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The aim of this note is to show that the problem of whether direct limit
preserving functors T" -- ’ (I fixed) have right adjoints is equivalent to
the problem of whether the inverse limit preserving Yoneda embedding
Y" I --* Cont [Ip’, ], A [-, A], has a left adjoint, where Cont [1p, ]
denotes the category of contravariant set valued functors which take direct
limits in inverse limits (also called continuous functors). In other words, the
problem of constructing right adjoints of functors with domain can be trans.
formed into the problem of constructing the left adjoint of a functor with
domain . If the conjugate t* of every covariant and contravariant con-
tinuous functor --. is again a functor, then it follows from this that co-
continuous functors T’ --* I’ have right adjoints iff continuous functors
S .I --* " have left adjoints (I fixed, ’ and tp variable). This gives rise
to a simple proof of the adjoint functor theorem which, like the proofs of J.
Benabou, J. Beck, P. Dedecker, J. Isbell, J. Lambek and others, does not re-
quire that is well or co-wellpowered in the sense of P. Freyd [1]. In
other words, the subobjects and the quotient objects of an object in .I need
not form a set.
We were led to the above after observing a new proof of Lambek’s version

[4] of the special adjoint functor theorem. According to Lambek, Freyd’s
conditions in [1] that has a family of generators and is co-wellpowered can be
replaced by requiring that has a small adequate or dense subcategory .1 (cf.
Isbell [3], Ulmer [5, 1.3]). Adequate or dense means that every object A e t
is the direct limit of the canonical diagram of objects fi e over A. (More
precisely, the objects of the index category are morphisms e" A, -. A in ,
where fi_, e . A morphism a -- K is a morphism a 2: --* 2: in with the
property ..)
Morphism sets, natural transformations and functor categories are denoted

by brackets [-, -], comma categories by parentheses (-, ). The category
of sets is denoted by . The phrase "Let .I be a category with direct limits"
always means that has direct limits over small index categories. However,
we sometimes also consider direct limits of functors F’ --* I, where ) is
not necessarily small. Of course we then have to prove that this specific
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Recall that t*A --It, [A, -]] for A I. Thus * is a functor iff the natural trans-

formations from to [A, form a set for every A I (likewise for contravariant func-
tors).
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limit exists. The terminology "small direct limit" is used when we want to
specify that the index category under consideration is small.

We first give a proof of Lembek’s version of the adjoint functor theorem
only assuming that every object and every morphism in I is in some way a
direct limit of objects and morphisms in .a

(1) Recall that every set-valued functor t’I -- is canonically a
direct limit of hom-functors (cf. Gabriel-Zisman [2], Ulmer [5, 1.10]). In
general, the canonical index category is not small unless I is small. Call a
functor t" .I -- small if it is in some way a small direct limit of hom-
functors.

(2) SPECIAL ADJOINT FUNCTOR THEOREM. Let be a small subcategory of
a category I with direct limits such tha$ for every object A e I there is a functor
F (A) (A) ---, with he propery dir lim I.F (A) A, where I" I I is
ihe inclusion. Assume, moreover, that for eery morphism f" A ---+ A’ in [ there
is a functor

H (f ) (A --, ) (A’
ogeher with a natural $ransformaion

b if)" f (A ) f (A’).H

such hat the induced morphism dir lim F (A) --, dir lim F (A coincidvs with

f A --- A’.
Then every direct limit preserving functor T" [’ has a right adjoint.

Proof. It is well known that it suffices to show that for every A’ e ’ the
continuous functor [T-, A’] Ivv ---, , A ., [TA, A’], is representable. Let
t’Ivv ---, be a continuous functor and let t. I dir lim [-, 2:] be the
canonical representation of t. I" ov __, as a direct limit of representable
functors, where I" --* I denotes the inclusion. Let to’w ---, be any
continuous functor. The assumptions made on I clearly imply that the
map [t, to] --* [t.I, to.I], given by restricting natural transformations, is a
bijection. Thus it follows that

[t, to] It.I, t0.I] [dir lim [-, 2:], to.I] inv lim [[-, 2:], t0.I]
(3) _

inv lim to I): to dir lim I): [[-, dir lira I], to]

Our condition is weaker than Lambek’s. For instance, finite sets do not form a
co-adequate subcategory of all sets, but every set is an inverse limit of finite sets.

This implies that every object A I is the cokernel of a pair of maps 2: -, ( 2:,
where 2:, , and that every morphism f A -- A’ gives rise in an obvious way to a
commutative diagram. The conditions in (2) can be replaced by this weaker assumption,
provided the category is closed under finite sums and its objects are "finitely gen-
erated", i.e. every morphism from an object 2: I in an infinite sum( x factors through
a finite subsum, fix I.
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Hence [-, dir lim IA] is valid, which shows that every continuous functor
is representable, Q.E.D.

