LEBESGUE SPACES OF PARABOLIC POTENTIALS

BΥ

RICHARD J. BAGBY

Introduction

We define a class of spaces $\mathfrak{L}^{p}_{\alpha}$ via Fourier transform techniques. These spaces have been studied previously by Sampson [11]. They arise in the study of the heat equation; they are the parabolic analogue of the spaces of Bessel potentials introduced by Aronszajn and Smith [1] and by Calderón [4]. The results obtained in this paper are analogous to results obtained by Strichartz [13] for Bessel potentials.

The first chapter contains the basic facts about $\mathfrak{L}^{\sigma}_{\alpha}$ spaces. In the second chapter we characterize some of these spaces in terms of an integral norm of a difference quotient. We develop an interpolation theory for these spaces in the third chapter. These results are of some interest in themselves; they are used in the fourth chapter to find sufficient conditions for the product of two functions to be in one of the spaces $\mathfrak{L}^{\sigma}_{\alpha}$.

Establishing the characterization of Chapter 2 requires a number of calculations. The appendix contains the worst of these.

This paper consists essentially of the author's doctoral dissertation at Rice University. I wish to thank my advisor Dr. B. Frank Jones for his help. Financial support was provided by the United States Air Force, N.A.S.A., and the Schlumberger Foundation.

1. Preliminaries

1.1 Notation. Let E^{n+1} denote Euclidean (n + 1)-space. Points in E^{n+1} will be denoted in the form (x, t), where $x \in E^n$. Unless explicitly stated otherwise, all function spaces are assumed to be spaces of functions defined on E^{n+1} .

The usual inner product in E^n will be denoted by $x \cdot y$. For $x \in E^n$, $|x| = (x \cdot x)^{1/2}$. Differential operators are expressed in the form

$$D_x^{\alpha} D_t^{j} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n} (\partial/\partial t)^{j};$$

the order of the multi-index α is denoted by $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$. The Laplace operator in E^n is denoted by Δ_x .

Let S denote the space of C^{∞} functions ϕ satisfying

$$\sup_{(x,t)} \left| P(x,t) D_x^{\alpha} D_t^{j} \phi(x,t) \right| < \infty$$

for any polynomial P and any α , j. S is given the usual topology; see Schwartz [12]. The dual of S is denoted by S'; its elements are called tempered distributions.

Received April 15, 1969.

The Fourier transform is defined on S by

$$\hat{\phi}(\xi,\tau) = (2\pi)^{-(n+1)/2} \int \int e^{-ix\cdot\xi - it\tau} \phi(x,t) \, dx dt;$$

it is extended to S' in the usual manner. Where no confusion arises, the dual variables will also be denoted (x, t).

The letter C will be used to denote any positive constant whose exact value need not be known explicitly.

1.2 DEFINITION. For arbitrary complex α , define $\mathcal{J}_{\alpha}: S' \to S'$ by

$$(\mathfrak{g}_{\alpha} T)^{\wedge} = (1 + |x|^{2} + it)^{-\alpha/2} \hat{T},$$

where

 $\begin{aligned} (1+|x|^2+it)^{-\alpha/2} &= \exp \left\{ -\frac{1}{2}\alpha [\ln |1+|x|^2+it| + i \arg (1+|x|^2+it)] \right\},\\ \text{with } -\pi/2 &< \arg (1+|x|^2+it) < \pi/2.\\ \text{Since } (1+|x|^2+it)^{-\alpha/2} \text{ is a } C^{\infty} \text{ function each of whose derivatives are} \end{aligned}$

Since $(1 + |x|^2 + it)^{-\alpha/2}$ is a C^{∞} function each of whose derivatives are bounded by polynomials, \mathcal{J}_{α} defines a continuous operator from S' into itself. Note that $\mathcal{J}_{\alpha+\beta} = \mathcal{J}_{\alpha} \mathcal{J}_{\beta}$ and that formally $\mathcal{J}_{\alpha} = (1 - \Delta_x + D_i)^{-\alpha/2}$.

1.3 DEFINITION. For $1 \leq p \leq \infty$, $\mathfrak{L}^{p}_{\alpha}$ is the Banach space of tempered distributions T such that $\mathfrak{g}_{-\alpha} T \epsilon L^{p}$, with the norm $|| T ||_{p,\alpha} = || \mathfrak{g}_{-\alpha} T ||_{p}$. Clearly $\mathfrak{L}^{p}_{\alpha} = \mathfrak{g}_{\alpha}(L^{p})$ and $\mathfrak{L}^{p}_{\alpha+\beta} = \mathfrak{g}_{\beta}(\mathfrak{L}^{p}_{\alpha})$.

1.4. DEFINITION. A locally integrable function m(x, t) is said to be a *multiplier* (on Fourier transforms of functions) of type (p, q) if for every $\phi \in S$, $m\phi \in S'$ and the operator $T: S \to S'$ defined by $(T\phi)^{\wedge} = m\hat{\phi}$ satisfies $T\phi \in L^q$ with $||T\phi||_q \leq C ||\phi||_p$, C independent of $\phi \in S$. The space of all multipliers of type (p, q) is denoted M_p^q ; these spaces are treated in Hörmander [7].

Due to the form of the operator \mathcal{J}_{α} , the following theorem will be extremely useful. It is a special case of a theorem proved in Fabes and Riviére [5].

1.5 THEOREM. Let $m \in L^{\infty}$ and suppose

 $\sup_{(x,t)\neq(0,0)} \left(\left| x \right|^2 + \left| t \right| \right)^{|\beta|+k} \left| D_x^{\beta} D_t^k m(x,t) \right| \le C_0,$

whenever $|\beta| + 2k \leq N$, where N > (n+2)/2. Then $m \in M_p^p$ for 1 $and the norm of the associated operator is bounded by <math>C_0 C_p$, where C_p depends only on n and p.

Applying (1.5) to the function $(1 + |x|^2 + it)^{-\alpha/2}$, we see that $\mathfrak{g}_{\alpha} : L^p \to L^p$ continuously if Re $(\alpha) \geq 0$ and $1 ; the operator norm of <math>\mathfrak{g}_{\alpha}$ is bounded by $C_p e^{(\pi/2) \operatorname{Im} \alpha} |p_n(\alpha)|$ where P_n is a polynomial depending only on n. As a consequence, $\mathfrak{L}_{\alpha}^p = \mathfrak{L}_{\operatorname{Re}(\alpha)}^p$ for $1 . Since our new results are valid only in the case <math>1 , we will restrict our attention to the case of real <math>\alpha$.

1.6 LEMMA. If $\alpha > 0$, then the function G_{α} defined by $\mathcal{G}_{\alpha}(x, t) = (4\pi)^{-n/2} \Gamma(\alpha/2)^{-1} t^{(\alpha-n)/2-1} \exp\{-t - |x|^2/4t\}, t > 0$ = 0. $t \leq 0$ satisfies: $g_{\alpha} \in L^1$. (i) $\hat{g}_{\alpha}(x,t) = (1+|x|^2+it)^{-\alpha/2}.$ (ii) (iii) For $0 < \alpha < n + 2$, $\mathcal{G}_{\alpha} \in L^{r}$ if $1 \leq r < (n + 2)/(n + 2 - \alpha)$ and $E(\eta) \equiv |\{(x, t) : \mathcal{G}_{\alpha}(x, t) > \eta\}| \leq c_{\alpha,n} \eta^{-(n+2)/(n+2-\alpha)}$ for $\eta > 0$. (iv) $\mathcal{G}_{\alpha} \in L^{\infty}$ if $\alpha \geq n + 2$.

Proof. (i) is immediate. (ii) is given in Jones [8]. For the last part of (iii), note that $g_{\alpha}(x, t) \leq ct^{(\alpha-n)/2-1}e^{-|x|^2/4t}$ for t > 0. Consequently

$$\Im_{\alpha}(\lambda x, \lambda^{2}t) \leq c \lambda^{\alpha-n-2} t^{(\alpha-n)/2-1} e^{-|x|^{2}/4t} \quad \text{for } \lambda, t > 0.$$

Then

$$E(\eta) = \lambda^{-n-2} \left\{ \left\{ (x, t) : \mathcal{G}_{\alpha}(\lambda x, \lambda^{2} t) > \eta \right\} \right|$$

$$\leq \lambda^{-n-2} \left\{ \left\{ (x, t) : t > 0, ct^{(\alpha-n)/2-1} e^{-|x|^{2}/4t} > \eta \lambda^{n+2-\alpha} \right\} \right|$$

Setting $\lambda = \eta^{1/(n+2-\alpha)}$,

$$E(\eta) \leq \eta^{-(n+2)/(n+2-\alpha)} \{ (x, t) : t > 0, ct^{(\alpha-n)/2-1} e^{-|x|^2/4t} > 1 \} |$$

= $c\eta^{-(n+2)/(n+2-\alpha)}.$

The first part of (iii) follows by a direct calculation; it also follows from the estimate for $E(\eta)$ and the fact that $\mathfrak{S}_{\alpha} \epsilon L^{1}$.

(iv) is obvious.

1.7 THEOREM. Let α , β be real.

(i) $\mathfrak{L}^p_{\alpha} \subset \mathfrak{L}^p_{\beta}$ if $\alpha > \beta$; in particular, $\mathfrak{L}^p_{\alpha} \subset L^p$ if $\alpha > 0$.

(ii) For $1 \leq p < q \leq \infty$, $\mathfrak{L}^{p}_{\alpha} \subset \mathfrak{L}^{q}_{\beta}$ if $1/p < 1/q + (\alpha - \beta)/(n + 2)$.

(iii) If $1 , then <math>\mathfrak{L}^p_{\alpha} \subset \mathfrak{L}^q_{\beta}$ also if $1/p = 1/q + (\alpha - \beta)/n$.

Proof. Let $f \in \mathfrak{L}^p_{\alpha}$. Then $f = \mathfrak{g}_{\alpha} \phi$, with $\phi \in L^p$. For $\beta < \alpha$,

$$f = \mathcal{J}_{\beta} \mathcal{J}_{\alpha-\beta} \phi = \mathcal{J}_{\beta} (\mathcal{G}_{\alpha-\beta} * \phi)$$

By part (i) of (1.6), $g_{\alpha-\beta} \in L^1$ and hence $g_{\alpha-\beta} * \phi \in L^p$. Consequently $f \in \mathfrak{L}^p_{\beta}$. If $1/p < 1/q + (\alpha - \beta)/(n+2)$ then by (1.6), $g_{\alpha-\beta} \in L^r$ where 1/p + 1/r =1/q + 1. Thus by Young's theorem, $G_{\alpha-\beta} * \phi \in L^q$ and hence $f \in \mathfrak{L}^q_{\beta}$. In the case $1 and <math>1/p = 1/q + (\alpha - \beta)/(n + 2)$, this is a simple variant of the standard fractional integration theorem as proved in Zygmund [16] and extended by O'Neil [10].

1.8 THEOREM. If α is real and $1 , then <math>\mathfrak{L}^{p}_{\alpha}$ is reflexive and its dual is $\mathfrak{L}^{p'}_{-\alpha}$, where 1/p + 1/p' = 1. The pairing between $\mathfrak{L}^{p}_{\alpha}$ and $\mathfrak{L}^{p'}_{-\alpha}$ is defined by

$$[\phi,\psi] = \int \int \phi(x,t)\psi(-x,-t) \, dx dt \quad \text{for } \phi,\psi \in S.$$

Proof. By Parseval's formula,

$$\begin{split} [\phi, \psi] &= \iint \hat{\phi}(\xi, \tau) \hat{\psi}(\xi, \tau) \ d\xi \ d\tau = \iint (\mathcal{G}_{-\alpha} \phi)^{(\xi, \tau)} (\mathcal{G}_{\alpha} \psi)^{(\xi, \tau)} \ d\xi \ d\tau \\ &= \iint \mathcal{G}_{-\alpha} \phi(x, t) \mathcal{G}_{\alpha} \psi(-x, -t) \ dx \ dt. \end{split}$$

Hence

$$\left|\left[\phi,\psi
ight]
ight|\leq \left\|\int_{-lpha}\phi\left\|_{p}\right\|\int_{lpha}\psi\left\|_{p'}=\left\|\phi\right\|_{p,lpha}\left\|\psi\right\|_{p',-lpha}.$$

Since S is dense in every \mathfrak{L}^p_{α} space with $p < \infty$, $[\cdot, \cdot]$ has a unique extension to a continuous bilinear form on $\mathfrak{L}^p_{\alpha} \times \mathfrak{L}'_{-\alpha}$.

