NON-ARCHIMEDIAN ANALYTIC FUNCTIONS TAKING THE SAME
VALUES AT THE SAME POINTS

BY
W. W. Apams AND E. G. STraUs!

A well known theorem of R. Nevanlinna (see e.g. [2, Theorem 2.6]) states
that two nonconstant meromorphic functions of a complex variable which at-
tain five distinet values at the same points must be identical. The functions
¢ and ¢ ° and the values 0, «, 1, —1 show that four distinet values are not
enough even when the multiplicities are the same. On the other hand, two
nonconstant polynomials f, g over an algebraically closed field of characteristic
zero are identical if for two distinct (finite) values a,bwe havef(z) = a<=g(x) = a
andf(x) =b<g(x) =b. To see this let the two polynomials be f and ¢ and
assume (without loss of generality) that the two values are 0 and 1. So
f@)=0=¢g@x) =0andf(z) = 1< g() = 1. Suppose thatn = degf >
deg g > 0. Now f divides f'(f — ¢) since every zero of f is a zero of f — g.
Also f — 1 divides f/ (f — ¢), and thus, since f and f — 1 are relatively prime,
f(f—1)dividesf’ (f — g). Butdegf(f— 1) =2nanddegf' (f—g) <2n — 1,
andsof — g =0.

This result does not remain valid if the condition that the field is of charac-
teristic zero is dropped. For example, z and z? attain each value in GF (q)
at the same unique point.

Entire functions over a (complete, algebraically closed) non-Archimedian
field of characteristic zero behave, in many ways, more like polynomials than
like entire functions of a complex variable. This is also true in connection with
the problem under discussion here. In the following it is assumed that the
non-Archimedian variable ranges over a complete algebraically closed field of
characteristic zero.

TaeoreM 1. Let f, g be two nonconstant entire functions of a non-Archimedian
variable, so that for two distinct (finite) values a, b we havef(z) = a = g) = a
andf(x) =beg) =b. Thenf=g.

It may be desirable to define our concepts of analyticity to the extent that
they are used here. By an analytic funciion we mean the values of a convergent
Laurent series in some domain. A meromorphic function is the ratio of two
analytic functions. A function analytic in a punctured neighborhood of a
point has an essential singularity at that point if the Laurent series about the
point contains an infinite number of negative powers. For further reference
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see, for example, the appendix of [1]. The facts about analytic functions
that we need are summarized in the following lemma,

LEmMMA. Let
J@) = 2w caa”
be an analytic function of a non-Archimedian variable in the domain
R< (=)|z] < (=) R
where 0 < Ry < By < «, and define

M;(@r) = supjaj—r [f(@) |, R < (=) 7 < (=) Rx.
Then
i) M;(r) = max, {c,,l " and hence the maximum-modulus principle

holds and M, (r) is continuous;

(ii) the maximum on the right of (1) vs attained for a unique value of n except
for a discrete sequence of values {r,} in the open interval (Ry, Ri1);

(iii) ifre{r}andRo <|z| =r < Rithen|f(z)| = M,(r);

(iv) f f 1s @ nonconstant entire function then M;(r) — © asr — o}

(v) for two analytic functions f, g,

My (r) = M;(r)M,(r);
(i) My @) < M;i@)/r (r > 0).

Proof. To prove (i) suppose that n; < ne < - -+ < m; are all the values of
n such that
max, | ¢ | ™ = | eas| ™ G=1---,k).
Then if
1) SUD(almr | Cny 2"+ ¢ F Cay @] = | Cay | ™

we would have by the ultrametric inequality
maxy, l cnl 'r” = SUDP|z|=r | Cny x"! + e + Cny, 1:""‘
Suplﬂ-ﬂ' ‘ Z:?-—w Cn xn| = Mj (”')

as desired. So we must show (1). If & = 1 the result is clear, so assume
k> 1. Write

]

Cay T + -+ Coy & = cuy 2P ()
where P (z) is a polynomial of degree v = n; — n; and we must show that
MAX|g|mr l P(x) I = 1.

If I :c‘ < r then P (x) is dominated by its constant term and if | a:l > r then
P (z) is dominated by its leading term. Thus | P (z)| > 1 whenever |z | > r.
So every root £ of P (x) satisfies | £| = r. Write

P@)=(1-=2/k)- - Q1-=a/)
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Whereléil =r@=1--,»). If|a| < 1 denote by @& the image of a in the
residue class field. Then since the residue class field is infinite there is an o
such that

o] =+ and @/R) # G/&H)  G=1-,0)
Thus | 1 — @/ = 1ford = 1, .-+, vsince |1 — x/t;| < 1implies

|&i/6r — mo/ta] < 1

contradicting the choice of xy. Hence [P(xo)[ = 1 and (i) is proved. In
(ii) the sequence {r,} consists of the real numbers r such that M,(r) =
lca| 7 = | cm| r™ for some m > n and this clearly is a discrete set. So (iii)

is obvious from the definition of the r, and (iv) follows from (i) and (ii).
Further (v) is clear from (iii) for all r outside some discrete set and so follows
for all » by (i). Finally to prove (vi) we have by (i)

My (r) = max, |n0n| ™ < max l c,,| = My (r)/r.