(4) If in (3) to is a hom-functor [-, Al, where A e l, then we obtain a
bijection [t, [-, A]] [dir lira Ii,, A] which can be viewed as an adjunction
bijection. In other words, the functor

Cont [I, ] --, .I, dir lim

is left adjoint to the Yoneda embedding Y I -. Cont [.l, ], A [-, A].
This suggests investigating what the existence of the left adjoint of the Yoneda
embedding implies in general. We will show that, roughly speaking, its
existence is equivalent to the validity of the adjoint functor theorem in .i.

(5) Call a functor S" .i --* i supercontinuous if it preserves all existing
inverse limits in 9.I. (The index categories need not be small.) By

S. Cont [t, ]

we denote the category of supercontinuous set-valued functors on i,,.
A functor S" .l -. I is called continuous if it preserves all existing small

inverse limits. (Note that we do not assume that I has small inverse limits.)
It is well known that every functor S ?I --* .l’ which has a left adjoint is super-
continuous. Likewise hom-functors are supercontinuous. However not every
continuous functor is supercontinuous. The counterexamples appear artificial
and we think that in practice the two notions coincide.

(6) LEMMA (Lambek [4]). The Yoneda embeddings

Y" I --. S. Cont [I, ] and Y" I --* Cont [l, ]

are supercocontinuous and cocontinuous respectively.

Proof (Sketch) Let A dir lira A be an arbitrary direct limit in l
From the bijections below it follows that [-,A] dir lira [-, A] holds in
S. Cont [i’’, ]. For every supercontinuous functor t’?I’" - the
equations

inv lim [[-,[[ Al, t] -- tA inv lim tA, A,] t] ’ [dir lim [-, A ], t]

are valid. The first half can be proved in the same way.

(7) Coov. Let I be a category with direct limits. Then every small
continuous functor t" , ---. is representable.

To see this, let dir lim [-, A,] be a small direct limit. The Yoneda
embedding Y’.i - Cont [I’, ] preserves small direct limits. Hence

dir lira [-, A,] dir lim YA, -- Y dir lim A, [-, dir lim A,].

Later we will show that the adjoint functor theorem follows from this.
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(s)
(a)
(b)
(c)

(d)

THEOREM. Let ?I be a category. The following are equivalent:
Every supercocontinuous functor T’I I’ has a right adjoint.
Every supercontinuous functor Ipp ---. is representable.
The Yoneda embedding Y I S. Cont [9.Ipp, ], A [-, A] has a

left adjoint L :S. Cont [p, ] ?I.
The Yoneda embedding Y has a right adjoint R S. Cont [o, ] __, I.

Proof. (a) ,: (b) (c) and (b) ,, (d) are trivial, the latter because
tA --- [[-, A], t] [A, Rt] for every A I and e S. Cont [Ipp, ]. To
prove (c) (b) recall that for every t: Ip --. there is a direct limit
representation dir lim [-, A]. Since the Yoneda embedding is full and
faithful, it is obvious that L:S. Cont [Ip, ] --, I maps a hom-functor
[-, A] onto A. Thus the composite

Y. L S. Cont [?Ip, ] --* I --* S. Cont [?i, ]

maps hom-functors identically onto themselves. Since both L and Y are
supercocontinuous (for the latter see (6)), it follows from dir lim [-, A]
that Y. L (t) [-, L(t)]. Hence L and Y are equivalences, Q.E.D.

(9) COROLLARY. Let ?I be a category such that for all super continuous
functors

Opp
__

and s: I
the natural transformations It, [-, A]] and Is, [A, -]] form a set for every A e I.
Then the following are equivalent:

(a) Every supercocontinuous functor T I’ has a right adjoint
variable).

(b) Every supercontinuous functor S I rp has a left adjoint
variable).

This corollary follows from (8) modulo some harmless set theoretical dif-
ficulties. The categories 9.Y and ?I should be allowed to have classes of
horn-sets. However, [TA, A’] and [A’, SA] have to be sets for every A e I,
A e ?I’ and A" . Note that (a) and (b) imply that the Yoneda embed-
dings

I --* S. Cont [I, ]opp, A [A, -] and I --* S. Cont [opp, ], A [-, A]

have adjoints.

(10) Remark. A large class of categories satisfies either (9a) or (9b) but

One can state the theorem for a fixed functor T 92 --, 92’. Thereby the adjoints in
(c) and (d) have to be replaced by partial adjoints which are only defined on supercon-
tinuous functors [T-, A’] 92opp _,, where A’ 92’. Likewise the assertion (b) has to
be restricted to functors [T-, A’] 92opp ._, , where A’ 92’. However the theorem is
most probably false if "super(co)continuous" is replaced by "(co)continuous" unless
(co)continuous functors Ipp --, are small (cf. (10) and footnote 8)).
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relatively seldom both. Assume that a category I has the above property
(9a) or equivalently that every supercontinuous functor ?Ipp -- is represent-
able. This implies that the dual of every supercontinuous functor Ip
is again a functor. Thus it follows from the above that I satisfies (9b) iff the
dual of every supercontinuous functor s I --. is again a functor. In other
words, if in a category I the adjoint functor theorem holds on one side, then it
holds on the other side iff the duals of supercontinuous set valued functors on
9.I (both covariant and contravariant) are again functors. This connection
can also be made visible directly. Let T’ -- .Y be a supercocontinuous
functor and denote by (T, Ap) the comma category associated with A’ e .
Recall that its objects e, K, are pairs (A,, ), where A e I and , is a
morphism TA, - A. P. Freyed [1] showed that the direct limit of