Conversely, if F is in the dual of \mathfrak{L}^p_{α} , then $F \circ \mathfrak{g}_{\alpha}$ is in the dual of L^p and hence can be identified with a function $g \in L^{p'}$. But then $\mathfrak{g}_{-\alpha} g \in \mathfrak{L}'_{-\alpha}$ and $\mathfrak{g}_{-\alpha} g$ can be identified with F.

1.9 THEOREM. Let $1 , <math>\alpha > 0$, k a positive integer such that $2k \le \alpha$. Then

$$\|f\|_{p,\alpha} \approx \sum_{|\gamma|+2j\leq 2k} \|D^{\gamma}_{x} D^{j}_{t}f\|_{p,\alpha-2k}.$$

Proof. Since \mathcal{J}_{β} is an isometry of \mathcal{L}_{α}^{p} onto $\mathcal{L}_{\alpha+\beta}^{p}$ and \mathcal{J}_{β} commutes with differentiation, it suffices to consider the case $\alpha = 2k$.

We have $\mathcal{J}_{-2k}f = (1 - \Delta_x + D_t)^{2k}f$, so clearly $\|f\|_{p,2k} = \|\mathcal{J}_{-2k}f\|_p = \|(1 - \Delta_x + D_t)^{2k}f\|_p \le c \sum_{|\gamma|+2j\le 2k} \|D_x^{\gamma}D_t^jf\|_p.$

For the reverse inequality, let $f = \mathcal{J}_{2k} g$, $g \in L^p$. Then $D_x^{\gamma} D_t^j f = D_x^{\gamma} D_t^j \mathcal{J}_{2k} g$. Thus

$$(D_x^{\gamma} D_t^j f)^{\wedge} = \frac{i^{|\gamma|+j} x^{\gamma} t^j}{(1+|x|^2+it)^k} \hat{g}.$$

Applying (1.5), $x^{\gamma}t^{j}/(1+|x|^{2}+it)^{k} \epsilon M_{p}^{p}$ if $|\gamma|+2j \leq 2k$; hence $\|D_{x}^{\gamma}D_{t}^{j}f\|_{p} \leq c\|g\|_{p} = c\|f\|_{p,\alpha}.$

Using (1.9) it is often possible to reduce questions about $\mathfrak{L}^{p}_{\alpha}$ spaces to the case $0 \leq \alpha < 2$.

We now introduce a function H_{α} which is similar to \mathcal{G}_{α} . H_{α} will have homogeneity properties which are useful in characterizing $\mathfrak{L}_{\alpha}^{p}$ spaces.

(1.10), (1.11), and (1.12) below are due to Sampson [11].

1.10 Proposition. Let

$$H_{\alpha}(x, t) = t^{(\alpha-n)/2-1} \exp\{-|x|^2/4t\}, \quad t > 0$$

= 0, $t \le 0.$

Then for $\alpha > 0$, $H_{\alpha} \in S'$. If $0 < \alpha < n + 2$, \hat{H}_{α} is a function and $\hat{H}_{\alpha}(x, t) = c(\alpha, n) (|x|^2 + it)^{-\alpha/2}$. 1.11 LEMMA. For $\alpha > 0$, there exist bounded measures μ , μ_1 , μ_2 such that

$$(|x|^2 + it)^{\alpha/2} = (1 + |x|^2 + it)^{\alpha/2}\hat{\mu}$$

and

$$(1 + |x|^{2} + it)^{\alpha/2} = \hat{\mu}_{1} + (|x|^{2} + it)^{\alpha/2}\hat{\mu}_{2}.$$

1.12 THEOREM. Let $\alpha > 0$. Let $f \in L^p$. Then $f \in \mathfrak{L}^p_{\alpha}$ iff there exists $g \in L^p$ such that $(|x|^2 + it)^{\alpha/2} \hat{f} = \hat{g}$, in which case $||f||_{p,\alpha} \approx ||f||_p + ||g||_{p'}$.

If $0 < \alpha < n + 2$, then $H_{\alpha} \in L^{1} + L^{\infty}$. Hence if the function g above is in $L^{1} \cap L^{\infty}$, we have $f = c(\alpha, n)^{-1}H_{\alpha} * g$.

2. A characterization of \mathfrak{g}^p_{α}

Let

$$\Omega_r = \{ (y, s) \in E^{n+1} : |y| < r, -r^2 < s < r^2 \}.$$

Let

 $\Omega_r^+ = \{ (y, s) \in \Omega_r : s > 0 \}.$

For brevity Ω_1 and Ω_1^+ will be denoted by Ω and Ω^+ .

2.1 DEFINITION. For $f \in L^1_{\text{loc}}$, let

$$S_{\alpha}f(x,t) = \left(\int_{0}^{\infty} \left[\iint_{\Omega^{+}} |f(x - ry, t - r^{2}s) - f(x,t)| dy ds\right]^{2} r^{-1-2\alpha} dr\right)^{1/2}$$

2.2 THEOREM. For $0 < \alpha < 1$ and $1 , <math>f \in \mathfrak{L}^p_{\alpha}$ iff $f \in L^p$ and $S_{\alpha} f \in L^p$; in which case $||f||_{p,\alpha} \approx ||f||_p + ||S_{\alpha} f||_p$.

In the case p = 2, the inequality $||S_{\alpha}f||_2 + ||f||_2 \leq C||f||_{2,\alpha}$ is proved using Fourier transform techniques. According to (1.12), $f \epsilon \mathfrak{L}_{\alpha}^p$ iff $f \epsilon L^2$ and $\hat{f} = \hat{H}_{\alpha} \hat{\Phi}$ for some $\Phi \epsilon L^2$; moreover, $||f||_{2,\alpha} \approx ||f||_2 + ||\Phi||_2$.

Applying Schwarz's inequality and then Fubini's theorem,

$$\begin{split} S_{\alpha}f(x,t)^{2} &= \int_{0}^{\infty} \left(\iint_{\mathbb{R}^{+}} |f(x-ry,t-r^{2}s) - f(x,t)| \, dy \, ds \right)^{2} r^{-1-2\alpha} \, dr \\ &\leq C \int_{0}^{\infty} \left(\iint_{|y|+\sqrt{s} \leq 2} |f(x-ry,t-r^{2}s) - f(x,t)|^{2} \, dy \, ds \right) r^{-1-2\alpha} \, dr \\ &= C \int_{0}^{\infty} \left(\iint_{|y|+\sqrt{s} \leq 2} |f(x-y,t-s) - f(x,t)|^{2} \, dy \, ds \right) r^{-n-3-2\alpha} \, dr \\ &= C \iint_{s>0} |f(x-y,t-s) - f(x,t)|^{2} \, dy \, ds \int_{\frac{1}{2}(|y|+\sqrt{s})}^{\infty} r^{-n-3-2\alpha} \, dr \\ &= C \iint_{s>0} |f(x-y,t-s) - f(x,t)|^{2} \, (|y| + \sqrt{s})^{-n-2-2\alpha} \, dy \, ds. \end{split}$$

Thus by Fubini's theorem and Parseval's equation,

$$\|S_{\alpha}f\|_{2}^{2} \leq C \iint_{s>0} \left(\|y\| + \sqrt{s}\right)^{-n-2-2\alpha} dy \, ds \iint \|[f(\cdot - y, \cdot - s) - f] \wedge (\xi, \tau) \|^{2} d\xi \, d\tau$$

Noting that

$$\begin{split} [f(\cdot - y, \cdot - s) - f] \wedge (\xi, \tau) &= \hat{\Phi} (\xi, \tau) [H_{\alpha}(\cdot - y, \cdot - s) - H_{\alpha}] \wedge (\xi, \tau) \\ &= \hat{\phi}(\xi, \tau) [e^{-iy \cdot \xi - is\tau} - 1] (|\xi|^2 + i\tau)^{-\alpha/2} \end{split}$$

and again changing the order of integration,

$$\begin{split} \| S_{\alpha} f \|_{2}^{2} &\leq C \iint | \hat{\phi}(\xi, \tau) |^{2} \| \xi |^{2} \\ &+ i\tau |^{-\alpha} d\xi \, d\tau \iint_{s>0} | e^{-iy \cdot \xi - is\tau} - 1 |^{2} (|y|^{2} + \sqrt{s})^{-n-2-2\alpha} \, dy \, ds \end{split}$$

Substituting $y = (|\xi|^2 + i\tau)^{-1/2}y'$, $s = (|\xi|^2 + i\tau)^{-1}s'$ and using the mean value theorem to estimate the resulting integrand for y, s near 0, it is readily seen that

$$\iint_{s>0} |e^{-iy \cdot \xi - is\tau} - 1|^2 (|y|^2 + \sqrt{s})^{-n-2-2\alpha} dy \, ds \le C \, \|\xi\|^2 + i\tau \, |^{\alpha}$$

Thus

$$||S_{\alpha}f||_{2}^{2} \leq C \iint |\hat{\phi}(\xi,\tau)|^{2} d\xi d\tau = C ||\hat{\phi}||_{2}^{2}.$$

As in Strichartz [12, I.2.3], (2.2) is proved using results from the theory of convolution of operators on Banach space valued functions. These results are given below; for a thorough treatment of Banach space valued functions see Hille and Phillips [6].

Let X be a Banach space with norm $\|\cdot\|_X$. Let M(X) denote the space of strongly measurable functions defined on E^{n+1} with values in X. $L^p(X)$ is the Banach space of functions in M(X) such that the function $(x, t) \to \|f(x, t)\|_X$ is in L^p . $L^{\infty}_{\text{com}}(X)$ is the class of functions in $L^{\infty}(X)$ having compact support.

2.3 THEOREM. Let X, Y be Banach spaces. Let $A: L^{\infty}_{com}(X) \to M(Y)$ be given by

$$A\phi(x,t) = \iint k(x-y,t-s)\phi(y,s) \, dy \, ds$$

where k(x, t) is a bounded operator from X into Y for a.e. (x, t). Suppose that 1°. $||A\phi||_{L^{2}(Y)} \leq C_{0} ||\phi||_{L^{2}(\mathbb{X})}$ for $\phi \in L^{\infty}_{\text{com}}(X)$

2°. $\iint_{\mathcal{C}\Omega_{2r}} \|k(x-z,t-u)-k(x,t)\|_{\mathfrak{L}(\mathfrak{X},\mathfrak{Y})} dx dt \leq C_1 \text{ for all } (z,y) \in \Omega_r,$ where C_1 is independent of r. Then $||A\phi||_{L^{p}(Y)} \leq C_{p} ||\phi||_{L^{p}(X)}$ for $1 , all <math>\phi \in L^{\infty}_{com}(X)$.

Theorem (2.3) appears in Lewis [9) in a slightly more general form. Theorem (2.4) below is a modification of Theorem 4 of Benedek, Calderón and Panzone [2]. It may be proved along the same lines using (1.5) in place of the multiplier theorem of Hormander.

2.4 THEOREM. Let H be a Hilbert space, and for each $p \in (1, \infty)$ let $B: L^p \to L^p(H)$ continuously. For $\phi \in L^{\infty}_{com}$, suppose $B\phi$ is given by

 $(B\phi)^{\wedge}(x,t) = \hat{\phi}(x,t)h(x,t),$

where h is an H-valued function such that

1°. h is bounded in $E^{n+1} \sim (0, 0)$, and

2°. the family of functions $\{h(\rho x, \rho^2 t) : 0 < \rho < \infty\}$ is uniformly equicontinuous in $1/2 \leq (|x|^2 + |t|)^{1/2} \leq 2$.