Proof of Theorem 1. Assume without loss of generality that f(z) = 0 &
g(x) =0andf(zx) = 1eg(@x) = 1. Thenf — ghas a zero wherever f(f — 1)
has a zero. Thus for every zero of f(f — 1) the function /' (f — ¢) has a zero
of multiplicity at least as high. In other words, there is an entire function F
such that

) G =g)=Ff(f—1).

Now we may assume that M;(r) > M,(r) for some arbitrarily large values of
r, and we restrict our attention to these values of . Assume r is chosen so
large that M,(r) > 1. Thus M;,1(r) = M;(r). Then parts (v) and (vi)
of the lemma yield from (2),

Me(r)M;(r)* = My (r)M (r)
< My (@)Mp (r) < My () /r
SoMr(r) < 1/rorF = 0. Sincef’ £ 0 we havef = g.
If we analyze the proof of Theorem 1 we can get a quantitative result.

CoROLLARY. Let f, g be different nonconstant entire functions of a non-Archi-
medzian variable and let a, b be distinct values.  For any xo for which the expression
on the right is defined let

_ |f(20) — a||f(x0) — b| |glwo) — al|g(z) — b!}
B(ao) ma"{ TG — g 1G] Tetm) — Fa) g

Then there exists an x such that [ T — Zo l < R (xo) and one of f(x), g(x) tsa or b
while f(x) # g (x).

Proof. We may assume without loss of generality that o = 0,0 = 0,b = 1.
We may further assume that the first term in the definition of R (0) is the larger.
Suppose the result is false, so that f(z) = ¢g(z) whenever f(z) org(z)isOor 1
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and | z| < R where R is the least absolute value of a 0- or 1-point of f or g out-
side the dise | :c| < R@0). LetR >r > R(0). Define F by equation (2);
so F (z) is analytic for | x[ < R. Moreover as in Theorem 1 Mz(r) < 1/r.
But by definition

|F©)| = 1/R(©0) > 1/r.
This gives the desired contradiction.

The method of proof of Theorem 1 allows us to prove the following more
general theorem.

THEOREM 2. Let f, g be nonconstant entire functions of a non-Archimedian
variable. Suppose that M y(r) = o(rM;(r)) for an infinite sequence of values of
riendingto . Leta,bbetwo distinctvalues. Assumethatf(x) =a=g¢g&) =a
and f(x) =b=g(@) =b. Thenf=g.

Proof. Reasoning as in Theorem 1 we obtain an entire function F such that
FG—9)=F(F—a)f—0b)
and our hypothesis suffices to prove that F = 0.

We have thus shown that whenever the distinct a-points and b-points of a
nonconstant entire function f are contained among the a-points and b-points
respectively of a different entire function g, the function g must have a sig-
nificantly higher growth-rate than f.

In trying to generalize Theorem 1 to meromorphic functions of a non-
Archimedian variable, we are again guided by the analogy with rational func-
tions over an algebraically closed field of characteristic zero. A first guess
might be that a nonconstant rational function is determined by the pre-images
of three distinet values. However this is not the case. For example the func-
tions

f@) =e/@—-2+1), g@) =/ —-2z+1)

attain the values 0, 1, « at the same points. The multiplicities of the values
0 and 1 are not the same.

A degree argument very similar to the one used for polynomials shows that
a nonconstant rational function over an algebraically closed field of charac-
teristic zero is indeed determined by the pre-images of four distinct values.
The analogous theorem holds for meromorphic functions of a non-Archimedian
variable.

TarEOREM 3. Let f, g be two nonconstant meromorphic functions of a non-
Archimedian variable so that for four distinct values ay, as , az , as we have f(x) =
6. g9x) =a:;1=1,2,3,4. Thenf=g.

Proof. Let f = fi/fo and g = g1/g> where f1, f2, g1, g2 are entire functions
and, f; and f, as well as g; and g, have no common zeros. We may assume 0, «
are two of the given values; thatiswe assume fy = 0= ¢ =0, =0 ¢, = 0,
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fi = af: © g1 = agz and fi = bfs & g1 = bgs for values a, b different from 0, .
Further, without loss of generality, we may assume that

Mfl (7‘) Z max {Mfz (7‘), Mal (7‘), Maz (7')}
for some arbitrarily large values of r. From now on we restrict our attention
to these values of r.

Now the function f, g (f — ¢) = f1 go — fo g1 vanishes wheneverf = 0, ©, a
orb. Thus the function (ﬂ fo—h ﬁ) (f1 g2 — fa g1) has zeros at every zero of
Nfe(fi — afs) (i — bfz) of multiplicity at least as great. In other words there
exists an entire function F such that
3) (fife = fife) (hge — foqn) = Fhfe(h — afe) (Fh — bfe).