F., (T A ? ",, A

is the value of the right adjoint S" I --* at A (provided S exists). The
index category of the cnonicl representution of [T-, A’]’’’ as
direct limit of representable functors is isomorphic with (T, A’) because the
objects of the former are natural transformations [-, A] -* [T-, A’]. There-
fore we can write [T-, A’] dir lim [-, A], and it follows for every A
that

[[T-, A’], [-, A]] [dir lim [-, A,], [-, A]] inv lim [[-, A,], [-, A]]

inv lim [A,, A] [F,, const]

holds, where const" (T, A’) -- I denotes the constant functor A.
Clearly a necessary condition for the existence of Freyd’s limit dir lim A, is
that the natural transformation from F, to const form a set for every A
because [dir lim A,, A] - [F,, const] must hold. For some categories
this condition is also sufficient, and thus a supercocontinuous functor
T I --* I’ has a right adjoint iff the natural transformations [[T-, A’], [-, A]]
form a set for every A’ , A e .
To obtain the adjoint functor theorem from (7), we need some more

terminology.
(11) With Isbell [3] we call a functor t -- proper if there is a set

{Ax}x of objects in ?I together with an epimorphic natural transformation
@x [-, Ax] t. The family {Ax} is called a support of t. For example, let
T" I --* ’ be a cocontinuous functor. Then T satisfies Freyd’s [1] solution
set condition iff for every A’ e .I the functor ?I -- , A . [TA, A’], is
proper (and the solution sets are supports for the functors [T-, A’]). Clearly
a small functor (cf. (1) is proper, but the converse is not true. The counter-
examples are artificial, and we think that in practice the two notions coincide

Note that in this situation Freyd’s existence proof of S only works if T is super-
cocontinuous. This is because we do not assume the existence of a solution set (but
merely the existence of dir lim A,) and because T has to preserve the limit dir lim A,.
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(cf. (12) below). In general, a functor t" Ipp --, is not proper (or small)
and the counterexamples are closely related with the failure of the adjoint
functor theorem in I.

(12) LEMMA. Let I, be a category with pullbacks and t’I --+ a
proper functor which preserves pullbacks. Then is small.

Proof (Sketch). Let be the full small subcategory of I generated by a
support of t. With the composite

I Y

there is associated the comma category (Y. I, t) , the objects of which are
natural transformations [--, A,] --+ and the morphisms - are morphisms

fi, --, fi in such that [-, ]. , where fi,, fi e . It is well known
that is the direct limit of the canonical diagram in [I, ] associated with
the comma category (Y, t) (cf. Gabriel-Zisman [2], Ulmer [5, 1.3, 1.10)].
Thus it suffices to show that the inclusion (Y.I, t) --> (Y, t) is cofinal. Since
is proper, one readily checks by means of the Yoneda lemma [[-, X], t] . tX

that every natural transformation [-, X] -- can be decomposed into

[-, x] [-, i] t,

where Axe 9, X 9.I. I-Ienee every object of (Y, t) is dominated by n
object of (Y.I, t). Sinee t’ -- preserves pullbeks nd is proper,
every diagram in D of the form

t-, t-, t-,x 

[-,i,]

can be completed as indicated, where A , ,, , -I andX is the pushout of

A

This completes the proof ghat ghe inclusion (Y.I, ) -- (Y, ) is eofinal,
Q.e.D.

If I has direct limits, then it follows from (13) below that every small continuous
functor tpp -- is representable. Thus if a cocontinuous functor T .I --, I’ does not
have a right adjoint, the continuous functors IT-, A] /p, --. cannot be small,
A’ I’.
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We are now in a position to obtain Freyd’s version of the adjoint functor
theorem from (7).

(13) ADJOINT FUNCTOR THEOREM. Let A be a category with direct limits.
The following are equivalent:

(a) Every cocontinuous functor T with domain I has a right adjoint.
(b) Every continuous functor t: Ipp ---, is representable.
(c) Every continuous functor I -* is small.
(d) Every continuous functor t’ ---+ is proper.
(e) For every cocontinuous functor T with domain [, Freyd’s solution set

condition holds.

Proof. (a) ,= (b) =, (c) =, (d) are trivial. For (d) =, (e) see (11).
(d) (c) and (c) (b) follow from (12) and (7) respectively.
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We leave it to the reader to state the theorem for a single functor T ?I --, ?I’ (cf.
footnote 5)).

One can deduce (c) == (b) also from (8) by constructing the left adjoint of the Yoneda
embedding Y I --. Cont [Ipp, ]. This can be done because A has direct limits and
continuous functors ?Ipp -o are small.