Suppose that $\|B\phi\|_{L^{2}(H)} \geq C \|\phi\|_{2}$, all $\phi \in L^{2}$. Then also

 $\|B\phi\|_{L^p(H)} \geq C_p(B) \|\phi\|_p \quad \text{for all } \phi \in L^p, \, 1$

In the original version of (2.4), h is an operator-valued function. Although it is not noted in the statement of the theorem, the proof requires that the family of operators $\{h^*h\}$ commute. In our case, $\{h^*h\}$ is a family of complex numbers, so the question of commutativity does not arise.

As a first step in proving (2.2); we have the following:

2.5 LEMMA. Let
$$1 , $\phi \in L^{\infty}_{com}$. Let $f = H_{\alpha} * \phi$. Then
 $\| S_{\alpha} f \|_{p} \leq C_{p,\alpha} \| \phi \|_{p}$ for $0 < \alpha < 1$.$$

Proof. We use (2.3) with $X = \mathbf{C}$ and Y the Banach space of functions g(r, y, s) defined on $(0, \infty) \times \Omega^+$ such that

$$||g||_{\mathbf{Y}} = \left(\int_0^{\infty} \left[\iint_{\Omega^+} |g(r, y, s)| \, dy \, ds\right]^2 r^{-1-2\alpha} \, dr\right)^{1/2} < \infty.$$

Define $p_{r,y,s}(x, t) = H_{\alpha}(x - ry, t - r^2s) - H_{\alpha}(x, t)$. We will show that $p_{r,y,s}(x, t) \in Y$ for all (x, t) and that the operator $k(x, t) : \mathbb{C} \to Y$ defined by $k(x, t)\lambda = \lambda p_{r,y,s}(x, t)$ satisfies the hypotheses of (2.3). Since the operator A of (2.3) is convolution with k(x, t), we have

$$A\phi(x,t) = [H_{\alpha}(\cdot - ry, \cdot - r^2s) - H_{\alpha}] * \phi(x,t) = f(x - ry, t - r^2s) - f(x,t).$$

Thus

$$\|A\phi(x,t)\|_{\mathbf{Y}} = \left(\int_0^\infty \left[\iint_{\Omega^+} |f(x-ry,t-r^2s) - f(x,t)| \, dy \, ds\right]^2 r^{-1-2\alpha} \, dr\right)^{1/2} \\ = S_\alpha f(x,t).$$

Hence the conclusion of (2.3) is precisely

 $||S_{\alpha}f||_{p} \leq C_{p,\alpha}||\phi||_{p}.$

As a first step, we show

$$\int_0^\infty \left[\iint_{\Omega^+} | p_{r,y,s}(x,t) | dy ds \right]^2 r^{-1-2\alpha} dr < \infty$$

and hence $p_{r,y,s}(x, t) \in Y$. We have

$$p_{r,y,s}(x, t) = (t - r^2 s)^{(\alpha - n - 2)/2} \exp\{-|x - ry|^2/4(t - r^2 s)\} - t^{(\alpha - n - 2)/2} \exp\{-|x|^2/4t\}$$

for $0 \le r^2 s < t$
 $= -t^{(\alpha - n - 2)/2} \exp\{-|x|^2/4t\}$ for $0 < t \le r^2 s$
 $= 0$ for $t \le 0$

If $t \leq 0$, then obviously $p_{r,y,s}(x,t) = 0 \epsilon Y$. Let t > 0. For $r^2 < \frac{1}{2}t$, $p_{r,y,s}(x,t)$ is given by a C^{∞} function and by the mean value theorem it is O(r) uniformly for $(y, s) \in \Omega^+$. Hence

$$\int_{0}^{(\frac{1}{2}t)^{1/2}} \left[\iint_{\Omega^{+}} | p_{r,y,s}(x, t) | dy ds \right]^{2} r^{-1-2\alpha} dr \leq C_{x,t} \int_{0}^{(\frac{1}{2}t)^{1/2}} r^{1-2\alpha} dr \leq C_{x,t}$$

since $0 < \alpha < 1$. Since $\int_{\frac{1}{2}t^{1/2}}^{\infty} r^{-1-2\alpha} dr < \infty$, to conclude that

$$\int_{(\frac{1}{2}t)^{1/2}}^{\infty} \left[\iint_{\Omega^+} | p_{r,y,s}(x,t) | dy ds \right]^2 r^{-1-2\alpha} dr < \infty$$

it suffices to show that

$$\iint_{(y,s)\in\Omega^+,\ t-r^2s>0} (t-r^2s)^{(\alpha-n-2)/2} \exp\{-|x-ry|^2/4(t-r^2s)\} dy ds \le C_t$$

for $r^2 \geq \frac{1}{2}t$. Making the change of variables $x - ry = y', t - r^2s = s'$, we see that this last integral is dominated by

$$r^{-n-2} \int_0^t ds \int s^{(\alpha-n-2)/2} e^{-|y|^2/4s} dy = cr^{-n-2} \int_0^t s^{(\alpha-2)/2} ds = c_t r^{-n-2}$$

since $0 < \alpha < 1$. Hence $p_{r,y,s}(x, t) \in Y$ for all (x, t). We have previously shown $A : L^2 \to L^2(Y)$ continuously. It remains only to show

$$\iint_{C\Omega_{2a}} \|k(\boldsymbol{x} - \boldsymbol{z}, t - \boldsymbol{u}) - k(\boldsymbol{x}, t)\|_{\mathcal{L}(C, Y)} \, d\boldsymbol{x} \, dt \leq C$$

for all $(z, u) \in \Omega_a$, c independent of a > 0. This amounts to bounding

$$\iint_{C\Omega_{2a}} dx \, dt \left(\int_0^\infty \left[\iint_{\Omega^+} | p_{r,y,s}(x-z,t-u) - p_{r,y,s}(x,t) | dx \, ds \right]^2 r^{-1-2a} \, dr \right)^{1/2}$$

The computation is quite lengthy; it is given in the appendix.

2.6 LEMMA. Let $\phi \in L^{\infty}_{\text{com}}$, $f = H_{\alpha} * \phi$, where $0 < \alpha < 1$. Then $\| \phi \|_{p} \leq C_{p,\alpha} \| S_{\alpha} f \|_{p}$ for 1 .

Proof. Define

$$T_{\alpha}f(x,t) = \left(\int_{0}^{\infty} \left| \iint_{\Omega^{+}} \left[f(x-ry,t-r^{2}s) - f(x,t) \right] dy \, ds \right|^{2} r^{-1-2\alpha} \, dr \right)^{1/2}.$$

Clearly $0 \leq T_{\alpha}f \leq S_{\alpha}f$; we will use (2.4) to show $\|\phi\|_{p} \leq C_{p,\alpha}\|T_{\alpha}f\|_{p}$. Define

$$k_r(x,t) = \iint_{\Omega^+} p_{r,y,s}(x,t) \, dy \, ds,$$

where $p_{r,r,s}(x, t) = H_{\alpha}(x - ry, t - r^2 s) - H_{\alpha}(x, t)$ as before. Then $k_r \epsilon L^1$ since

$$\iint |k_r(x,t)| dx dt \leq \iint dx dt \iint_{\Omega^+} |p_{r,y,s}(x,t)| dy ds$$
$$= \iint_{\Omega^+} dy ds \iint |p_{r,y,s}(x,t)| dx dt$$
$$\leq 2 \iint_{\Omega^+} ||H_{\alpha}||_1 dy ds = C ||H_{\alpha}||_1.$$

Hence for $\phi \in L^p$, the convolution $k_r * \phi$ converges absolutely a.e. By the above calculation, we may change the order of integration so that

$$k_r * \phi(x, t) = \iint_{\Omega^+} p_{r,y,s} * \phi(x, t) \, dy \, ds \quad \text{a.e.}$$

Let *H* be the Hilbert space of functions defined on $(0, \infty)$ whose modulus is square integrable with respect to the measure $r^{-1-2\alpha} dr$. Let $B\phi(x, r) = k_r * \phi(x, t)$. Then

$$\| B\phi(x,t) \|_{H}^{2} = \int_{0}^{\infty} |k_{r} * \phi(x,t)|^{2} r^{-1-2\alpha} dr$$

$$= \int_{0}^{\infty} \left| \iint_{\Omega^{+}} p_{r,y,s} * \phi(x,t) dy ds \right|^{2} r^{-1-2\alpha} dr$$

$$= \int_{0}^{\infty} \left| \iint_{\Omega^{+}} [f(x - ry, t - r^{2}s) - f(x,t)] dy ds \right|^{2} r^{-1-2\alpha} dr$$

$$= T_{\alpha} f(x,t)^{2}$$

Hence $B\phi(x, t) \epsilon H$ a.e. and

$$\| B\phi \|_{L^{p}(H)} = \| T_{\alpha}f \|_{p} \leq \| S_{\alpha}f \|_{p} \leq C_{p,\alpha} \| \phi \|_{p}.$$

For
$$\phi \in L^{\infty}_{com}$$
, $(B\phi)^{\wedge}(\xi, \tau) = \hat{\phi}(\xi, \tau)\hat{k}_r(\xi, \tau)$. We compute
 $\hat{k}_r(\xi, \tau) = (2\pi)^{-(n+1)/2} \iint e^{-ix \cdot \xi - it\tau} k_r(x, t) \, dx \, dt$
 $= \iint_{\Omega^+} dy \, ds \left[(2\pi)^{-n+1/2} \iint e^{-ix \cdot \xi - it\tau} p_{r,y,s}(x, t) \, dx \, dt \right]$
 $= \iint_{\Omega^+} p_{r,y,s}(\xi, \tau) \, dy \, ds$
 $= \hat{H}_{\alpha}(\xi, \tau) \iint_{\Omega^+} (e^{-iry \cdot \xi - ir^2 s \tau} - 1) \, dy \, ds$
 $= C(|\xi|^2 + i\tau)^{-\alpha/2} \iint_{\Omega^+} (e^{-iry \cdot \xi - ir^2 s \tau} - 1) \, dy \, ds$

Thus

$$\| \hat{k}_{r}(\xi, \tau) \|_{H}^{2} = C \| \xi \|^{2} + i\tau \|^{-\alpha} \int_{0}^{\infty} \left| \iint_{\Omega^{+}} \left(e^{-iry \cdot \xi - ir^{2}s\tau} - 1 \right) dy ds \right|^{2} \cdot r^{-1-2\alpha} dr$$

$$= C \int_{0}^{\infty} \left| \iint_{\Omega^{+}} \left(\exp \left\{ \frac{-iry \cdot \xi}{\| \xi \|^{2} + i\tau \|^{1/2}} - \frac{ir^{2}s\tau}{\| \xi \|^{2} + i\tau \|} \right\} - 1 \right) dy ds \left| r^{-1-2\alpha} dr \right|^{2} \right|^{2} + i\tau |r^{1/2} +$$

Using the mean value theorem to estimate the integrand for 0 < r < 1, we see that this integral converges absolutely for $0 < \alpha < 1$. Consequently $\|\hat{k}_r(\xi, \tau)\|_{\mathcal{H}}$ is a continuous function away from $(\xi, \tau) = (0, 0)$. As

$$\|\hat{k}_r(\lambda\xi,\,\lambda^2\tau)\|_{H} = \|\hat{k}_r(\xi,\,\tau)\|_{H} \quad \text{for } \lambda > 0$$

and

$$\|\hat{k}_r(\xi, \tau)\|_{\scriptscriptstyle H} \neq 0 \quad for \ (\xi, \tau) \neq (0, 0),$$

we have $\|\hat{k}_r(\xi, \tau)\|_{H} \ge C$ for $(\xi, \tau) \ne (0, 0)$. Consequently

 $\|B\phi\|_{L^2(H)} \geq C \|\phi\|_2, \quad \text{all } \phi \in L^2.$

The equicontinuity condition in (2.4) follows immediately since

$$\|\hat{k}_{r}(\rho\xi, \rho^{2}\tau) - \hat{k}_{r}(\rho\xi', \rho^{2}\tau')\|_{H} = \|\hat{k}_{r}(\xi, \tau) - \hat{k}_{r}(\xi', \tau')\|_{H}.$$

