
ON RESULTS OF AHLFORS AND HAYMAN

BY

AMES A. JENKINS AND KOTAIO OIKAWX

1. In Ahlfors’ thesis [1] the basic technique relates to the conformal map-
ping of certain domains, called by him strip domains. In particular he ob-
tained estimates for certain associated geometrical quantities in terms of inte-
grals which he called the First and Second Fundamental Inequalities. The
former is now habitually called the Ahlfors Distortion Theorem. While that
paper is one of the precursors of the method of the extremal metric it operates
primarily with the length-area technique. Although a number of authors have
presented refinements and extensions of Ahlfors’ results strangely enough no
one seems to have reconsidered these problems in terms of the former method
although Teichmiiller [5] did treat the first result more geometrically, using
symmetrization techniques. In the present paper we apply the method of the
extremal metric in the context of Ahlfors’ fundamental inequalities. In the
case of the first inequality the proof becomes virtually trivial. In the case of
the second we obtain a proof simpler both conceptually and technically than
Ahlfors’ ingenious but complicated procedure. In addition it becomes clear
that certain of Ahlfors’ conditions on the domain, in particular its symmetry,
were required only for the application of his particular technique.
A result which plays an important role in Hayman’s treatment of mean p-

valent functions [2; Theorem 2.4] has a close connection with the same con-
cepts although it deals with regular functions rather than conformal mappings.
The method of the extremal metric provides a simple proof and a technically
improved version of the result.

2. Let D be a simply-connected domain in the z-plane with boundary ele-
ments P1 and P such that for an interval of values of x, A < x < B,
D {9{z x/ contains a component D1 in 9z < x with P as a boundary ele-
ment and a component D in 9tz > x with P as a boundary element. Let
a(x) denote a maximal open subinterval of 9z x in D such that the two
components of D a(x) have P, P as respective boundary elements. Let
O(x) denote the length of a(x) (the possibility of infinite length is not excluded).
It is well known that (x) can be chosen so that 0 (x) is measurable, for ex-
ample as the common boundary arc inD ofD and the component ofD C1 D1
with P as boundary element.

Let D be mapped conformally on the strip S 0 < }" < a in the ’-plane so
thatP andP correspond to the boundary elements of the latter determined by
the point at infinity with respective neighborhoods in < 0 and 9 > 0.
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Let r (x) denote the image of. (x) in S. Let

(x) glb,,() , (x) lub() .
TEOaEM 1. (Ahlfors Distortion Theorem). With the above conditions and

notations, for A x x B,
dx 1
O(x -a ((x) (x)) + 2, (x) (x) < a

1, (x)- (x) a.

One component of D (a (xl) a (x)) becomes quadrangle Q (possibly
degenerate) on assigning (x), a (x) as a pair of opposite sides. Let the
module of the quadrangle for the family of curves joining the complementary
pair of sides be denoted by M. It is well known that

() a/0()

(for example by observing hag d/O () is ghe module of ghe family of
curves (), < < ). Now r (), r () are a pair of opposige sides of a
quadrangle eonformally equivalen go whose eomplemengary pair of sides
are respectively on f 0, f . he module of . for he family of
curves oining ghe lagger is again M. Leg, in ease ( () (() < ,

o(r) 1/, apoinsofwigh(() < f < () +
0, elsewhe in ;

in ease () () ,
o() 1/, apoinsofwih((x) N < f < c+ ()

0, elsewhere in .
In eaeh ease ghe megrie o (f) ]df is admissible in ghe L-normaliagion [] of
ghe module problem and ghe respective areas are hog greager ghan

(/) ((,) , ()) + , 1. hus

(/)(5() ()) + , ,() (,) <
()

N , () () .
Combing (1) and (2) we have ghe resulg of Theorem 1. his is ghe proof
referred go in [4J.

8. Nhlfors’ Second undamenal Inequaligy prodes an upper bound for
() (() in germs of he integral d/O () plus a certain remainder

erm subee o a number of fairly sringeng requirements. In he framework
of ghe mehod of ghe exgremal megrie ghe key sgep is o provide an upper bound
for M analogous go ghe evideng bound (1). his will now be done under eer-
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rain restrictions on Q and from this it will be quite easy to obtain a new version
of Ahlfors’ result.

THEOREM 2. Let the quadrangle Q be such that, for x <_ x <<_ x (x is repre-
sented by a segment -01 (x) y < O: (x), O (x), (x) > O, where 0, O have
respective finite total variations V, V on [x, x], O (x), O.(x) g L on [x, x]
and (0 < )0() O (x), O (x) on [x x]. Then Jor the module M of Q for the
family of curves joining the pair of sides complementary to (x), (x) we have

dx L(3) M ) -2(()) (V + V).

