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Functor here means a functor from the category of pointed functionally
Hausdorff Kelley spaces to itself. D.B. Fuks has defined a duality theory on
these functors, in order to give a firm foundation to Eckmann-Hflton duality
[2], [3]. Here we will develop further aspects of this duality by defining
homology and cohomology theories of functors and show that they are dual to
each other in the sense that

/ (DR; A) /-(F; A)

where A is a spectrum of coefficients and DF is the dual of F. We will also de-
fine a slant and a cup product involving the composition of functors. Natur-
ally, all these notions are nothing but the usual one when we restrict outselves
to "spaces", i.e. functors of the form Zx, where X is a space.
Most of these results come from my doctoral thesis at Cornell University.

I wish to thank Professor P. J. Hilton who suggested this problem and whose
encouragement helped me to complete this work.

1. Duality of functors
We will deal with functors from the category of pointed functionally Haus-

dorf Kelley spaces to itself. As these terms require some explanation, we
state the following definitions"

DEFINITION 1 [2, p. 8]. A Hausdorff topological space X is called a Kelley
space if a subset Y X is closed if and only if its intersection with each compact
subset of X is closed.

DEFINITION 2 [2, p. 8]. A space X is said to be functionally Hausdorff if for
any two distinct points x, y e X, there is a continuous map f X -- I [0, 1]
such that ](x) 0 and f (y) 1.

Any Hausdorff space X can be made a Kelley space X* by defining a new
topology on it as follows: a closed set of X* is any subset Y of X such that its
intersection with each compact subset of X is closed.

For two spaces X and Y, let Y be the set of continuous maps from X to Y
with the compact open topology; if X and Y are Kelley spaces, we define
(X, Y) as (yX)..
Let us pass now to pointed Kelley spaces. In this category , (X, Y) will

consist only of base point preserving maps. We can then define for each
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space X of , a functor x --* as 2x (Y) (X, Y). Moreover, we have
now a smashed product X/ Y X X Y/X / Y, which gives us another
functor 2; defined as 2 (Y) X/ Y.
The important thing is that in this category 2 is left adjoint to 2 for any

space X. The same thing is valid for the category ( of pointed functionally
Hausdorff Kelley spaces.

If F e --, ( is a functor, we define the dual DF of F as follows: DF (X)
set of natural transformations F --* 2x with the following topology: A sub-
base for the topology of n.t. (F, 2x) consists of all inverse images of open sets
of (FY, X/ Y) under the maps

e n.t. (F, Y,) (FY, X/k Y.)
where Y runs through all the objects of ( and e is the evaluation of a natural
transformation at the space Y.
The fact that DF (X) is indeed a set has been proved in [2] and more generally

in [6]. In order to show this, a cogenerator is needed in the category, and that
is why we take only functionally Hausdorff spaces. The unit interval I is
then a cogenerator.
We will write DF (X) (F, Y,z). The operator D is left adjoint to itself,

in the sense that (F, DG) --. (G, DF) naturally in F and G (the parentheses
denote natural transformations).
A functor F ( --* will be called strong if the obvious map

(X, Y) ----> (FX, FY)
is continuous. The category of functors from to ( will be denoted by ((, )
and that of strong functors by ((, ()s.

It will be noted that D (2x) t, so that we have a full and faithful em-
bedding X -- 2: of into ((, () (and even (, ()s.since 2:x is strong).

2. SpecCrc
Let A {An, am 2An --* An+t} be a spectrum. Then given a functor F

and a natural transformation 2 o F --. F o 2, we can define a spectrum
(F, o) (A) as follows: (F, o) (A)n F (An) and the maps

2: o F (A) -- F (A+)are the compositions

Z o F(An) .(A,),,,) F(ZA) F(,) F(A,+t).
Two examples will be particularly important.

Example 1. The natural transformation q o D (F) --, D (F) o . For an
arbitrary functor E, we define x 2 o D (F)(X) --, D (F)(2X) as follows:
let T F --, 2 be an element of DF (X) and e St. Thenx (t, T) F --* 2z
is given by the formula

(ox(t, T))r(y) (t, Tr(y)) e Z(X /k Y)
where Y is an arbitrary space and y an arbitrary point of F (Y).
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Thus for any functor F and spectrum A, there is a well-defined spectrum
(D, q)(h) which will be simply denoted by DF ().