Thus (2.4) is applicable and

$$\| T_{\boldsymbol{\alpha}} f \|_{\boldsymbol{p}} = \| B \phi \|_{L^{\boldsymbol{p}}(H)} \geq C_{\boldsymbol{p}, \boldsymbol{\alpha}} \| \phi \|_{\boldsymbol{p}}, \quad \text{all } \phi \in L^{\infty}_{\text{com}}, 1$$

Proof of Theorem (2.2). Let $\phi \in L^1 \cap L^{\infty}$. Let A be the operator defined in the proof of (2.3). Then we have

$$C \| A\phi \|_{L^p(Y)} \leq \| \phi \|_p \leq C' \| A\phi \|_{L^p(Y)}.$$

Since $H_{\alpha} \epsilon L^1 + L^{\infty}$, the convolution

$$\phi * p_{r,y,s} = \phi * (H_{\alpha}(\cdot - ry, \cdot - r^2s) - H_{\alpha})$$

converges absolutely, so that $A\phi = \phi * p_{r,y,s}$, and for $f = H_{\alpha} * \phi$ we have

 $C \| S_{\alpha} f \|_{p} \leq \| \phi \|_{p} \leq C' \| S_{\alpha} f \|_{p}.$

Let $\psi \in L^1 \cap L^{\infty}$, $f = \mathcal{G}_{\alpha} * \psi$. Then $f \in \mathfrak{L}^p_{\alpha}$ and $\hat{f} = (1 + |x|^2 + it)^{-\alpha/2} \hat{\psi}$. By (1.11), there exists a bounded measure μ such that

$$(1 + |x|^{2} + it)^{-\alpha/2} = (|x|^{2} + it)^{-\alpha/2}\hat{\mu}(x, t).$$

Thus

 $\hat{f}(x, t) = (|x|^2 + it)^{-\alpha/2} \hat{\mu}(x, t) \hat{\phi}(x, t) = (|x|^2 + it)^{-\alpha/2} (\mu * \psi) \wedge (x, t).$ But $\mu * \psi \in L^1 \cap L^\infty$; hence $f = CH_\alpha * (\mu * \psi)$ and

$$\| S_{\alpha} f \|_{p} \leq C \| \mu * \psi \|_{p} \leq C \| \psi \|_{p} = C \| f \|_{p,\alpha}$$

By (1.12),

$$||f||_{p,\alpha} \leq C ||f||_{p} + C ||\mu * \psi||_{p} \leq C ||f||_{p} + C ||S_{\alpha}f||_{p}.$$

Since the functions $\{\mathcal{G}_{\alpha} * \psi : \psi \in L^1 \cap L^{\infty}\}$ are dense in \mathcal{L}^{p}_{α} , we have

 $C \|f\|_{p,\alpha} \leq \|f\|_p + \|S_{\alpha}f\|_p \leq C' \|f\|_{p,\alpha} \quad \text{for all } f \in \mathfrak{L}^p_{\alpha}.$

Suppose now that $f \in L^p$ and $S_{\alpha} f \in L^p$. We must show that $f \in \mathfrak{L}^p_{\alpha}$. Let $\{g_n\}_{n=1}^{\infty}$ satisfy

(i) $g_n \in S$,

- (ii) $g_n \ge 0$
- (iii) $||g_n||_1 = 1$

(iv) $\phi * g_n \to \phi$ in L^p for all $\phi \in L^p$.

Since S is invariant under \mathcal{J}_{α} , $g_n = \mathcal{G}_{\alpha} * h_n$ with $h_n \in S$. We have

$$f * g_n = f * (\mathfrak{g}_{\alpha} * h_n) = \mathfrak{g}_{\alpha} * (f * h_n).$$

Since $f * h_n \epsilon L^p$, we have $f * g_n \epsilon \mathfrak{L}^p_{\alpha}$ and

$$||f * g_n||_{p,\alpha} \leq C ||f * g_n||_p + C ||S_{\alpha}(f * g_n)||_p.$$

Since $g_n \ge 0$, Minkowski's inequality gives us $S_{\alpha}(f * g_n) \le g_n * S_{\alpha} f$. Thus

 $\|f * g_n\|_{p,\alpha} \leq C \|f * g_n\|_p + C \|g_n * S_{\alpha}f\|_p \leq C \|f\|_p + C \|S_{\alpha}f\|_p.$

Consequently some subsequence $f * g_{n_k}$ converges weakly in \mathfrak{L}^p_{α} . But $f * g_n \to f$ in L^p ; therefore $f \in \mathfrak{L}^p_{\alpha}$.

2.7 Remark. Theorem (2.2) remains valid if Ω^+ is replaced by Ω in the definition of S_{α} ; the proof is longer but is essentially the same. Also, if the integrand $f(x - ry, t - r^2s) - f(x, t)$ is replaced by the mixed second difference $f(x + ry, t - r^2s) + f(x - ry, t - r^2s) - 2f(x, t)$ we obtain a characterization of $\mathfrak{L}^{\sigma}_{\alpha}$ valid for $0 < \alpha < 2$.

3. Interpolation

In this section we review the definition of complex interpolation of Banach spaces given by Calderón [3], and we state some of his results. We then give an interpolation theorem for $\mathfrak{L}^{p}_{\alpha}$ spaces.

3.1 DEFINITION. Let A_0 and A_1 be Banach spaces continuously embedded in a Hausdorff topological vector space V. We assume $A_0 \cap A_1$ is dense in both A_0 and A_1 . $A_0 + A_1$ is a Banach space with the norm

 $\|w\|_{A_0+A_1} = \inf \{\|x\|_{A_0} + \|y\|_{A_1} : x \in A_0, y \in A_1, w = x + y\}.$

Let \mathfrak{F} be the space of functions f defined on $0 \leq \text{Re}(z) \leq 1$ and with values in $A_0 + A_1$ such that

- (1) f is bounded and continuous;
- (2) f is holomorphic for 0 < Re(z) < 1;
- (3) for real t, $f(it) \in A_0$ with

 $\sup \|f(it)\|_{A_0} < \infty \quad \text{and} \quad \|f(it)\|_{A_0} \to 0 \quad \text{as } t \to \pm \infty;$

(4) for real $t, f(1 + it) \in A_1$ with

$$\sup \|f(1+it)\|_{A_1} < \infty \quad \text{and} \quad \|f(1+it)\|_{A_1} \to 0 \quad \text{as } t \to \pm \infty.$$

(For a discussion of holomorphic functions taking values in a Banach space see Hille and Phillips [6].)

F is a Banach space with respect to the norm

 $||f|| = \max \{ \sup ||f(it)||_{A_0}, \sup ||f(1+it)||_{A_1} \}.$

For 0 < s < 1, let $\mathfrak{N}_s = \{f \in \mathfrak{F} : f(s) = 0\}$. Then \mathfrak{N}_s is a closed subspace of \mathfrak{F} . We define $A_s = [A_0, A_1]_s = \mathfrak{F}/\mathfrak{N}_s$; i.e., $A_s = \{f(s) : f \in \mathfrak{F}\}$ with the norm

$$||x||_{A_s} = \inf \{||f||_{\mathfrak{F}} : f \in \mathfrak{F} \text{ and } f(s) = x\}.$$

 (A_0, A_1) is called an interpolation pair; A_s is called an intermediate space.

3.2. THEOREM (Multilinear Interpolation). Let $(A_0^{(k)}, A_1^{(k)})$ $(k = 1, \dots, m)$ and (B_0, B_1) be interpolation pairs. Let L be a multilinear map from $\prod_{k=1}^m A_0^{(k)} \cap A_1^{(k)}$ into $B_0 \cap B_1$ such that

$$|| L(x_1, \dots, x_m) ||_{B_i} \leq M_i \prod_{k=1}^m || x_k || A_i^{(k)} \text{ for } i = 0, 1.$$

Then L can be extended uniquely to a multilinear map from $\prod_{k=1}^{m} A_s^{(k)}$ into B_s satisfying

$$|| L(x_1, \cdots, x_m) ||_{B_s} \leq M_0^{1-s} M_1^s \prod_{k=1}^m || x_k || A_s^{(k)}.$$

3.3 THEOREM (Duality). Let A_0 , A_1 be reflexive Banach spaces. Then $[A_0, A_1]'_s = [A'_0, A'_1]_s$.

3.4 THEOREM. Let $1 < p_0 < \infty$, $1 < p_1 < \infty$. Let α_0 , α_1 be any real numbers. Then $[\mathfrak{L}_{\alpha_0}^{p_0}, \mathfrak{L}_{\alpha_1}^{p_1}]_s = \mathfrak{L}_{\alpha}^p$ where $0 < s < 1, 1/p = (1-s)/p_0 + s/p_1$, and $\alpha = (1-s)\alpha_0 + s\alpha_1$.

Proof. By (1.8), $\mathfrak{L}^{p}_{\alpha}$ is reflexive for $1 . Hence if we prove <math>\mathfrak{L}^{p}_{\alpha} \subset [\mathfrak{L}^{p_{0}}_{\alpha_{0}}, \mathfrak{L}^{p_{1}}_{\alpha_{1}}]_{s}$ with the inclusion map continuous, then by duality we have also

$$\mathfrak{L}^{p}_{\alpha} = (\mathfrak{L}^{p'}_{-\alpha})' \supset [\mathfrak{L}^{p_{0}'}_{-\alpha_{0}}, \mathfrak{L}^{p_{1}'}_{-\alpha_{1}}]'_{s} = [\mathfrak{L}^{p_{0}}_{\alpha_{0}}, \mathfrak{L}^{p_{1}}_{\alpha_{1}}]_{s}$$

and therefore $\mathfrak{L}^{p}_{\alpha} = [\mathfrak{L}^{p_{0}}_{\alpha_{0}}, \mathfrak{L}^{p_{1}}_{\alpha_{1}}]_{s}$.

Let $f = \mathfrak{J}_{\alpha} \psi$, where ψ is simple. Since simple functions are dense in L^{p} and \mathfrak{J}_{α} is an isometric isomorphism of L^{p} onto $\mathfrak{L}_{\alpha}^{p}$, the class of all such functions f is dense in $\mathfrak{L}_{\alpha}^{p}$. To prove the theorem we need only to find a function $F \in \mathfrak{F}$ such that F(s) = f,

 $\|F(it)\|_{p_{0},a_{0}} \leq C \|f\|_{p,\alpha} \text{ and } \|F(1+it)\|_{p_{1},a_{1}} \leq C \|f\|_{p,\alpha},$

where C is independent of f.

Let us note some properties of the operator valued function \mathcal{J}_z .

1°. For Re $z \ge 0$ and $1 < q < \infty$, $\mathcal{J}_z : L^q \to L^q$ continuously with $\| \mathcal{J}_z \|_{\mathfrak{L}(L^q)} \le C_q e^{(\pi/2)\operatorname{Im} z} | P(z) |$ where P is a polynomial determined by n. 2°. For Re z > 0 and $1 < q < \infty$, \mathcal{J}_z is a holomorphic $\mathfrak{L}(L^q)$ -valued function.

3°. For each $f \in L^q$ $(1 < q < \infty)$, $\mathcal{J}_z f$ is a continuous L^q -valued function on Re $z \ge 0$.

Statement 1° was noted after (1.5). To prove 2°, since S is dense in both L^{q} and $(L^{q})'$ it suffices to prove that for each $\phi, \psi \in S$ the function

$$z \to \iint \phi(x,t) \mathfrak{g}_z \psi(x,t) \, dx \, dt$$

is holomorphic. But it follows immediately from Parseval's formula that the above function is entire.

For 3°, note that for Re $z \ge 0$, g_z is uniformly bounded in $\mathfrak{L}(L^q)$ for z in $N(z_0) \cap \{z : \text{Re } z \ge 0\}$, where $N(z_0)$ is a neighborhood of z_0 . Hence it suffices to prove that $g_z \phi$ is a continuous L^q -valued function for each $\phi \in S$. As above, $g_z \phi$ is an entire L^q -valued function and hence continuous.

Express $\psi = \sum_{k=1}^{n} a_k \chi_{E_k}$, where $a_k \in \mathbb{C}$, $a_k \neq 0$, χ_{E_k} is the characteristic function of a set E_k of finite measure, and the sets $\{E_k\}$ are pairwise disjoint.