Let [x, x] be divided into n consecutive closed intervals A, j 1, n,
of equal length and, for 1, 2, let

0)(x) min0(t), teAwherexeA
(such minima are attained since 0 (x) is lower micontinuous). At an end
point $ of an interval A where the step function 0’) (x) has a positive jump we
draw the ray given by h, O’) () + h, 0 d at an end point $ of an
inteal he where the step function O’) (x) has a negative jump we draw the
ray given by h, O’) () + , 0. The lower envelope of these rays and
the locus y 0’) (x) defines on [x, x] a continuous function 0t) (x) which de-
termines a decomposition of [x, x] into a finite number of subinteals on
each of which the locus y 0t) (x) has slope + 1, -1 or 0. The domain de-
termined by

< < < x <
becomes a quadrangle Q* on assigning as a pair of oppote sides the segments

a (x)" --Ot)(x) < y < Ot)(x), l= 1,2.

For the module M* of Q* for the family of curves joining the pair of sides corn-
* (x) we evidently have M < M*. Thus it is nowplementa to * (xl), a

enough to obtain an upper bound for M*.
If we reflect Q* in a* (x2), form the union of the two domains and a* (x) and

assign a* (x) and its reflection as a pair of opposite sides we obtain a quadrangle
Q** of module 2M* for the family of curves joining the complementa pair of
sides. If we map Q** by w exp (z/i (x x) its image is a doubly-con-
nected domain A slit along a radius. The module of A for the family of cues
joining the boundary components is 2M*. On the other hand this module is
equal to the Dirichlet integral of the harmonic measure with respect to A of
one of its boundary components. An upper bound for this quantity is ven
by the Dirichlet integral of any piecewise differentiable continuous function in
A taking continuously the value 1 on one bounda component and the value 0
on the other. Returning to Q* we see that an upper bound for M* is given by
the Dirichlet integral of a function continuous on the closure of Q*, piecewise
differentiable and taking the value 0 on the side given by y -Ot) (x), the
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value 1 on the side given by y 0(t) (x). Such a function is given for example
by

(0() (x))- (y + 0 t) (x)) where 0(t) (x) ) (x) + ) (x).

The estimate obtained by taking its Difichlet integral is

dx 1 (O()(x))- O(t)(x)O()(x) + (O(t)(x))(4) M*
O(t)(x + O(t)(x

dx.

To reduce this to an expression in terms of 0’) (x), 0’) (x) let the respective
closed intervals on which the slope of 0 t) (x) is 1 be A) "(),...,:,l= 1,2,
and let the variation of 0") (x) on these intervals be V) v()..., ,l 1,2.

a(’) (x) we then haveWriting O(’) (x) 0’) (x) +
’ dx dx < + (,)(x)O(

dx

i (m) k ()

(5) (2L-- (2L- 2
,- (20()) VJ"1) + (20(m)) V2)

< (2L- 2e()) (V + V),
(2e())

the last since the total variation of ’) (x) on [x, x] is not greater than that of
0 (x), 1, 2. On the other hand

1 f (8()(x)) 8()(x)8()(x) + (8()(x))
, 0()(x

dx

1 + 06)-(X dx

(6)
v’) + ._

Combining (4), (5) and (6) we have

M* <_
O(,)(x -4-

< (v+ v:).

L

As the number n of original intervals tends to infinity, f c/x/0’) (x) tends to

f dx/0 (x) and we obtain (3).

4. Theorem 2 can be used to derive a version of Ahlfors’ Second Funda-
mental Inequality.

THEOREM 3. Let D be a simply-connected domain in the z-plane with boundary
elements Pa P. such that for every x the segment r (x) -0 (x) < y < O (x),
O (x ), O (x > O, separates D into subdomains with P P as respective boundary
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elements. Let 0 (x 1 (x + (x ). Let Vj (x’, x" denote the total variation of
Oj on Ix’, x"], j 1, 2. Let (x <_ L, all x, j 1, 2. Let

minx,_<<,, (01 (x), 0 (x)) 0(m) (x’, x" ).
Let D be mapped conformally on the strip S 0 a in the -plane so that
P1, P correspond to the boundary elements of the latter determined by the point at
infinity with respective neighborhoods in 9 O, 9l > O. Let r (x denote the
image of (x in S. Let

1 (x) glbt()

Then for xl < x
dx1 ((x) 1(xl)) <

(7)

(x) lub,()

L
2(o()(x, x))

(V(x, .) + V(x, ))

2L 2L
O(’)(xl 25, x - 2L) O(")(x.- 25, x + 2L)

The rectangle 0 < " < a, (xl) < 9" < (x) becomes a quadrangle .’
on ussigning its pairs of horizontal and vertical sides as pairs of opposite sides.
The module m of ’ for the fumily of curves joining the horizontal sides is

(1/a) ( (x) (x)).