Example 2. The case of reflexive functors. The self adjointness properties of
the operator D provides us with a natural transformation F --> DF of each
F. Explicitly this is defined as follows: Let X be a space and x FX. Then

DFX D (DF (X space of natural transformations DF --Thus (x) must be such a natural transformation. Given a space Y and an
element T DF (Y) (i.e. T F -- 2x is a natural transformation), we define
(x).(T)--- Tx(x)eX /k Y.
A functor F is called reflexive if F --> DF is an equivalence of functors.
Given a reflexive functor F we define P 2; o F -- F o 2: as the composition

(I)-1
ZoF Z. .ZZo DF DF o Z F

where q is the natural transformation of Example 1.
Thus for each reflexive functor F and spectrum/k, we obtain a spectrum

(F, P)() which will be denoted by F (/).

3. Cohomology theories

Cohomology theories are easier to deal with than homology theories.
Moreover, their "domain of definition" can be given as the category (6, 6)8
which is not so simple for homology, as we shall see later.

DEFINITION 3.1. The n-th reduced cohomology group of a strong functor
F with coefficients in a spectrum A is the group

/n(F;A) r_n(DF(A)) lim rq_,,(DF(Aq))
Note that

rq_,, (DF (A) [S-’, DF (A)] [Sq-", (F, 2q)] [,q-"F, ,.1

Thus if we make the sequence Zq a "sctrum of functors" via natural
transformations

we see that the above definition of cohomology groups is precisely the anMogue
of G. W. Whitehead’s definition of the cohomology of a space with coefficients
in a spectrum. It is then easy to show that we have even defined a cohomology
theory in the following sense (see [8, p. 252)).

(1) We have a sequence of contravafiant functors " ( ;) abelian
groups.

(2) If f0, f E G are homotopic natural transformations (see [12],
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[4]) the induced maps

f0* /(G;A) --*/’(F;A) and /t* H(C;A) (FA)
are the same.

(3) For each n, there is a natural transformation

a ( ;A)o2;-* (;A)
such that for all functors F, a (F) is an isomorphism.

(4) If f F -- G is a natural transformation and if C/is the mapping cone
of f (see [2] ), and i G --* C is the inclusion, then the sequence

"* f* ’* A)(c; A) ’(G; A) ,> (F;
is exact for all n.

The proof goes as in the case of spaces (see [8]). For the exactness in (4),
note that we have a cofibration sequence of functors F --* Mf --* Cf, where
M/is the mapping cylinder of f. Then (F, 2q) - (M/, 2q) .-- (C, 2)
is a fibration and hence induces a homotopy exact sequence.. Homology theories

(a) The category ((, ()s.. We have seen that if F is a strong functor and
2 o F F o E is a natural transformation, then for any spectrum A, we can

define a spectrum (F, ) (A).
We will then define (e, e),. as follows" An object of this category is a pair

(F, ) where F is a strong functor and o F F o E is a natural transforma-
tion. A morphism f (F, ) (G, #) between two object of (e, e), is a
natural transformation f F G such that the diagram

EoF E,fZoG

is commutative
FoZ .f,Z )GoZ

(b) Mapping cones in (, ).. If f (F, o) (G, ) is a morphism of
((, e)s,, let C/be the unreduced mapping cone of f, i.e. Cz (X) mapping
cone of fx F (X) --* G (X).
Then Cf can be made an object of (e, ),., as follows.
We have a commutative diagram

Fo2: f,Z )GoZ;
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by taking the adjoint of q and , we obtain

F f

aoFoZ a,f,Z ,aoGoZ.

Now by definition of the mapping cone of a transformation it is clear that
C]. C] o 2:. If i G --. C] is the inclusion in the base of the cone, we have
that

(,i, ;) oo
is homotopic to zero.
Hence there is a natural transformation C] -- 2C] o 2 such that

(2 i Z) o o i. Taking the adjoint of :, we obtain a map

x o C--Co
such that (i 2) o # x i and this implies that 2 o C] is naturally equivalent
to C,]. It remains thus to construct a map x C,] --* C] o 2 C],.
But this map is easily given by the commutative diagram (,)

(c) Homotopy in (, ). Let I’ be the disjoint union of I and a point
serving as the base point. Then , (X I’ / X I X Y/I X {x0} where
x0 is the base-point of X. There are then two natural transformations e0, e
identity --* 2:, defined by sending x to (0, x) and (1, x) respectively.