Define

$$g(z) = \sum_{k=1}^{n} |a_k|^{p((1-z)/p_0+z/p_1)} \operatorname{sgn} (a_k) \chi_{E_k}.$$

For $1 < q < \infty$, g(z) is a bounded and continuous L^q -valued function on $0 \leq \text{Re } z \leq 1$ which is also holomorphic in 0 < Re z < 1. Moreover

$$g(s) = \sum_{k=1}^{N} |a_k|^{p((1-s)/p_0+s/p_1)} \operatorname{sgn} (a_k)\chi_{E_k} = \psi,$$

$$||g(it)||_{p_0}^{p_0} = \sum_{k=1}^{N} |a_k|^p |E_k| = ||\psi||_p^p$$

and

$$||g(1 + it)||_{p_1}^{p_1} = \sum_{k=1}^N |a_k|^p |E_k| = ||\psi||_p^p.$$

Define

$$F(z) = \|\psi\|_{p}^{1-p((1-z)/p_{0}+z/p_{1})}e^{z^{2}-s^{2}}\mathfrak{J}_{\alpha_{0}(1-z)+\alpha_{1}z}g(z).$$

Then

$$F(s) = \|\psi\|_{p}^{1-p((1-s)/p_{0}+s/p_{1})} \mathcal{J}_{\alpha_{0}(1-s)+\alpha_{1}s} g(s) = \mathcal{J}_{\alpha} \psi = f.$$

$$F(it) = \|\psi\|_{p}^{1-p((1-it)/p_{0}+it/p_{1})} e^{-t^{2}-s^{2}} \mathcal{J}_{\alpha_{0}(1-it)+\alpha_{1}it} g(it).$$

 $F(it) \in \mathfrak{L}^{p_0}_{\alpha_0}$ with

$$\|F(it)\|_{p_0,\alpha_0} = \|\psi\|_p^{1-p/p_0}\| e^{-t^2-s^2} \mathcal{J}_{(\alpha_1-\alpha_0)it} g(it)\|_{p_0}.$$

Hence by 1° above, $||F(it)||_{p_0,\alpha_0} \to 0$ as $t \to \pm \infty$ and

$$\|F(it)\|_{p_{0},a_{0}} \leq C \|\psi\|_{p}^{1-p/p_{0}} \|g(it)\|_{p_{0}}$$

= $C \|\psi\|_{p}^{1-p/p_{0}} \|\psi\|_{p}^{p/p_{0}} = C \|\psi\|_{p} = C \|f\|_{p,a}.$

Similarly $F(1 + it) \in \mathcal{L}^{p_1}_{\alpha_1}$, $||F(1 + it)||_{p_1,\alpha_1} \to 0$ as $t \to \pm \infty$, and

$$||F(1+it)||_{p_1,a_1} \leq C ||f||_{p,a}$$

For convenience, assume $\alpha_0 \leq \alpha_1$. Then $e^{z^2-z^2} \mathfrak{g}_{\alpha_0(1-z)+\alpha_1 z}$ is a uniformly bounded operator from L^{p_0} to $\mathfrak{L}_{\alpha_0}^{p_0}$ for $0 \leq \operatorname{Re} z \leq 1$, holomorphic for $0 < \operatorname{Re} z < 1$. Consequently F(z) is bounded as a function with values in $\mathfrak{L}_{\alpha_0}^{p_0}$ (and hence as a function with values in $\mathfrak{L}_{\alpha_0}^{p_0} + \mathfrak{L}_{\alpha_1}^{p_1}$) for $0 \leq \operatorname{Re} z \leq 1$, holomorphic for $0 < \operatorname{Re} z < 1$. Since

$$\mathcal{J}_{\alpha_0(1-z)+\alpha_1 z} g(z) = \sum_{k=1}^{N} |a_k|^{p((1-z)/p_0+z/p_1)} \operatorname{sgn} (a_k) \mathcal{J}_{\alpha_0(1-z)+\alpha_1 z} \chi_{E_k},$$

it follows from 3° above that F(z) is a continuous $\mathfrak{L}_{\alpha_0}^{p_0}$ -valued function for $0 \leq \operatorname{Re} z \leq 1$.

Thus $F \in \mathfrak{F}$, F(s) = f, and $||F||_{\mathfrak{F}} \leq C ||f||_{\mathfrak{p},\alpha}$. The theorem is proved.

4. Multipliers on $\mathfrak{L}^{p}_{\alpha}$ spaces

In this chapter we use the results of the previous two chapters to determine conditions for the product of two functions to be in an \mathfrak{L}^p_{α} space.

The results are analogous to those obtained by Strichartz [13]; the only real difference is that we lack a suitable characterization of $\mathfrak{L}^{p}_{\alpha}$ for $1 \leq \alpha \leq 2$. This problem has been circumvented in Theorem 4.5, but it has prevented us from obtaining localization results analogous to those of Strichartz [13].

4.1 DEFINITION. A function ϕ is called a *multiplier* on \mathfrak{L}^p_{α} if $\phi f \in \mathfrak{L}^p_{\alpha}$ whenever $f \in \mathfrak{L}^p_{\alpha}$ and $\|\phi f\|_{p,\alpha} \leq K \|f\|_{p,\alpha}$ for some K independent of $f \in \mathfrak{L}^p_{\alpha}$. The space of multipliers on \mathfrak{L}^p_{α} is denoted $M\mathfrak{L}^p_{\alpha}$.

4.2 PROPOSITION. $M\mathfrak{L}^p_{\alpha} \subset M\mathfrak{L}^p_{\beta}$ if $\alpha \geq \beta \geq 0$. In particular, $M\mathfrak{L}^p_{\alpha} \subset L^{\infty}$ if $\alpha \geq 0$.

Proof. Let
$$f \in M\mathfrak{L}^p_{\alpha}$$
, $\alpha \ge 0$. Let $1/p + 1/q = 1$. Then by duality,

 $\|f\phi\|_{q,-\alpha} \leq K \|\phi\|_{q,-\alpha} \text{ as well as } \|f\phi\|_{p,\alpha} \leq K \|\phi\|_{p,\alpha}$

for all $\phi \in \mathfrak{L}^{p}_{\alpha} \cap \mathfrak{L}^{q}_{-\alpha}$. Interpolating according to (3.2) and identifying the interpolated spaces according to (3.4), we see that $||f\phi||_{2} \leq K ||\phi||_{2}$ for all $\phi \in L^{2}$, and hence $f \in L^{\infty}$. But then $f \in M\mathfrak{L}^{p}_{0}$. Interpolating again, $f \in M\mathfrak{L}^{p}_{\beta}$ if $0 \leq \beta \leq \alpha$.

4.3 LEMMA. Let $0 < \alpha < 1$, $f \in L^{\infty}$. Then $S_{\alpha}(fg) \leq ||f||_{\infty} S_{\alpha} g + |g| S_{\alpha} f$. *Proof.* Noting that

$$f(x - ry, t - r^{2}s)g(x - ry, t - r^{2}s) - f(x, t)g(x, t)$$

= $f(x - ry, t - r^{2}s)[g(x - ry, t - r^{2}s) - g(x, t)]$
+ $g(x, t)[f(x - ry, t - r^{2}s) - f(x, t)]$

and that the functional

$$\phi \to \left(\int_0^\infty \left[\iint_{\Omega^+} |\phi| \, dy \, ds \right]^2 r^{-1-2\alpha} \, dr \right)^{1/2}$$

is a semi-norm, the result follows immediately.

4.4 LEMMA. Let $1 , <math>\alpha > (n+2)/p$. Suppose k is an integer such that $2k < \alpha < 2k + 1$, and let $0 \leq j \leq 2k$. Let $f \in \mathfrak{L}^{p}_{\alpha-j}$, $g \in \mathfrak{L}^{p}_{\alpha-(2k-j)}$. Then $fg \in \mathfrak{L}^{p}_{\alpha-2k} and || fg ||_{p,\alpha-2k} \leq C || f ||_{p,\alpha-j} || g ||_{p,\alpha-(2k-j)}.$

Proof. First assume j = 0. Since $0 < \alpha - 2k < 1$, we may use (2.2). We have

$$\|fg\|_{p} \leq \|f\|_{\infty} \|g\|_{p} \leq C \|f\|_{p,\alpha} \|g\|_{p,\alpha-2k}$$

by (1.7), since $\alpha > (n+2)/p$. By (4.3),

$$\|S_{\alpha-2k}(fg)\|_{p} \leq \|f\|_{\infty} \|S_{\alpha-2k} g\|_{p} + \|gS_{\alpha-2k} f\|_{p};$$

by (1.7) and (2.2),

$$\|f\|_{\infty} \|S_{\alpha-2k} g\|_{p} \leq C \|f\|_{p,\alpha} \|g\|_{p,\alpha-2k}.$$

To estimate $|| gS_{\alpha-2k} f ||_p$, we find $q, r \in (1, \infty)$ such that

1/q + 1/r = 1/p(i) $\|g\|_{q} \leq C \|g\|_{p,\alpha-2k}$ (ii) $|| S_{\alpha-2k} f ||_r \leq C || f ||_{p,\alpha}.$ (iii)

The result will then follow from Hölder's inequality.

By (1.7), (ii) is satisfied if

(*)
$$1/q \leq 1/p < 1/q + (\alpha - 2k)/(n+2).$$

Also, $|| S_{\alpha-2k} f ||_r \leq C || f ||_{r,\alpha-2k}$ so that (iii) is satisfied if

(**)
$$1/r \leq 1/p < 1/r + 2k/(n+2).$$

Combining (*) and (**), we see that we may pick q, r such that (ii) and (iii) are satisfied and such that 1/q + 1/r is any positive number between $2/p - \alpha/(n+2)$ and 2/p. As $\alpha > (n+2)/p$, 1/p lies in this range. Hence by (2.2),

$$\| fg \|_{p,\alpha-2k} \leq C(\| fg \|_{p} + \| S_{\alpha-2k}(fg) \|_{p}) \leq C \| f \|_{p,\alpha} \| g \|_{p,\alpha-2k}.$$

We have now shown that multiplication defines a continuous bilinear map from $\mathfrak{L}^{p}_{\alpha} \times \mathfrak{L}^{p}_{\alpha-2k}$ into $\mathfrak{L}^{p}_{\alpha-2k}$ and therefore also from $\mathfrak{L}^{p}_{\alpha-2k} \times \mathfrak{L}^{p}_{\alpha}$ into $\mathfrak{L}^{p}_{\alpha-2k}$. Hence by (3.2)

 $\|fg\|_{p,\alpha-2k} \leq C \|f\|_{[\mathfrak{L}_{\alpha}^{p},\mathfrak{L}_{\alpha}^{p}-2k]s} \|g\|_{[\mathfrak{L}_{\alpha}^{p}-2k,\mathfrak{L}_{\alpha}^{p}]s}.$

Choosing s = 1 - j/2k, by (3.4), $[\mathfrak{L}^{p}_{\alpha}, \mathfrak{L}^{p}_{\alpha-2k}]_{s} = \mathfrak{L}^{p}_{\alpha-j}$ and $[\mathfrak{L}^{p}_{\alpha-2k}, \mathfrak{L}^{p}_{\alpha}]_{s} = \mathfrak{L}^{p}_{\alpha-(2k-j)}$, so the lemma is proved.