Now let

M(T) = min {Mfl (7‘), Mfl—-afz (’I‘), Mh—bfz (’I‘)}
Since , .
fifi—fife = (h— ah)f — (h — afe)fz
= (i — bR)fa — (hh — bfe)fa

we obtain from parts (v) and (vi) of the lemma

(4) Mtpr(r) < _M_(l)_%l_y_(_ﬂ

Thus again using the lemma and equations (3), (4) we see
2
M (DM (DM M) < MM, - M

so that Mr(r) < 1/r. So we have F = 0 and since f’ # 0 we must have
figg—frqu=0o0rf=g.

Our method of proof can also be applied to certain classes of analytic and
meromorphic functions in an annulus, although the results may not be best
possible.

TareorEM 4. Let f be analytic and unbounded in the annulus A 1o < , z l <ry
where 0 < 19 < 1y < ®. Let g be analytic in A. If there are three distinct
(finite) values a1, az, az so that f(z) = a; = g(@) = a;, ¢ = 1,2,3thenf = g¢.

Proof. As always we may assume that 0 is one of the values, so assume
f=02g9g=0,f=aeg¢g=aandf=>be g =>bwhereO0, a, b are distinct.
We may assume, without loss of generality, that

limpr, My = oo.

We may further assume that M;(r) > M,(r) through some sequence of ’s
tending to ;. From now on we shall restrict our attention to these values of
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r. Now we obtain exactly as in the proof of Theorem 1 that

®) ff—9)=F(f—a)f—0)

for some F analytic in A. We may choose r close enough to r, to guarantee
that M, (r) > max {| a|, ]bl}. Hence by parts (v) and (vi) of the lemma
©) Me@)M;(r)' < My(r)'/r.

Thus Mr(r) < tM;(r))™ =0 (r — r1). From this it follows that F = 0.
To see this suppose the Laurent series for F has the form

@) F(z) = 25 Coa",
Then by part (i) of the lemma
Mp(r) = max, | Cu| " > | Cu| 7™
for each fixed m. Thus
| Cn| < 117" limpsr, Me(r) = 0.

It follows that F = 0. Then since f %2 0 we have f = ¢.
We can extend Theorem 4 to the case where one of the discs in the comple-
ment of the annulus A degenerates to a point.

TrrorEM 5. Let f and g be analytic functions of a non-Archimedian variable
in a punctured neighborhood N of a point P. Assume f has an essential singu-
larity at P and that for three distinct (finite) values ay, ay, as we have f(z) =
g, g@) =a:;1=1,2,3forallzin N. Thenf=ginN.

Proof. Without loss of generality we may assume P = o, and N : ry <
|2| < . Now as in the proof of Theorem 4 we get (5) and (6) and hence

Me(r) < cM; ()™
over a sequence of values of r tending to «. Thus if F is expressed again by

(7) we obtain
|Cn| < #7"Me(r) < ¢"PM;(0)T >0

(the latter following because f has an essential singularity at « ). In other
words F = 0 and the theorem follows.

In a manner entirely analogous to that which led from Theorem 1 to Theorem
3 we can prove an analog to Nevanlinna’s theorem for meromorphic functions
in an annulus or in the neighborhood of an isolated essential singularity.

TuroreMm 6. Let f, g be meromorphic functions of a non-Archimedian variable
in the annulus A : 1o < | x| < 1 s0 that f cannot be expressed as the ratio of two
bounded analytic functions in A. If there are five different valuesa; 2 =1, - -+,
5)sothatf(x) = a;<=gx) =ai;i=1,---,5forallzin Athenf = gin A.

TrEOREM 7. Let f, g be meromorphic functions of a non-Archimedian variable
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m a punctured neighborhood N of a point P and suppose f has an essential singu-
larity at P. If there are 5 different values a; (¢ = 1, ---, 5) so that f(z) =
e, =g@E)=ai;1=1,---,5forallzin N thenf = gin N.

The proofs are obvious combinations of the proofs of Theorem 3 and
Theorems 4, 5.

While the method of proof in Theorems 4-7 seems to require three and five
values respectively we have not been able to prove that two and four values,
respectively, would not have sufficed. We should like to pose this as a problem.

Problem. Would the conclusions of Theorems 4-7 remain valid if the hy-
pothesis on the number of values attained at the same points are reduced
from three to two and five to four respectively?

The answer to the problem is affirmative if we strengthen the hypotheses to
saying that the two functions attain certain values at the same points with the
same multiplicities.

THEOREM 8. Let f, g be analytic functions of a non-Archimedian variable
either in an annulus A or in a punctured neighborhood N of a point P. Let f be
unbounded in A or have an essential singularity at P respectively. If there are
two (finite) values a, b which are attained by f and g at the same points with the
same multiplicities then f = g.

If we had assumed only that f and g are meromorphic then we would have needed
three values.

Proof. Instead of equation (5) we would obtain
f—9g=F(F—a)F—0)
and the proof now proceeds as for Theorems 4 and 5 respectively.
To verify the statement for meromorphic functions we note that we may as-
sume «, a, b to be the common values and thus assume that f = fi/h, g = g1/h
where f1, g1, h are analytic in the domains in question and f; ¢, has no zero in

common with 4. Our hypotheses now show that (fi — ah) (fi — bh) divides
fi — g1 and we can argue as before.
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