If f, g F --, G are two natural transformations, a homotopy between them
isamaph" 2b, oF--Gsuchthathoe0.F =fandhol.F g. Since
2:, commutes with Z, it is clear that if f, g (F, ) -. (G,) are two maps of
(e, e),, which are homotopic as maps of (, ),, then 2 o F can be made an
object of (, )8. and the homotopy be can be made a map of (e, )8,.

(d) Homology theories in (, ),

DEFINITION 4.1. If (F, ) is an object of (, e),, and A is a spectrum, the
n-th homology group of (F, ) with coefficients in A is defined as

Hn (F, ; A rn (E, q) (A)) limq n+q (F (Aq)).

It is clear that if f0, fl (F, ) -- (G, ) are homotopic, then the maps

fo,,fl," n (F, ; A) -- n (C, ; A)

coincide for all n. Moreover, there are natural transformations

an ( ;A)--*n+(2();A)

inducing isomorphisms for all (F, ).
Thus we will have obtained a bona fide homology theory once we have
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proved the exactness of the sequences

/n(F, ; A) f*- /n(G, ; A) i, /n(Ci, x; A).

This will occupy the rest of the section.
If

A {An, a, 2A --* A+I} and B {Bn, t 2 B --, B+I}
are spectra, a map f A -- B is a sequence of maps f A. --. B such that

for all n. We can define the mapping cone C C., "),. 2C -- C.+1} of such
a map" C CI and , is given by the fact that 2C. Cm]. and that
A+o.. omA.
What we will show is that for all maps f A --. B and all n, we have an exact

sequence
(A) (B) (C).

DEFINITION 4.2 (see [8, p. 242)). A spectrum A is said to be convergent if
and only if there is an integer N such that AN+ is/-connected for all i > 0.

LEMMA 4.1. Let f A B, and let N be an integer. Then there exist spectra
and maps f’ A --* Bt, A --. A and n B --. B such that"

is commutative for all n.
(2) A A and e is the identity for all i <_ N. B B and is the

identity for all i <_ N.
(3) AN+ and B+ are (i 1)-connected for all i >_ O.
(4) e, r (A --) r (A) and , r(B) -- r (B) are isomorphisms for

all i >_ N+ l and j >_ i- N.

Proof. The proof is dapted from a particular case in [8, Lemma 4.1, p,
242]. Assume thatA and B are 0-connected for i >_ N W 1. (If not, we will
do the following construction only on the path-components of their base point.
First construct A and B as spaces containing A and B respectively and
such that:

(1) There exist maps f A B making commutative diagrams

A f B

A, ..f B.
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(2) The inclusion maps induced isomorphisms

v(A)---(A) and (B)--(B) for j_ i-N.

(3) v(A) (B) 0forj >_ i- N+ 1.

These conditions can be realized simultaneously as followu. First kill
_+(A) (resp. _+(B)) by attaching cells to A (resp. B) via all maps
S-+ --* A (resp. Bi). Let A (i N + 1 and B (i N 1 be the spaces
so obtained. From the function

(S-+, f) (S-+1 A) -- (S-+ B),
we obtain a map A (i N + 1 -- B (i N + 1 making the following dia-
gram commutative"

A c A(i- N+ 1)

B C B(i-- N + 1).

We then repeat this process to kill

r_+(A(i N + 1)) and _+(B(i N + 1)).
We obtain a commutative ladder

A,A,(i-N + 1)

B B(i- N + 1)

Call the direct limits A* and B respectively and let ] A -- B be the
map induced by the above diagram.

* (resp. B) which startNow let A, (resp. B) be the spaces of paths in A,
at the base point and end in A (resp. B). Since,

A A

B C B
is commutative, we clearly obtain a map f A -, B. We then define

e" A-,A and i" B--,B
as the end point maps.

Clearly

is commutative for all i.
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A is in fact the fibre of the inclusion A c A transformed into a fibration.
Thus we have an exact sequence

(A) - .+, (A,) - .(A) . (A) (A).