4.5 THEOREM. Let $1 , <math>\alpha > (n + 2)/p$. Let $f, g \in \mathfrak{L}^p_{\alpha}$. Then $fg \in \mathfrak{L}^p_{\alpha}$ and

$$\| fg \|_{p,\alpha} \leq C \| f \|_{p,\alpha} \| g \|_{p,\alpha}.$$

Proof. Case (i). Suppose some integer k satisfies $2k < \alpha < 2k + 1$. By (1.9), $fg \in \mathfrak{L}^{p}_{\alpha}$ if $D_{x}^{\gamma}D_{t}^{j}(fg) \in \mathfrak{L}^{p}_{\alpha-2k}$ for every nonnegative integer j and multiindex γ such that $|\gamma| + 2j \leq 2k$; moreover

$$\|fg\|_{\boldsymbol{p},\boldsymbol{\alpha}} \leq C \sum_{|\boldsymbol{\gamma}|+2j \leq 2k} \|D_x^{\boldsymbol{\gamma}} D_t^j(fg)\|_{\boldsymbol{p},\boldsymbol{\alpha}-2k}.$$

By Leibnitz's rule,

$$D_x^{\gamma} D_t^j(fg) = \sum_{\beta \leq \gamma, l \leq j} C(\beta, \gamma, l, j) (D_x^{\beta} D_t^l f) (D_x^{\gamma-\beta} D_t^j g).$$

Again by (1.9),

 $\| D_x^{\beta} D_t^l f \|_{p,\alpha-|\beta|-2l} \leq C \| f \|_{p,\alpha} \text{ and } \| D_x^{\gamma-\beta} D_t^{j-l} g \|_{p,\alpha-|\gamma-\beta|-2(j-l)} \leq C \| g \|_{p,\alpha}.$ Hence by (4.4)

Hence by (4.4),

$$(D_x^{\beta} D_t^{l} f) (D_x^{\gamma-\beta} D_t^{j-l} g) \epsilon \mathfrak{L}_{\alpha-|\gamma|-2j}^{p}$$

and

$$\| (D_x^{\beta} D_t^l f) (D_x^{\gamma-\beta} D_t^{j-l} g) \|_{p,\alpha-|\gamma|-2j} \leq C \| f \|_{p,\alpha} \| g \|_{p,\alpha}.$$

As $|\gamma| + 2j \leq 2k$, $\mathfrak{L}^{p}_{\alpha-|\gamma|-2j} \subset \mathfrak{L}^{p}_{\alpha-2k}$ and the result follows.

Case (ii). Arbitrary $\alpha > (n+2)/p$. Applying interpolation theory to the bilinear operator $(f, g) \rightarrow fg$, we see that

 $\{(x, y) \in E^2 : 0 < x < 1,$

and
$$|| fg ||_{1/x,y} \leq C_{x,y} || f ||_{1/x,y} || g ||_{1/x,y}$$
 for all $f, g \in \mathfrak{L}_y^{1/x}$

is convex. Since the convex hull of

 $\{(1/p, \alpha) : 1 (n+2)/p, 2k < \alpha < 2k+1 \text{ for some integer } k\}$

is the set { (x, y) : 0 < x < 1, y > (n + 1)x} the result follows for all p, α such that $1 and <math>\alpha > (n + 2)/p$.

4.6 Remark. If $0 < \alpha \leq (n+2)/p$, we no longer have $\mathscr{L}^p_{\alpha} \subset L^{\infty}$. Since $M\mathscr{L}^p_{\alpha} \subset L^{\infty}$ by (4.2), the above theorem fails in this case. However, some substitute results are available.

4.7 THEOREM. Let $f \in L^{\infty} \cap \mathcal{L}_{(n+2)/p}^{p}$, where $1 . Then <math>f \in M\mathcal{L}_{\alpha}^{q}$ if $1 < q < \infty, \alpha < (n+2)/q, \alpha \leq (n+2)/p$, and $0 < \alpha < 1$.

Proof. The restriction $0 < \alpha < 1$ allows to use (2.2). As in (4.4), the problem reduces to showing that $|g| S_{\alpha} f \epsilon L^{q}$. Again we find r, s such that $g \epsilon L^{r}$, $S_{\alpha} f \epsilon L^{s}$, and 1/r + 1/s = 1/q.

By (1.7), $g \in L^r$ for $1/r = 1/q - \alpha/(n+2)$. $S_{\alpha} f \in L^s$ if $f \in \mathfrak{L}^s_{\alpha}$; again by (1.7), $f \in \mathfrak{L}^s_{\alpha}$ for

 $1/p = 1/s + ((n+2)/p - \alpha)/(n+2) = 1/s + 1/p - \alpha/(n+2)$ or $s = (n+2)/\alpha$. But then $1/r + 1/s = 1/q - \alpha/(n+2) + \alpha/(n+2) = 1/q$, and the theorem follows.

4.8 REMARK. As in Strichartz [13, II 3.6 and II 3.7], this result can be strengthened. Virtually the same arguments show $f \in M\mathfrak{L}^p_{\alpha}$ if $1 , <math>0 < \alpha < 1, \alpha < (n+2)/p, f \in L^{\infty}$, and

$$|\{(x, t) : S_{\alpha} f(x, t) > \lambda\}| \leq (K/\lambda)^{(n+2)/\alpha}$$
 for all $\lambda > 0$.

Appendix

Here we perform the calculations to prove

$$\begin{aligned} \iint_{c_{\Omega_{2a}}} dx \ dt \left(\int_{0}^{\infty} \left[\iint_{\Omega^{+}} | p_{r,y,s}(x-z,t-u) - p_{r,y,s}(x,t) | dy \ ds \right]^{2} r^{-1-2\alpha} \ dr \right)^{1/2} &\leq C \end{aligned}$$

independently of a > 0, $(z, u) \in \Omega_a$. Recall

$$p_{r,y,s}(x, t) = H_{\alpha}(x - ry, t - r^{2}s) - H_{\alpha}(x, t),$$

= $t^{(\alpha - n)/2 - 1} \exp\{-|x|^{2}/4t\}, t > 0$
= $0, t \leq 0.$

Note that it suffices to prove the estimate for the case a = 1; the change of variables $x = a^{-1}x'$, $t = a^{-2}t'$, $r = a^{-1}r'$ then establishes the estimate for all other values of a > 0.

To simplify notation, let

$$I(E) = \iint_{E} |p_{r,y,s}(x - z, t - u) - p_{r,y,s}(x, t)| dy ds$$

for E any measurable subset of E^{n+1} . Of course, I(E) depends on (x, t), (z, u), and r.

Step 1. We estimate $\iint_{|t| \ge 4} dx dt (\int_0^\infty I(\Omega^+)^2 r^{-1-2\alpha} dr)^{1/2}$. For $t \le -4$ and $(z, u) \in \Omega$, $I(\Omega^+) \equiv 0$. For $t \ge 4$, we have

$$\left(\int_0^\infty I(\Omega^+)^2 r^{-1-2\alpha} dr \right)^{1/2} \leq \left(\int_0^{\frac{1}{2}t^{1/2}} I(\Omega^+)^2 r^{-1-2\alpha} dr \right)^{1/2} + \left(\int_{\frac{1}{2}t^{1/2}}^\infty I(\Omega^+)^2 r^{-1-2\alpha} dr \right)^{1/2}$$

(a) First we show $\iint_{t \ge 4} dx dt (\int_{0}^{\frac{1}{2}t^{1/2}} I(\Omega^{+})^{2}r^{-1-2\alpha} dr)^{1/2} \le C.$ Since $t \ge 4$, $|u| \le 1, 0 \le s \le 1$, and $0 \le r^{2} \le \frac{1}{4}t$ we have $t, t - u, t - r^{2}s$, and $t - u - r^{2}s \ge 2$; hence $p_{r,y,s}$ is a C^{∞} function. By the mean value theorem $p_{r,y,s}(x - z, t - u) - p_{r,y,s}(x, t) = -\sum_{i=1}^{n} z_{i} D_{x_{i}} p_{r,y,s}(\xi, \tau) - u D_{t} p_{r,y,s}(\xi, \tau)$ for some (ξ, τ) on the line from (x, t) to (x - z, t - u). In full detail, $p_{r,y,s}(x - z, t - u) - p_{r,y,s}(x, t)$ $= -\sum_{i=1}^{n} z_{i}[-\frac{1}{2}(\tau - r^{2}s)^{(\alpha-n)/2}(\xi_{i} - ry_{i}) \exp\{-|\xi - ry|^{2}/4(\tau - r^{2}s)\}$ $+ \frac{1}{2}\tau^{(\alpha-n)/2-2}\xi_{i} \exp\{-|\xi|^{2}/4\tau\}]$ $- u[((\alpha - n)/2 - 1)(\tau - r^{2}s)^{(\alpha-n)/2-2} \exp\{-|\xi - ry|^{2}/4(\tau - r^{2}s)\}$ $- ((\alpha - n)/2 - 1)r^{(\alpha-n)/2-2} \exp\{-|\xi|^{2}/4\tau\}]$ $- u[(\tau - r^{2}s)^{(\alpha-n)/2-3}\frac{1}{4}|\xi - ry|^{2} \exp\{-|\xi - ry|^{2}/4(\tau - r^{2}s)\}$ $- \tau^{(\alpha-n)/2-3}\frac{1}{4}|\xi|^{2} \exp\{-|\xi|^{2}/4\tau\}]$ $= -\sum_{i=1}^{n} z_{i} I_{i} - uJ - uK.$

Recall $|z_i| \leq 1$ and $|u| \leq 1$. Each of the terms I_i , J, and K is treated separately; for brevity only the calculations for J will be given. Exactly the same techniques are used to treat I_i and K.

Again applying the mean value theorem,

(*)
$$J = ((\alpha - n)/2 - 1) \exp \{-\left|\xi'\right|^2/4\tau'\} \left[-\frac{1}{2}\tau'^{(\alpha - n)/2 - 3} \sum_{j=1}^n ry_j \xi_j^i - r^2 s((\alpha - n)/2 - 2)\tau'^{(\alpha - n)/2 - 3} + \frac{1}{4}r^2 s\left|\xi'\right|^2 \tau'^{(\alpha - n)/2 - 4}\right]$$

where (ξ', τ') is on the line from (ξ, τ) to $(\xi - ry, \tau - r^2 s)$ and hence lies in the rectangle with vertices

(x, t), (x - z, t - u), $(x - ry, t - r^2s)$ and $(x - z - ry, t - u - r^2s)$. Note that $\frac{1}{2}t \leq \tau' \leq 2t$. To estimate $|\xi'|$, we consider separately the cases $|x| \leq 2t^{1/2}$ and $|x| \geq 2t^{1/2}$.

For $|x| \leq 2t^{1/2}$, we have $|\xi'| \leq 3t^{1/2}$. Estimating the exponential by 1, we have from (*),

$$\left| J \right| \leq C(rt^{(\alpha-n)/2-5/2} + r^2 t^{(\alpha-n)/2-3}) \leq Crt^{(\alpha-n)/2-5/2},$$

since $r < \frac{1}{2}t^{1/2}$.

