*T(N) for a
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map F M --, N, then we can define the torsion tensor of a connection in E by

T(A, B) V,, B, VB A, [A, B],

and we have a second generalized structural equation" if G" K -- M, then
G*T T o G, where G*T is the torsion tensor of G’V, a connection in G*E
(F o G)*T(N). These structural equations are proved precisely as in the case
already handled above, by replacing the local coordinate vector fields {Y}
appearing in the calculations there systematically by local trivializations
of E.

It is important to note the following fact. If F" M --, hr is an inclusion
map of a submanifold M into N, then F VA(YoF) VA(Y)
((V Y) o F) for A, Y e (N), p e M;i.e. the restriction of V Yto M is equal
to F*V applied to the restrictions of A and Y to M.
As before, we will write simply V in place of F*V whenever it is safe to

do so.

3. Isometric immersions of Riemannian manifolds
Let I M --,/r+ be an isometric immersion of the d-dimensional Rieman-

nian manifold M into the d q- /-dimensional Riemannian manifold/r. Let
and ( )- (resp. V and ( )) denote the (unique) Levi-Civit connec-

tion and Riemannian inner product on/r (resp. M). According to the nota-
tional conventions of Section 2, the isometric character of I is expressed by the
equation (X, Y) (X,, Y,)-*, for X, Y e E(M). Furthermore (/r) de-
notes the set of/r-vector fields parametrized by I" M --,/r, while (M)
denotes the set of vector fields tangent to I. In order to simplify notation, we
will identify (M) with E(M) whenever convenient, under the identification
X X,. This correspondence is well defined since X and X, are both
parametrized by M, and I,(p) is bijective for each p in M. We may also
sometimes omit the bar over (X,, Y,)-*. Now we can define tensor fields
over I, P and pa, such that for each p e M,

P(p) "1I() --, I, M and pa(p) 2I() --, M()
are orthogonal projection operators;hereM() denotes the orthogonal comple-
ment of I, M, in/r(). If we set

t (M) X e Y,(f/1) "pax X}
the set of normal vector fields over I, we can write E(/r) (M) i (M).
We will need to define the following operators on (M) and (M). Here

X, Y, Z eY(M) N e (M)
1. Operators on ,(M). (ar) Px Y, (Vx Y),. This identity can

be seen as follows. If we define x Y by (Yx Y), PVx Y, (using inverti-
bility of I,(p) for each p in M), we find that Yx Y is a connection on M.
Furthermore

PVx Y, Pr X, P[X, Y], IX, Y],.



Hence x Y Fr X [X, Y], or F is torsion-free. Finally

x( y, x(Y,
Y,, + (Y,, z,)-*

<PVx Y,, Z,)* + (Y,, PVx Z,)*
(x Y, Z) + (Y, xZ).

Hence is compatible with the metric on M, or V is the unique Levi-
Civitk connection on M.
Using the identification of (M) with (M), we can simplify (a’) to read

(a) Px Y Vx Y.
(b’) P’x Y, Tx(Y,), by definition. Under the identification, this

can be simplified to (b) Px Y Tx(Y).
Hence as n operator on (M), x Y Vx Y + Tx( Y).

2. Operators on E" M) We define (a) Px N V N. It is immediate
that V is a connection on the normal bundle of M. We set (b) PV N
Tx N. (This double use of the symbol Tx is justified by Proposition 3.1
below.) Hence as operators on ’(M), (c) x N Tx N + V N.

l(b) and 2(b) define the second fundamental form operator Tx. Tx is
related to the classical second fundamental form S (M) X (M) --* ’(M)
by S(X, Y) Tx Y. We now list some well-known properties of this opera-
tor.

PROPOSITION 3.1. (i) Tx Y Tr X.
(ii) {Tx Y, N)-* -{Tx N, Y)-*
(iii) T is bilinear over (M).
(iv) TxYe (M);TxNe(M)

Proof. (i) follows from the generalized second structural equation over I,
using Tx Y x Y Vx Y. (ii) expresses the compatibility of with the
metric on/l. (iii) follows from (i) and (ii). (iv) is trivial.

We will need formulae for these operators, in terms of local base fields for
(M) and ’(M). To obtain these, let (Z, ..., Za+) denote a local ortho-
normal frame field on an/l-neighborhood U of a point I(p), where p e M.
Assume further that Z oleY.’(M) for d + 1 _< a, _< d + k,
while Z o I e (M) for 1 _< i, j,/c _< d, as can always be arranged. To simplify
the notation, we further restrict attention to a sufficiently small M-neighbor-
hood V of p, on which I is injective, so we may identify V with I(V), (V)
with i,(V), etc. Now let z Z r: Z by definition, for unrestricted
indices J, K, L. Now P V on (V), or Vz, Z. 1 Z. Similarly,
PW T on ](V), or Tz, Z r". Z,. On -’(V), V, Z, r Z, while
Tz Z r{, Z
Now let F K -- be a smooth mapping of a manifold K into which

factors through I, i.e. F I o G for some G K -+ M. Then we have the
(K)-module E(/t) and the orthogonal projection tensors over F, P o F
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and P" o F, which according to our conventions we may abbreviate to P and P.
Then

