lebesgue spaces of parabolic potentials

BY

Richard J. Bagby

Introduction

We define a class of spaces \mathscr{L}_{α}^{p} via Fourier transform techniques. These spaces have been studied previously by Sampson [11]. They arise in the study of the heat equation; they are the parabolic analogue of the spaces of Bessel potentials introduced by Aronszajn and Smith [1] and by Calderón [4]. The results obtained in this paper are analogous to results obtained by Strichartz [13] for Bessel potentials.

The first chapter contains the basic facts about \mathcal{L}_{α}^{p} spaces. In the second chapter we characterize some of these spaces in terms of an integral norm of a difference quotient. We develop an interpolation theory for these spaces in the third chapter. These results are of some interest in themselves; they are used in the fourth chapter to find sufficient conditions for the product of two functions to be in one of the spaces \mathscr{L}_{α}^{p}.

Establishing the characterization of Chapter 2 requires a number of calculations. The appendix contains the worst of these.

This paper consists essentially of the author's doctoral dissertation at Rice University. I wish to thank my advisor Dr. B. Frank Jones for his help. Financial support was provided by the United States Air Force, N.A.S.A., and the Schlumberger Foundation.

1. Preliminaries

1.1 Notation. Let E^{n+1} denote Euclidean $(n+1)$-space. Points in E^{n+1} will be denoted in the form (x, t), where $x \in E^{n}$. Unless explicitly stated otherwise, all function spaces are assumed to be spaces of functions defined on E^{n+1}.

The usual inner product in E^{n} will be denoted by $x \cdot y$. For $x \in E^{n}$, $|x|=(x \cdot x)^{1 / 2}$. Differential operators are expressed in the form

$$
D_{x}^{\alpha} D_{t}^{j}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}(\partial / \partial t)^{j} ;
$$

the order of the multi-index α is denoted by $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$. The Laplace operator in E^{n} is denoted by Δ_{x}.

Let \mathcal{S} denote the space of C^{∞} functions ϕ satisfying

$$
\sup _{(x, t)}\left|P(x, t) D_{x}^{\alpha} D_{t}^{j} \phi(x, t)\right|<\infty
$$

for any polynomial P and any $\alpha, j . \delta$ is given the usual topology; see Schwartz [12]. The dual of S is denoted by δ^{\prime}; its elements are called tempered distributions.

[^0]The Fourier transform is defined on \mathcal{S} by

$$
\hat{\phi}(\xi, \tau)=(2 \pi)^{-(n+1) / 2} \iint e^{-i x \cdot \xi-i t \tau} \phi(x, t) d x d t
$$

it is extended to S^{\prime} in the usual manner. Where no confusion arises, the dual variables will also be denoted (x, t).

The letter C will be used to denote any positive constant whose exact value need not be known explicitly.
1.2 Definition. For arbitrary complex α, define $\mathfrak{J}_{\alpha}: \mathfrak{S}^{\prime} \rightarrow \mathfrak{S}^{\prime}$ by

$$
\left(J_{\alpha} T\right)^{\wedge}=\left(1+|x|^{2}+i t\right)^{-\alpha / 2} \hat{T}
$$

where
$\left(1+|x|^{2}+i t\right)^{-\alpha / 2}=\exp \left\{-\frac{1}{2} \alpha\left[\ln \left|1+|x|^{2}+i t\right|+i \arg \left(1+|x|^{2}+i t\right)\right]\right\}$, with $-\pi / 2<\arg _{(1}\left(1+|x|^{2}+i t\right)<\pi / 2$.

Since $\left(1+|x|^{2}+i t\right)^{-\alpha / 2}$ is a C^{∞} function each of whose derivatives are bounded by polynomials, \mathcal{J}_{α} defines a continuous operator from \mathcal{S}^{\prime} into itself. Note that $\mathscr{J}_{\alpha+\beta}=\mathscr{J}_{\alpha} \mathscr{J}_{\beta}$ and that formally $\mathscr{J}_{\alpha}=\left(1-\Delta_{x}+D_{t}\right)^{-\alpha / 2}$.
1.3 Definition. For $1 \leqq p \leqq \infty, \mathscr{L}_{\alpha}^{p}$ is the Banach space of tempered distributions T such that $\mathcal{I}_{-\alpha} T \epsilon L^{p}$, with the norm $\|T\|_{p, \alpha}=\left\|\mathcal{J}_{-\alpha} T\right\|_{p}$. Clearly $\mathscr{L}_{\alpha}^{p}=\mathscr{g}_{\alpha}\left(L^{p}\right)$ and $\mathscr{L}_{\alpha+\beta}^{p}=\mathscr{J}_{\beta}\left(\mathscr{L}_{\alpha}^{p}\right)$.
1.4. Definition. A locally integrable function $m(x, t)$ is said to be a multiplier (on Fourier transforms of functions) of type (p, q) if for every $\phi \epsilon S, m \phi \in S^{\prime}$ and the operator $T: S \rightarrow \mathcal{S}^{\prime}$ defined by $(T \phi)^{\wedge}=m \hat{\phi}$ satisfies $T \phi \in L^{q}$ with $\|T \phi\|_{q} \leq C\|\phi\|_{p}, C$ independent of $\phi \in S$. The space of all multipliers of type (p, q) is denoted M_{p}^{q}; these spaces are treated in Hörmander [7].