Because of [2],
r(A)forj_< i- N
Thus in particular r.(A+) 0 for j _< N -t- i N 2 i- 2.
The same is obviously true with B instead of A.
The spaces A and B thus satisfy conditions (1)-(4) of the lemma. It re-

mains only to define maps = 2A -- A+I and B -- B+I making the
following diagrams commutative"

Define first canonical maps

ZA A

as follows. A is the direct limit of a sequence A A(i N -b 1) ....
Since 2: commutes with direct limits, 2A t* is the direct limit of the sequence
A A(i N q- 1) ....,
We will then define a step by step.
We have

ZAi ZA(i- N + 1)

A+I A+(i- N + :2).

To extend to a mapA (i N + 1 A+ (i N + 2), leg f" S-+ A
be a map. hen

e-+ d-+)f S-+A nd Au Z(Au

Then we simply extend to Z (A e*-+) by coning. We do the same thing
for all maps S-+1 A and obtain

a(i-NW 1) A(i-NW 1)A+(i-NW2).

* A A ofWe can then repeat the process to obtain finally a map a
the direct limits.
The same thing can be done for B instead of A to obtain ZB B.

Finally, it is clear thut the following diugrams are commutative.
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,
Taking the adjoint of as and a we obtain a commutative diagram

A C a’

,
fA+ fA+

Let A space of paths in A starting at the base point and ending in
A, A+I space of paths in A+I starting at the base point and ending in
A i+1

Define " A -- tA+ as follows. Let ), be a path in A starting at and
* (X )) (t). In other words,ending in As. Then a (h)(t) a

(x()) (t).(, (x)(t))(s) ,
It s easy to verify that s really a map A -, 2A+z. Tklng the adjoint

of we obtmn = 2A -, A+ which has all the properties we want.
This concludes the proof of Lemma 4.1.

PROPOSITION 4.2. Let f A --, B be a map of spectra and let C be the mapping
cone of f. Then for all n, we have an exact sequence

..() -. (s) - . (c).

Proof. In this proof, we will assume that B has been replaced by the map-
ping cylinder of f and f by the inclusion of A as the top of the cylinder.
Suppose first that A and B are convergent, and choose N large enough so that

AN+ and BN+ are both/-connected for i > 0, and assume that n + N >_ 2
(n is here .a fixed integer). Then the pair (BN+,, AN+i) is also/-connected,
by the relative Hurewicz isomorphism Theorem. Consider the diagram

+(A,) f* J*,+(B) ., ,+(B, A)
(,) \ p

+(c)

From the Blakers-Marsey theorem (see [1]), it follows that p, s an iso-
morphism for n / j

_
2i, where k N + i. Suppose that k >_ n + 2N

(i.e. i >_ n + N). ThenA is (k N)-connected and (k N) >_ n + N _> 2.
Hence n + ]

_
2 (k hr) 2i, and p is an isomorphism for i k N,

j n + k. Thus in the diagram (,),kerp, imf, forlarge enough. Since
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a direct limit of exact sequences is exact, the sequence

r (A) -- r. (B) -, r, (C)
is exact provided both A and B are convergent.
Now suppose that they are not convergent, and let a e ker p,, where

p, rn (B) --* rn (C). Choose a representative a e+(B) of a. Increasing
k if necessary, we may assume that a is in tee kernel of

p. +(B) +(C).
By the preceding lemma, there re convergent spectra , B and maps

: A’A, . :BB, f :AB’
such that, o f’ f . Moreover, A A, B B and e and v are identity

Let C’ mapping cone of f’. Then we have a commutativemaps for i

_
k.

diagram

A f B.. P

Since A A and B B for i

_
k, we have in particular that s, and, are identity maps.

Let a" e+(B) bey (a’). Then p, a 0 implies that p, 0 so that
a" represents an element a* e v. (B’) such that a, (a*) a and p (a*) 0.

Since A’ and B are both convergent, the sequences for this pair is exact so
that there exists e v. (A) such that f a*. Then , f,() a

f, , () and a is in the image of f,, Q.E.D.
This concludes the proof that the functors ( ;A) define a homology

theory.