Treating I_i and K similarly, we have

$$\begin{aligned} \left| p_{r,y,s}(x-z,t-u) - p_{r,y,s}(x,t) \right| &\leq Crt^{(\alpha-n)/2-5/2} \\ \text{for } r &\leq \frac{1}{2}t^{1/2}, \left| x \right| \leq 2t^{1/2}. \quad \text{Thus we have} \\ &\iint_{t \geq 4, \left| x \right| \leq 2t^{1/2}} dx \, dt \left(\int_{0}^{\frac{1}{2}t^{1/2}} I(\Omega)^{2}r^{-1-2\alpha} \, dr \right)^{1/2} \\ &\leq C \iint_{t \geq 4, \left| x \right| \leq 2t^{1/2}} \left(\int_{0}^{\frac{1}{2}t^{1/2}} r^{1-2\alpha}t^{\alpha-n-5} \, dr \right)^{1/2} dx \, dt \\ &= C \iint_{t \geq 4, \left| x \right| \leq 2t^{1/2}} t^{-n/2-2} \, dx \, dt = C \int_{4}^{\infty} t^{-2} \, dt = C. \end{aligned}$$

For $|x| \ge 2t^{1/2}$ and $0 \le r \le \frac{1}{2}t^{1/2}$, we have $\frac{1}{2}|x| \le |\xi'| \le 2|x|$. Thus from (*),

$$|J| \leq C e^{-|x|^2/ct} [r |x| t^{(\alpha-n)/2-3} + r^2 t^{(\alpha-n)/2-3} + r^2 |x|^2 t^{(\alpha-n)/2-4}]$$

$$\leq C r t^{(\alpha-n)/2-7/2} |x|^2 e^{-|x|^2/ct}.$$

Treating I_i and K similarly, we have

$$|p_{r,y,s}(x-z,t-u) - p_{r,y,s}(x,t)| \leq crt^{(\alpha-n)/2-7/2} |x|^2 e^{-|x|^2/ct}$$

for $|x| \geq 2t^{1/2}$ and $0 \leq r \leq \frac{1}{2}t^{1/2}$. Hence

$$\iint_{t \ge 4 \, |x| \ge 2t^{1/2}} dx \, dt \left(\int_0^{\frac{1}{2}t^{1/2}} I(\Omega^+)^2 r^{-1-2\alpha} \, dr \right)^{1/2}$$

$$\leq C \, \iint_{t \ge 4, \, |x| \ge 2t^{1/2}} t^{(\alpha-n)/2-7/2} \, |x|^2 e^{-|x|^2/ct} \, dx \, dt \left(\int_0^{\frac{1}{2}t^{1/2}} r^{1-2\alpha} \, dr \right)^{1/2}$$

$$\leq C \, \iint_{t \ge 4} t^{-n/2-3} \, |x|^2 e^{-|x|^2/ct} \, dx \, dt$$

$$= C \, \int_4^\infty t^{-2} \, dt = C.$$

(b) Now we show $\iint_{t \ge 4} dx dt (\int_{\frac{1}{2}t^{1/2}}^{\infty} I(\Omega^+)^2 r^{-1-2\alpha} dr)^{1/2} \le C.$ Express $\Omega^+ = E_1 \cup E_2 \cup E_3$ where $r^2 s \le t - 2, t - 2 \le r^2 s \le t + 2$, and $t + 2 \le r^2 s$ respectively. We estimate the terms $\iint_{t \ge 4} dx dt (\int_{\frac{1}{2}t^{1/2}}^{\infty} I(E_k)^2 r^{-1-2\alpha} dr)^{1/2}$ separately. (i) The term in $I(E_1)$.

$$p_{r,y,s}(x - z, t - u) - p_{r,y,s}(x, t) |$$

$$\leq |H_{\alpha}(x - z, t - u) - H_{\alpha}(x, t)| + |H_{\alpha}(x - z - ry, t - u - r^{2}s)|$$

$$- H_{\alpha}(x - ry, t - r^{2}s)|$$

$$= P + Q.$$

By the mean value theorem,

$$P \leq C \left(\tau^{(\alpha-n)/2-2} \, \big| \, \xi \, \big| \, + \, \tau^{(\alpha-n)/2-2} \, + \, \tau^{(\alpha-n)/2-3} \, \big| \, \xi \, \big|^2 \right) \, \exp \left\{ - \left| \, \xi \, \right|^2 / 4\tau \right\}$$

for some (ξ, τ) on the line from (x, t) to (x - z, t - u). Note $\frac{1}{2}t < \tau < 2t$. For $|x| \leq 2$, we estimate $|\xi|$ and the exponential term by constants to obtain

$$P \leq C \left(\tau^{(\alpha-n)/2-2} + \tau^{(\alpha-n)/2-2} + \tau^{(\alpha-n)/2-3} \right) \leq C t^{(\alpha-n)/2-2}.$$

For $|x| \geq 2$, we have $\frac{1}{2} |x| \leq |\xi| \leq 2 |x|$. Thus
$$P \leq C \left(t^{(\alpha-n)/2-2} |x| + t^{(\alpha-n)/2-2} + t^{(\alpha-n)/2-3} |x|^2 \right) e^{-|x|^2/ct}.$$

It follows readily that

$$\iint_{t \ge 4} dx \, dt \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{\mathbb{B}_1} P \, dy \, ds \right]^2 r^{-1-2\alpha} \, dr \right)^{1/2} \le C.$$

628

For the term in Q, we again have by the mean value theorem

$$Q \leq C \left(\tau^{(\alpha-n)/2-2} \, \big| \, \xi \, \big| \, + \, \tau^{(\alpha-n)/2-2} \, + \, \tau^{(\alpha-n)/2-3} \, \big| \, \xi \, \big|^2 \right) e^{-|\xi|^2/4\tau}$$

where (ξ, τ) is on the line from $(x - ry, t - r^2s)$ to $(x - z - ry, t - u - r^2s)$. Since $t - r^2s \ge 2$ in E_1 , we have $\frac{1}{2}(t - r^2s) \le \tau \le 2(t - r^2s)$. In order to estimate ξ , we must consider several cases separately.

First we estimate for $|x| \leq 2$. Since

$$\begin{aligned} |\xi| \exp \{-|\xi|^2/4\tau\} &\leq C\tau^{1/2} \quad \text{and} \quad |\xi|^2 \exp \{-|\xi|^2/4\tau\} \leq C\tau \\ Q &\leq C\tau^{(\alpha-n)/2-3/2} \leq C(t-r^2s)^{(\alpha-n)/2-3/2}. \end{aligned}$$

Thus

$$\iint_{\mathbb{F}_1} Q \, dy \, ds \leq C \int_0^{(t-2)r^{-2}} (t - r^2 s)^{(\alpha-n)/2 - 3/2} \, ds \leq C r^{-2}$$

and so

$$\left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{\mathbf{E}_{1}} Q \ dy \ ds\right]^{2} r^{-1-2\alpha} \ dr\right)^{1/2} \leq C \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} r^{-5-2\alpha} \ dr\right)^{1/2} = Ct^{-1-\alpha/2}.$$

This is integrable over $\{(x, t) \mid |x| \leq 2, t \geq 4\}$.

For $|x| \ge 2$, our estimates must be more delicate. We write $E_1 = F_1 \cup F_2 \cup F_3$, where $|x - ry| \le \frac{3}{2}, \frac{3}{2} \le |x - ry| \le \frac{3}{4} |x|$, and $\frac{3}{4} |x| \le |x - ry|$ respectively. Note that $F_1 = F_2 = \emptyset$ unless $r \ge \frac{1}{4} |x|$ and hence unless $r \ge \frac{1}{8} |x| + \frac{1}{4}t^{1/2}$.

For $(y, s) \in F_1$ we have $|\xi| \leq C$. Thus

$$Q \leq C \left(\tau^{(\alpha-n)/2-2} + \tau^{(\alpha-n)/2-2} + \tau^{(\alpha-n)/2-3} \right) \leq C \left(t - r^2 s \right)^{(\alpha-n)/2-2}.$$

Noting that $|\{y \mid | x - ry| \leq \frac{3}{2}\}| = Cr^{-n}$,

$$\iint_{\mathbf{F}_1} Q \, dy \, ds \, \leq \, Cr^{-n} \int_0^{(t-2)r^{-2}} \, (t \, - \, r^2 s)^{(\alpha-n)/2-2} \, ds \, \leq \, Cr^{-n-2} \, ds$$

Hence

$$\left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{F_1} Q \ dy \ ds\right]^2 r^{-1-2\alpha} \ dr\right)^{1/2} \leq C \left(\int_{\frac{1}{8}|x|+\frac{1}{4}t^{1/2}} r^{-2n-5-2\alpha} \ dr\right)^{1/2}$$
$$= C(\frac{1}{2}|x|+t^{1/2})^{-n-2-\alpha}.$$

This is integrable over $\{(x, t) \mid |x| \ge 2, t > 4\}$.

For $(y, s) \in F_2$,

 $|\xi| \leq |x - ry| + 1 \leq C |x - ry|$ and $|\xi| \geq |x - ry| - 1 \geq C |x - ry|$, so we have

$$Q \leq C \left((t - r^2)^{(\alpha - n)/2 - 2} | x - ry | + (t - r^2 s)^{(\alpha - n)/2 - 2} \right. \\ \left. + (t - r^2 s)^{(\alpha - n)/2 - 3} | x - ry |^2 \right) \exp \left\{ - | x - ry |^2 / C (t - r^2 s) \right\}.$$

Making the change of variable $y' = (t - r^2 s)^{-1/2} (x - ry)$ and enlarging the y integration to E^n , we see

$$\iint_{\mathbb{F}_2} Q \, dy \, ds \, \leq C r^{-n} \int_0^{(t-2)r^{-2}} \left[(t - r^2 s)^{\alpha/2 - 3/2} + (t - r^2 s)^{(\alpha - n)/2 - 2} \right] ds$$
$$\leq C r^{-n-2}$$

Exactly as for F_1 , we see

$$\left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{F_2} Q \, dy \, ds\right]^2 r^{-1-2\alpha} \, dr\right)^{1/2} \leq C(\frac{1}{2} |x| + t^{1/2})^{-n-2-\alpha}.$$

For $(y, s) \in F_3$ we have

$$\begin{aligned} |\xi| &\ge |x - ry| - 1 \ge \frac{3}{4} |x| - 1 \ge \frac{1}{4} |x| \\ \text{and thus } |\xi|^2 &\ge \frac{1}{2} |\xi|^2 + \frac{1}{32} |x|^2. \end{aligned}$$
 Hence

$$\begin{aligned} |\xi| \exp \{-|\xi|^2/4\tau\} &\leq |\xi| \exp \{-|\xi|^2/8\tau\} \exp \{-|x|^2/128\tau\} \\ &\leq C\tau^{1/2} \exp \{-|x|^2/128\tau\} \\ &\leq C(t-r^2s)^{1/2} \exp \{-|x|^2/c(t-r^2s)\}. \end{aligned}$$

Similarly,

Thus
$$\begin{aligned} |\xi|^2 \exp\{-|\xi|^2/4\tau\} &\leq C(t-r^2s) \exp\{-|x|^2/c(t-r^2s)\}.\\ Q &\leq C(t-r^2s)^{(\alpha-n)/2-3/2} \exp\{|x|^2/c(t-r^2s)\} \end{aligned}$$

and

$$\begin{split} \iint_{F_3} Q \, dy \, ds &\leq c \int_0^{(t-2)r^2} (t - r^2 s)^{(\alpha-n)/2-3/2} \exp\left\{-\left|x\right|^2 / c \left(t - r^2 s\right)\right\} \, ds \\ &\leq c \left|x\right|^{\alpha-n-1} r^{-2} \int_0^\infty s^{(\alpha-n)/2-3/2} e^{-1/s} \, ds \\ &= c \left|x\right|^{\alpha-n-1} r^{-2}. \end{split}$$

Thus

$$\left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{F_3} Q \, dy \, ds\right]^2 r^{-1-2\alpha} \, dr\right)^{1/2} \leq c |x|^{\alpha-n-1} \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} r^{-5-2\alpha} \, dr\right)^{1/2}$$
$$= c |x|^{\alpha-n-1} t^{-1-\alpha/2},$$

which is integrable over $\{(x, t) : |x| \ge 2, t \ge 4\}$.

We have now shown

$$\iint_{t \ge 4} dx \, dt \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} I(E_1)^2 r^{-1-2\alpha} \, dr \right)^{1/2} \le c$$

(ii) The term in $I(E_3)$. For $t \ge 4$ and $t + 2 \le r^2 s$ we have

$$p_{r,y,s}(x-z,t-u) - p_{r,y,s}(x,t) = H_{\alpha}(x,t) - H_{\alpha}(x-z,t-u).$$

This can be treated exactly as the term P in (i) above.

(iii) The term in $I(E_2)$. In this region both $p_{r,y,s}(x, t)$ and $p_{r,y,s}(x - z, t - u)$ may have a singularity. The two terms are handled separately. We have

$$|p_{r,y,s}(x,t)| \leq H_{\alpha}(x,t) + H_{\alpha}(x-ry,t-r^{2}s).$$

Note that
$$\left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\iint_{\mathbb{F}_{2}} H_{\alpha}(x,t) \, dy \, ds\right]^{2} r^{-1-2\alpha} \, dr\right)^{1/2} = ct^{-1/2-\alpha/2} H_{\alpha}(x,t)$$
$$= ct^{-n/2-3/2} \exp\left\{-\frac{|x|^{2}}{4t}\right\}.$$

This is integrable over $\{(x, t) : t \ge 4\}$.