(2) (M) (M),
where

(M) ={X(I) "PX=X} and (M) ={X() "X=PX.
The idea now is to sta with he generalized structural equations for M

(over F)"

(i) -*R,,, . [ ]
(ii) B, A, [A, B],

(where denotes the curvature tensor of , and A, B (K) ).
We decompose all operators appearing into tangent and normal parts rela-

tive to M, and then apply them to vector fields over F wch are respectively
tangent and normal to M. Carrying out this process for ,,, gives four
equations.

El. Operators on (M). We assert tha (a) P Y V Y, for
Y (M). To see this, let {Z, ..., Z+] denote the local adapted ortho-

anormal frame field considered above. Then V
P( - a etc., as in Section 2.a r) P,where

(b) P’VY T,Y. This follows from PaV P(a’F )
aPZ. But

Hence an operator on (M), (c) V V + Tx,, sincewe may delete
the star over a tensor.

F2. Operators on (M). (a) PaV V. Here V denotes the pl-
back F*V of the normal connection operator V. This identity is verified
as follows"

a r,.

But f*v , " (a r,.v,,,, z.
(b) PV T,,sincePY Pa’r a’r Ta**

Hence an operator on E(M), (c) V V + T,. We can now prove
the following well-known result.

PnoOSITO 3.2. M-parallel and M-parallel translation along a curve
in M of a vector tangent to M at

Proof. Y V/ Y T,Y, if Y is a vector field in (M).

Cooav. M is totally geodesic in M (i.e. I maps M-geodesics into
-geodesics I ) if and only if T vanishes identically oer I.

With these preliminaries, we ure ready to decompose the generalized struc-
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tural equations of/r. Here P’a denotes the composition of the operators
P and Va, etc.

I. P.Ra,, on F(M) yields the Gauss Equation:

P’/a,n, P’Va.m P.[Va,

using V V -4- T, and the generalized structural equation R,,
Va,,l [Va, V] of M we have

P./a,, R,, ITs,, T,].
II. P’./,, on F(M) gives the Codazzi-Mainardi Equation

P’.,, Tra.], Vao T, Ta,.V + Vo Ta, + T,.Va.
III. P./a,,, on (M) gives the second Codazzi-Mainardi Equation

P./,s, T(.m, Vo Ts, Ta,.V q- Vso T, -}- Ts,.V.
IV. P*./a,,, on *(M) gives the Ricci Equation

P’./,,, R,s, [T,, T,,l,
where R,,, denotes the generalized curvature operator Vc.m [V, V]
of the normal connection V.

Remarks. The two Codazzi equations evidently contain the same informa-
tion, by the antisymmetry of the curvature operator.
The Codazzi equations can be simplified somewhat, and in fact all of these

equations can be combined into one by the following device. Define a con-
nection in I*T(/]) as follows"

Vx(PY + P’Y) PVx PY + P’Vx P’Y Vx PY + V: P’Y,
where X e(M), Y e r(I*T(_r)) ,(/r), and Vx denotes I*Vx here.
Then we can redefine T by T V , or TxY P’-Vx PY -4- PVx PY.
Now these operators pull back over G’K M to give operators on
r(F*T(r) ), which we denote by the same symbols. With this terminology,
the Codazzi Equation II is easily shown to be equivalent to

P/a,n, (Va T)n, ( T)a, Tea.el, q-[Tn,, a]- [Ta,, n].

If/ denotes the curvature tensor of Y, we have the generalized structural
equation

/,., V(.,- [V, V,].

A simple calculation using T shows that

where R(T),, denotes the "curvature operator" Ta.,], [Ta,, T,,] of
T. This equation contains all the information of equations I-IV above.
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4. An application
In this section we prove the theorem given in the introduction. All of the

nomenclature and conventions of previous sections are assumed in force unless
otherwise noted. The following definition and lemmas are due essentially to
Chern and Kuiper [3]. Here M is assumed immersed in by I; restrictions
on will be added as needed.

Let 6(p) {x e M" T 0} the space of relative nullity at p e M. Set
dim (R(p) (p), the index of relative nulliy at p. is upper-semicon-
tinuous, so the set G on which it assumes its minimal value n is open.
We write X e 6 if X is a relative nullity vector field, i.e. if X e 6(p) for

all p in question.

LEMMA 4.1. The distribution p -- (R(p) is autoparallel (i.e. if X, Y
then Vx Y () and involutive if P R,x.,z 0 for X , Z (M), in par-
ticular if /I has constant curvature.