5. Duality between homology and cohomology
Let F be a functor and 2 o DF .--) DF o y, the natural transformation de-

fined in 2, Example 1. Then, (DF, ,; A) , (DF, q (A)) , (DF (A)) /- (F; A).
Since the transformation 2: o DF DF o Y, is the standard one associated

with a functor of the form DF, we can state in short/ (DF; A) I-’ (F; h).
If F is a reflexive functor, we also have

/(F; A) r(F(A)) r,(D(DF)(A)) t-’(DF; A)
6. Relation with homology and cohomology theories of spaces
Suppose that F 2x for some space X e . Then

’ (F A) ._, (DF (A)) r_. (tx (A)) limq rq_, ( (X, Aq
limq [Sq-’X, Aq] I" (X; A)

in the sense of G. W. Whitehead (see [8]).
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Similarly since F is a reflexive functor, we have

/7(F;A) .(F(A)) (X/l A) /(X; A).

Thus the homology and cohomology theories of functors are a good gen-
eralization of that of spaces.

7. Some examples of computations

(a) Functors of the form F and o F. We know that

/+ (2; F; A)
___

(F; A) and /+ (2; o F; A)
__
/ (F; A).

But if F is reflexive, D ( o F) o DF (see [4] ).
Thus

(toF; A) -’(ZoDF; A)
___

t-’-(DF; A)
___

/n+(F; A)

and

n( o F; A) . _, (mo DF A --_ I_,_ (DF A) __/+ (F; A

(b) The functors J (X) X, X reduced join of X with X and K (X)
DJ (X) space of paths in X / X starting in the left summand and ending
in the right summand. Suppose that A is a spectrum of Eilenberg Mac-Lane
spaces K (A, n). (We will write A instead ofA for the coefficients in this case.
Then

/ (J; A lim r+ (J (A)) lim r+ (K (A, k ),K (A, k ).

Now the space K(A, k),K(A, k) is 2k-connected and if / increases
2k > n -t- k. Thus/ (J; A 0 for all n, and by duality/ (K; A 0
for all n.
To compute/, (K;A), note that we have a functorial fibration

t (X /X) -- K (X) -+ X X X (see [5, p. 122)).

We will denote the functors X -, X /X and X --, X X X by W and P
respectively. Then we have a fibration

oW-- K-- P

which induces an exact sequence

--+r. (2 o W (A) -- r. (K (A) -- r. (P (A) -- r._ (2 o W (A)--

and this is nothing but the sequence

(,) --/,, (t o W; A)-+ t,(K’A) --,/-, (P; A) --, ....
Now if I" is a space with only two points, W is the functor 2(.v. and
P DW 2(.v.
Thus _f/ (tW; A "/+(W; A --- lq+ (I" /I"; A 0 unless n - 1 0

and0(I’/I*;A) A A.
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Similarly,/, (P; A --- -" (W; A -/-" (I" /I"; A 0 unless n 0
amd/(I" /I’;A) A $ A.
We are thus left with the exact sequence

(**) 0 -/0 (K; A -- A A -+ A A --+/-1 (g; A) 0.

Now by [5 p. 122], the inclusion 2 o W --* K has an inverse.
Thus we have, for all n, split short exact sequences

(***) O ---- ,+ (P A ----> I 2W A --- I, K A ---. O

This and (**) imply that n(K; A) 0 for all n. By duality,
/n (J; A 0 for all n.

8. The slant product
Given a pairing of spectra f" (A, B) - C (see definition below) there is

defined, for all spaces X and Y a slant product

/(X/ Y;A) (R) q(Y; B) --/-q(X; C).

We want to define the analogue for functors, with the condition that it
agrees with the usual slant product when we consider functors of the form
2x and 2y. Since 2x^r 22x o 2r, the generalized slant product will involve
the composition of functors, and not their "smashed product".
We will assume then that we have three spectra"

A {A,, o," 2;A, ---, A,+I}, B {Bq, q" x S -- B+t},

C {C, ":C--, C+}

and a pairing f (A, B) C. This is defined (see [8, p. 254-255]) as a family
of maps fp. Ap/% Bq --+ C+ such that for each pair (p, q) we have a dia-
gram

(ZA) / Bq a/ 1 A+x/ B

Z(A A B) Xf. XC+-.-Y+ C++

A A (XBq)

with the following property.

f,+x,q (o A 1)oX O,

Let

Then in the group [2 (A/x, Bq), C+q+x], 0’ 0 and 0 (-1 )’0".
From now on, we will assume that all funetors are reflexive. Our aim is to
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define a pairing
(D(FoG)(A), G(B)) --+ DF(C)

but since F and G are reflexive and hence satisfy D (F o G) DF o DG (see
[4]), this is equivalent to defining a pairing

’0 (DF o G(A), DG(B)) --+ DF(C).