For the other term we estimate separately the *r*-integration over the intervals $\frac{1}{2}t^{1/2} \leq r \leq \frac{1}{4} |x|$ and $r \geq \max(\frac{1}{2}t^{1/2}, \frac{1}{4} |x|)$. For $|x| \geq 2t^{1/2}$ we have

$$\begin{split} \left(\int_{\frac{1}{2}t^{1/2}}^{\frac{1}{2}|x|} \left[\int_{B_{2}}^{1} H_{\alpha}(x - ry, t - r^{2}s) \, dy \, ds\right]^{2} r^{-1-2\alpha} \, dr\right)^{1/2} \\ & \leq \left(\int_{\frac{1}{2}t^{1/2}}^{\frac{1}{2}|x|} \left[\int_{(t-2)r^{-2}}^{tr^{-2}} ds \int_{|y| \leq 1} (t - r^{2}s)^{(\alpha-n)/2-1} \exp\{-|x - ry|^{2}/4(t - r^{2}s)\} \, dy\right]^{2} r^{-1-2\alpha} \, dr\right)^{1/2} \\ & \leq c \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\int_{(t-2)r^{-2}}^{tr^{-2}} ds \int_{|y| \leq 1} (t - r^{2}s)^{(\alpha-n)/2-1} \exp\{-|x|^{2}/16(t - r^{2}s)\} \, dy\right]^{2} r^{-1-2\alpha} dr\right)^{1/2} \\ & = c \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} \left[\int_{0}^{2} s^{(\alpha-n)/2-1} e^{-|x|^{2}/16s} \, ds\right]^{2} r^{-5-2\alpha} dr\right)^{1/2} \\ & \leq c |x|^{\alpha-n-2} \left(\int_{\frac{1}{2}t^{1/2}}^{\infty} r^{-5-2\alpha} \, dr\right)^{1/2} \\ & = c |x|^{\alpha-n-2} t^{-1-\alpha/2} \end{split}$$

since

$$s^{(\alpha-n)/2-1}e^{-|x|^2/16s} \leq c |x|^{\alpha-n-2}.$$

Of course, $|x|^{\alpha-n-2}t^{-1-\alpha/2}$ is integrable over $\{(x, t) : |x| \ge 2t^{1/2}, t \ge 4\}$. For the second interval,

$$\begin{split} \left(\int_{\max(\frac{1}{2}|x|,\frac{1}{2}t^{1/2})}^{\infty} \left[\iint_{\mathbb{F}_{2}} H_{\alpha}(x - ry, t - r^{2}s) \, dy \, ds \right]^{2} r^{-1 - 2\alpha} dr \right) \\ & \leq \left(\int_{\frac{1}{2}|x| + \frac{1}{2}t^{1/2}}^{\infty} \left[\int_{(t-2)r^{-2}}^{tr^{-2}} ds \, \int \, (t - r^{2}s)^{(\alpha - n)/2 - 1} \right. \\ & \left. \exp\{- |x - ry|^{2}/4(t - r^{2}s)\} \, dy \right]^{2} r^{-1 - 2\alpha} dr \right)^{1/2} \end{split}$$

$$= c \left(\int_{\frac{1}{2}|x| + \frac{1}{4}t^{1/2}}^{\infty} \left[\int_{0}^{2} s^{\alpha/2 - 1} ds \right]^{2} r^{-2n - 5 - 2\alpha} dr \right)^{1/2}$$

= $c \left(\frac{1}{2} |x| + t^{1/2} \right)^{-n - 2 - \alpha}$.

This is integrable over $\{(x, t) : t \ge 4\}$.

Treating the term in $p_{r,y,s}(x-z,t-u)$ similarly, we complete Step 1.

Step 2. It remains only to bound

$$\iint_{|t| \leq 4, |x| \geq 2} dx dt \left(\int_0^\infty I(\Omega^+)^2 r^{-1-2\alpha} dr \right).$$

Since the *t*-integration is over a compact set this is comparatively easy; the crucial thing is to show that $I(\Omega^+) = O(r)$ as $r \to 0$. (a) First we estimate $(\int_0^{\frac{1}{2}|x|} I(\Omega^+)^2 r^{-1-2\alpha} dr)^{1/2}$.

$$I(\Omega^{+}) \leq \iint_{\Omega^{+}} |p_{r,y,s}(x,t)| \, dy \, ds + \iint_{\Omega^{+}} |p_{r,y,s}(x-z,t-u)| \, dy \, ds.$$

We treat the two terms separately. Recall

$$p_{r,y,s}(x, t) = H_{\alpha}(x - ry, t - r^2s) - H_{\alpha}(x, t),$$

with $H_{\alpha} \ge C^{\infty}$ function. By the mean value theorem,

$$p_{r,y,s}(x,t) = -r \sum_{i=1}^{n} y_i D_{x_i} H_{\alpha}(\xi,\tau) - r^2 s D_t H_{\alpha}(\xi,\tau)$$

for some (ξ, τ) on the line from (x, t) to $(x - ry, t - r^2s)$. Note that

$$D_{x_i} H_{\alpha}(\xi, \tau) = -\frac{1}{2} \xi_i \tau_2^{(\alpha-n)/2-2} \exp\{-\left|\xi\right|^2/4\tau\}, \quad \tau > 0$$

= 0,
$$\tau \leq 0$$

and

$$\sup_{\tau>0} \tau^{(\alpha-n)/2-2} \exp \{-|\xi|^2/4\tau\} = c |\xi|^{\alpha-n-4}.$$

Also

$$D_t H_{\alpha}(\xi, \tau) = [((\alpha - n)/2 - 1)\tau^{(\alpha - n)/2 - 2} + \frac{1}{4} |\xi|^2 \tau^{(\alpha - n)/2 - 3}] \exp\{-|\xi|^2/4\}, \quad \tau > 0$$

= 0,
$$\tau \leq 0$$

and

$$\sup_{\tau>0} \tau^{(\alpha-n)/2-3} \exp\{-|\xi|^2/4\tau\} = c |\xi|^{\alpha-n-6}.$$

Hence

$$|p_{r,y,s}(x,t)| \leq cr |\xi|^{\alpha-n-3} + cr^{2} |\xi|^{\alpha-n-4}$$

$$\leq cr |x|^{\alpha-n-3} + cr^{2} |x|^{\alpha-n-4} \quad \text{since } r \leq |x|/4$$

$$\leq cr |x|^{\alpha-n-3}.$$

Similarly, we obtain $|p_{r,y,s}(x-z,t-u)| \leq cr |x|^{\alpha-n-s}$ for $|x| \geq 2, r \leq \frac{1}{4} |x|$.

Thus

$$\left(\int_0^{\frac{1}{4}|x|} I(\Omega^+)^2 r^{-1-2\alpha} dr\right)^{1/2} \leq c |x|^{\alpha-n-3} \left(\int_0^{\frac{1}{4}|x|} r^{1-2\alpha} dr\right)^{1/2}$$
$$= c |x|^{-n-2},$$

which is integrable over $\{(x, t) : |t| \leq 4, |x| \geq 2\}$. (b) It remains only to estimate $(\int_{\frac{1}{4}|x|}^{\infty} I(\Omega^+)^2 r^{-1-2\alpha} dr)^{1/2}$.

Here we may use

$$\begin{split} I(\Omega^+) &\leq \iint_{\Omega^+} H_{\alpha}(x, t) \, dy \, ds + \iint_{\Omega^+} H_{\alpha}(x - ry, t - r^2 s) \, dy \, ds \\ &+ \iint_{\Omega^+} H_{\alpha}(x - z, t - u) \, dy \, ds + \iint_{\Omega^+} H_{\alpha}(x - z - ry, \\ &\quad t - u - r^2 s) \, dy \, ds. \end{split}$$

First,

$$\left(\int_{\frac{1}{2}|x|}^{\infty} \left[\iint_{\Omega^{+}} H_{\alpha}(x,t) \, dy \, ds\right]^{2} r^{-1-2\alpha} dr\right)^{1/2} = c |x|^{-\alpha} t^{(\alpha-n)/2-1} e^{-|x|^{2}/4t}, \quad t > 0$$
$$= 0, \qquad t \leq 0$$

which is integrable over $\{(x, t) : |t| \leq 4, |x| \geq 2\}$. The term in $H_{\alpha}(x-z,t-u)$ is handled in the same manner.

Next, we have

$$\begin{split} \left(\int_{\frac{1}{2}|x|}^{\infty} \left[\iint_{\Omega^{+}} H_{\alpha}(x - ry, t - r^{2}s) \, dy \, ds \right]^{2} r^{-1 - 2\alpha} dr \right)^{1/2} \\ & \leq \left(\int_{\frac{1}{2}|x|}^{\infty} \left[\int_{0 \le s \le tr^{-2}} ds \int (t - r^{2}s)^{(\alpha - n)/2 - 1} \right] \\ & \exp\{-|x - ry|^{2}/4(t - r^{2}s)\} \, dy \right]^{2} r^{-1 - 2\alpha} dr \right)^{1/2} \\ & = c \left(\int_{\frac{1}{2}|x|}^{\infty} \left[\int_{0 \le s \le tr^{-2}} (t - r^{2}s)^{\alpha/2 - 1} \, ds \right]^{2} r^{-2n - 1 - 2\alpha} dr \right)^{1/2} \\ & = \begin{cases} ct^{\alpha/2} \left(\int_{\frac{1}{2}|x|}^{\infty} r^{-2n - 5 - 2\alpha} \, dr \right)^{1/2}, \quad t > 0 \\ 0, \qquad t \le 0 \end{cases} \\ & = \begin{cases} ct^{\alpha/2} |x|^{-n - 2 - \alpha}, \quad t > 0 \\ 0, \qquad t \le 0 \end{cases} \end{split}$$

which is integrable over $\{(x, t) : |x| \ge 2, |t| \le 4\}$. The term in $H_{\alpha}(x - z - ry, t - u - r^2s)$ is handled in exactly the same manner, and we are done.

RICHARD J. BAGBY

BIBLIOGRAPHY

- 1. N. ARONSZAJN AND K. T. SMITH, Theory of Bessel potentials I, Ann. Inst. Fourier, vol. 11 (1961), pp. 385-475.
- M. BENEDEK, A. P. CALDERÓN, AND M. PANZONE, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A., vol. 48 (1962), pp. 356-365.
- 3. A. P. CALDERÓN, Intermediate spaces and interpolation, Studia Math., vol. 24 (1964), pp. 113-190.
- 4. ——, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., vol. 5 (1961), pp. 33-49.
- 5. E. B. FABES AND N. M. RIVIÈRE, Singular integrals with mixed homogeneity, Studia Math, vol. 27 (1966), pp. 19-38.
- E. HILLE AND R. S. PHILLIPS, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. XXXI, rev. ed., Amer. Math. Soc., Providence, 1957.
- 7. L. HÖRMANDER, Estimates for translation invariant operators in L^p spaces, Acta Math., vol. 104 (1960), 93-140.
- 8. B. F. JONES, JR., Lipschitz spaces and the heat equation, J. Math. Mech., vol. 18 (1968), pp. 379-410.
- 9. J. E. LEWIS, Mixed estimates for singular integrals and an application to initial value problems of parabolic type, Proc. Symp. Pure Math., vol. 10 (1968), pp. 218-231.
- R. O'NEIL, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 300-328.
- 11. C. H. SAMPSON, A characterization of parabolic Lebesgue spaces, Dissertation, Rice University, 1968.
- 12. L. SCHWARTZ, Theorie des distributions, rev. ed., Hermann, Paris, 1966.
- 13. R. S. STRICHARTZ, Multipliers on fractional Sobolev spaces, J. Math. Mech., vol. 16 (1967), pp. 1031–1061.
- M. H. TAIBLESON, On the theory of Lipschitz spaces of distributions on Euclidean n-space, II: Translation invariant operators, duality, and interpolation, J. Math. Mech., vol. 14 (1965), pp. 821-840.
- 15. A. ZYGMUND, Trigonometric series, vol. I-II, 2nd ed., Cambridge University Press, Cambridge, 1959.
- 16. ——, On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pures Appl., vol. 35 (1956), pp. 223-248.
 - NEW MEXICO STATE UNIVERSITY LAS CRUCES, NEW MEXICO