Let Q’ be the inverse image of ’ in D. Let Q be the quadrangle with z (x),
(x) as a pair of opposite sides as before, M its module for the family of curves

joining the complementary puir of sides. Let p (z) d.z be the extremal metric
with L-normalization corresponding to M. Let D be the subdomain of D
given by--0 (x) < y < t(x)and let

pl (z) 1/20(m) (Xl 25, xl -{- 2L)

for

z e D* [xl 20() (x 2L, xl + 2L) < 9z < x_, + 20() (xl 2L, x + 2L)}

pl (z) 0, elsewhere in Q’;

p (z) 1/20() (x 2L, x + 2L)

for

z e D*n {x 20() (x 2L, x_ -[- 2L) < 9lz < xz -t- 20() (x 2L, x -t- 2L)},

p(z) O, elsewhere in Q’.

Let

p* (z) mux (p (z ), pl (z ) p (z ), z e Q’.

Then p* (z) dzl is an admissible metric for the module problem for Q’ deter-
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mining m. Thus

_1 ((x) (x))
a

2L
0(’)(x- 2L, x + 2L)

2L
O()(x- 2L, x + 2L)"

Applying Theorem 2 we now have inequality (7).

5. We now turn to the proof of the following refined version of Hayman’s
result.

THEOREM 4. Let f (z) be regular for z < 1 with at most q zeros in z < s,
s

_
1 and have expansion about the origin

f(z) _.,n=O a, z’.
Let t mx< ]a I, R (q + 2)2-t, M (r, f) mx,l=, f(z) l. Let
n (w) denote the number of roots in z 1 of the equation f (z) w and let

p(R) n(Re) de,.

Then

-jU(r.) dR 1 + r + log l(8)
Rp(R) " 2 log1 "Consider the module of the family I’, the individual elements of which con-

sist of the level sets 7R If(z) R, R1 < R < M (r, f). It is seen at once
that this module is

l___ f
(’’) dR

2r ",1 Rp(R)

Let z, denote a point of z r where M (r, f) is attained. Each , separates
0 and zr in ]z <: 1. Thus each / either contains an open arc separating 0
and zr in z < 1 and tending to ]z 1 in each sense or contains a simple
closed curve R separating 0 and z. The unit circle can be mapped conform-
ally onto the strip Iw[ < 1/2 so that z 0 goes into w 0, z, goes into
(1/r) log (1 + r)/(1- r). Let in [w < 1/2,

1P(w) 1, wl < , 0 < 9w <_llogl + r
r

1 1 -{-- r 1and w- -log -1--r 2
0, elsewhere.

Let pl (z)] dz be the metric induced in z < 1 by P (w)[ dw I" Then in the
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first instance above we have

L pl(z) dz >_ 1.

Let
(z) 1/2,

z[,
In the second instance above let

If mR >_ s, evidently

f p(z) Idzl 1.
R

If mR < s

_
MR we readily see that

f7 p(z) dz

_
1.

Now suppose MR < s. We recall result of Hayman [2; Lemma 2.2] which
says that for 0 < s,

minll= [f(z)
On the other hand for M, < < s

Thus for these latter values of t, , has at least two points of intersection with
z] t. Thus again

f ,(z) dz 1.
R

Let now p (z) max (p (z), m (z)). Then p (z) dz is admissible in the L-
normalization for the module problem for F. Thus evidently

1 f(’) dR 1 1 r 1 1
2 , Rp(R) < lg l r

T + + lgs
Since this metric is obviously not extremal we can use the inequality sign.
This gives at once inequality (8).

6. We observe that the additive constant on the right-hand gde of (8) is
absolute, independent of q. If we apply the result [2; Lemma 2.1] in a manner
similar to Hayman’s proof of [2; Theorem 2.5] we obtain the following state-
ment.

In the notation of Theorem 4, ff f (z is areally mean p-valent in z < l,

M(r,f) < A(p)(1 r)-, 0 ( r < 1,

with A (p) (p + 2)2 exp (pv + 1/2).
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