Proof. We apply the Codazzi Equation II with F the identity map on M.
We may identify X with I, X, etc., as usual. We have (by assumption on/)

0 T.zY-- VoTzY- Tx.VzY+ VoTxY+ Tz.VxY,

where X, Y e , Z e (M). The first four terms on the right wnish by rela-
tive nullity of X and Y, leaving Tz. Vx Y 0. But this means
Now [X, Y] Vx Y Vr X e lso, or t is involutive. If

/xr K((X, )Y-- (Y,)X) for X,

then P/* 0.
The distribution induced by 6 on G has constant dimension n, so it is in-

tegrable. Let L denote a leaf of the resulting foliation on G, and let
J L -- M denote the immersion of L in M. Let V, T, P, etc. denote the
induced connection on L and the operators associated with the immersion J.

LEMMA 4.2. The leaf L is totally geodesically immersed in M and (by I o J)
in ]I, and has curvature operator P. [x. r. in the induced metric, for X, Y e (L).

Proof. Locally, since J L - M is an imbedding, X and Y are of form
X XoJ, Y oJfor-, e6. By a remark at the end of Section 2,
we have VrF (J*V)x Y. It follows that

P J*Vx Y P V FoJ =0,

by Lemma 4.1. Hence Tx Y P J*Vx Y O, so L is totally geodesic in M.
Now if q isa geodesic of L, V J o q is geodesic in M as well. Now, 3’
3/ 3/. 3/ 0V, -F T, But T, 0 by relative nullity of 3/, nd V, ,’

since , is geodesic of M Hence F, 0 nd is geodesic of/ lso.
Hence L is totally geodesic in/r lso.
Now the Guss Equation I gives P./x.r. Rx where denotes (I o J) ,.
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The following lemma is not needed later, but it gives a condition guarantee-
ing positive relative nullity.

Let 6(m) denote the orthogonal complement (in M) of (R(m).

LEMMA 4.3. There is a vector x in 6(m)-’ such that T, 6t(m)" M is
one-to-one if Rxr P’xr. This implies v(m) d .
For proof see Stiel [8], or [3].
We now prove the main theorem. We assume M is complete and satisfies

the condition of Lemm 2. Then if G is as before, we must show that a leaf L
of the relative nullity foliation on G is complete.

Let [0, c) L be a geodesic segment in L, and let * [0, ) M
be the extension of in M guaranteed by completeness. It suffices to show
that p* *(c) lies in G also, or that v(p*) n (we have v(p*) n by
upper-semicontinuity).

Let n (Y Y) be a Frobenius coordinate system on a neighborhood
Uofp =(0). We make the convention that l i,j,.., g n;1 I,J,

d; n + 1 a, , d, and assume that O/Oy , O/Oy" . We
can further assume that v(p) 0 e Now let denote the slice y 0
of U with induced coordinate w (Y+, ", Y), and let V R- denote
v(Z). Let E(s) (E(s), .-., E(s)) be an -adapted orthogonal frame
field on (such that E(s) (s), E,(s) (s), the orthogonal complement
of (s), for all s e ). Assume further that E(p) ’(0). Now define
F" R X V M by

F(u, u, () exp,(uEi(s)).

Define vector fields over F X F,(O/Ou*), where u denote the natural
Euclidean coordinates on R X V R.

Let U O/Ou in order to simplify notation.
We now apply the Codazzi Equation II to U, U,) to obtain

P Rv,v. T[vi,v.] Tx Vv.- V Tx. + Tx..Vv + Va.Tx
Most of these terms vanish, as we now show.
By construction, F(t, 0, ..-, 0) (t), and X(t, 0,..., O) ’(t)

for 0 < c. Let G* denote an open neighborhood of [0, c) in the open
set G, and W F-(G*). For fixed qeV and all (u, ...,u) such that
(u, -.., u, q) e W, F parametrizes the relative nullity leaf through F(0, ...,
0, q), so the X F,(O/Ou) are relative nullity vector fields over Ft. It
follows that Tx is a vanishing tensor field over Ft, and hence V. Tx
PVv. Tx must also vanish over Ftw. Finally, F,([O/Ou, O/Ou"]) 0
over F.
Hence the only surviving terms (on W) in the Codazzi Equation above are

Vv. Tx. Tx. Vv
Further restricting the parameters to the domain of , and using the fact that

Vv Vv + Tx V on (M),
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we obtain ,. Tx Tx. V,. Let Y denote an M- or/r-parallel vector
field along*. ThenV,(TxY) Tx’V,Y 0. If X xXis a
vector field along for constants x, we have ,(T Y) 0, or T Y is
parallel along ,. It follows that if y e M is non-nullity, and Tx y 0 for
x xX(p), then Tx*Y*(p*) 0 where Y* is the parallel translate of
y to p*, and X* xX(p*). Hence (p*) is not greater than (p).
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