We will define as follows: Let T F --*2 be an element of DF (G (A,))
and T’ G ----> Y, an element of DG(B). Then .(T, T’) is defined as the
composition

F T Z(T) Z(f,)

To prove that is a pairing, we will break it into the composition of two
pairings easier to handle.

(a) Given a pairing f (A’, B’) C’ and a functor F, define a pairing

(DF (A’), B’) --. DF (C’)

as follows. Let T’F ----> Y,.,, be an element of DF (A,) and b e B. Let

" I" -- B be the map such that (1) b. We define then ,,(T,, b)
as ghe composigion

F Zr F Zr*T Z(q).
o :. o :

Explicitly, let X be a space, x e FX and let T(x) (a, x’)e A X.
Then ,(T, b)(x) (h.(a, b), x’) e C+ X.

(b) Given a pairing f (A, B) C define

as follows.

x (G(A), DG(B)) --. C

Let a e G (A), T" G --. Zs’.
Then

X, (a, T) f,T(a).

Assume for the moment that and : are pairings. We will then prove that
is a pairing.
In case (a), replace A’ by G (A), B’ by DG(B) and f by ; the latter being

obtained from (b). We obtain then a pairing

(DFoG(A),DG(B)) ----> DR(C)

defined as follows. Let T:F ----> Zo<.,>, T’:G ----> Y,s, let X be a space,
x . FX and Tx (x) (a, x’) G (A,) / X. Then

,.,(T, T’)x(x) (f,,o T’,(a), x’)
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On the other hand,

,,q(T, T’ ) y,(f,.q)o Y,(T)o T:(x) (f.qo T,(a), x’)

Thus ,q ,q so that q,q is a pairing if both and ; are pairings.
The proof that /and : are pairings is long but straightforward. In fact,

only the reflexivity of G is needed.
Thus we obtain a slant product

/(f oG; A) (R)/(G; B) --*/’-(F; C).

It is easy to check that if F 2; and G 2r this slant product coincides
up to sign with the usual one.

9. The cross-product and the cup product
We can define a cross-product

/ (F; A)(R) Hq(G; B) --./+q (FoG; C)
via a pairing

/: (DE(A), DG(B)) --. D(FG)(C)

given by the following formula. Let T’F -. Y,.,, T’G Y,. Then

is the composition

T’F G
T,G Z,

As for the slant product, this cross-product coincides up to sign with the usual
one when F 2 and G

Moreover, if B C A, i.e. if we have a pairing f (h, A) -, h and if we
have a natural transformation a F --, F o F, we can define a cup product as
the composition

/(F; A) (R) q(F; A) -- I’+q(E o E; A) a ’+q(F; A).

Then we have the following result: If h is a spectrum of Eilenberg Mac Lane
spaces K (A, n) (or any spectrum which behaves like a ring with unit) where
A is a ring with unit and if F is a cotriple, then the cup product makes/* (F;A)
a graded ring with unit.

10. Relations with Spanier-Whitehead duality
An n-duality map between two connected polyhedra X and Y has been

defined by Spanier as a continuous map u X/ Y --+ S" such that the slant
product u*S,/Hq (X) ---> t-q (Y) is an isomorphism, S. being a generator
of H (S") (see [7, p. 338]). Moreover, G. W. Whitehead has shown that if u
is such a duality map, then for any spectrum A,

u*s/Hq(X; A) --, H"-q(Y; A)
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is an isomorphism, where s is a generator of H (Sn; S) and $ is the spectrum
of spheres (see [8, p. 281, Corollary 8.2]).
Now the map u:X / U -. S induces a natural transformation

Call 0 2r -- x 2; the adjoint natural transformation.
Then we can show the following" u is an n-duality map if and only if 0

induces an isomorphism in homology and cohomology for all spectra of
coefficients.
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