Due to the form of the operator \mathscr{g}_{α}, the following theorem will be extremely useful. It is a special case of a theorem proved in Fabes and Riviére [5].

1.5 Theorem. Let $m \in L^{\infty}$ and suppose

$$
\sup _{(x, t) \neq(0,0)}\left(|x|^{2}+|t|\right)^{|\beta|+k}\left|D_{x}^{\beta} D_{t}^{k} m(x, t)\right| \leq C_{0}
$$

whenever $|\beta|+2 k \leq N$, where $N>(n+2) / 2$. Then $m \in M_{p}^{p}$ for $1<p<\infty$ and the norm of the associated operator is bounded by $C_{0} C_{p}$, where C_{p} depends only on n and p.

Applying (1.5) to the function $\left(1+|x|^{2}+i t\right)^{-\alpha / 2}$, we see that $\mathscr{J}_{\alpha}: L^{p} \rightarrow L^{p}$ continuously if $\operatorname{Re}(\alpha) \geq 0$ and $1<p<\infty$; the operator norm of \mathscr{J}_{α} is bounded by $C_{p} e^{(\pi / 2) \operatorname{Im} \alpha}\left|p_{n}(\alpha)\right|$ where P_{n} is a polynomial depending only on n. As a consequence, $\mathfrak{L}_{\alpha}^{p}=\mathscr{L}_{\operatorname{Re}(\alpha)}^{p}$ for $1<p<\infty$. Since our new results are valid only in the case $1<p<\infty$, we will restrict our attention to the case of real α.
1.6 Lemma. If $\alpha>0$, then the function \mathcal{G}_{α} defined by

$$
\begin{aligned}
\mathcal{G}_{\alpha}(x, t) & =(4 \pi)^{-n / 2} \Gamma(\alpha / 2)^{-1} t^{(\alpha-n) / 2-1} \exp \left\{-t-|x|^{2} / 4 t\right\}, & & t>0 \\
& =0, & & t \leqq 0
\end{aligned}
$$

satisfies:
(i) $\mathcal{S}_{\alpha} \in L^{1}$.
(ii) $\hat{\mathcal{G}}_{\alpha}(x, t)=\left(1+|x|^{2}+i t\right)^{-\alpha / 2}$.
(iii) For $0<\alpha<n+2, \mathcal{G}_{\alpha} \in L^{r}$ if $1 \leq r<(n+2) /(n+2-\alpha)$ and $E(\eta) \equiv\left|\left\{(x, t): \mathcal{S}_{\alpha}(x, t)>\eta\right\}\right| \leq c_{\alpha, n} \eta^{-(n+2) /(n+2-\alpha)}$ for $\eta>0$.
(iv) $\mathrm{G}_{\alpha} \in L^{\infty}$ if $\alpha \geq n+2$.

Proof. (i) is immediate. (ii) is given in Jones [8]. For the last part of (iii), note that $\mathrm{G}_{\alpha}(x, t) \leq c t^{(\alpha-n) / 2-1} e^{-|x|^{2} / 4 t}$ for $t>0$. Consequently

$$
\bigodot_{\alpha}\left(\lambda x, \lambda^{2} t\right) \leq c \lambda^{\alpha-n-2} t^{(\alpha-n) / 2-1} e^{-|x|^{2} / 4 t} \quad \text { for } \lambda, t>0
$$

Then

$$
\begin{aligned}
E(\eta) & =\lambda^{-n-2}\left|\left\{(x, t): \mathcal{G}_{\alpha}\left(\lambda x, \lambda^{2} t\right)>\eta\right\}\right| \\
& \leqq \lambda^{-n-2}\left|\left\{(x, t): t>0, c t^{(\alpha-n) / 2-1} e^{-|x|^{2} / 4 t}>\eta \lambda^{n+2-\alpha}\right\}\right|
\end{aligned}
$$

Setting $\lambda=\eta^{1 /(n+2-\alpha)}$,

$$
\begin{aligned}
E(\eta) & \leq \eta^{-(n+2) /(n+2-\alpha \mid}\left\{(x, t): t>0, c t^{(\alpha-n) / 2-1} e^{-|x|^{2} / 4 t}>1\right\} \mid \\
& =c \eta^{-(n+2) /(n+2-\alpha)} .
\end{aligned}
$$

The first part of (iii) follows by a direct calculation; it also follows from the estimate for $E(\eta)$ and the fact that $\mathcal{G}_{\alpha} \in L^{1}$.
(iv) is obvious.
1.7 Theorem. Let α, β be real.
(i) $\mathscr{L}_{\alpha}^{p} \subset \mathscr{L}_{\beta}^{p}$ if $\alpha>\beta$; in particular, $\mathscr{L}_{\alpha}^{p} \subset L^{p}$ if $\alpha>0$.
(ii) For $1 \leqq p<q \leqq \infty, \mathscr{L}_{\alpha}^{p} \subset \mathcal{L}_{\beta}^{q}$ if $1 / p<1 / q+(\alpha-\beta) /(n+2)$.
(iii) If $1<p<q<\infty$, then $\mathcal{L}_{\alpha}^{p} \subset \mathscr{L}_{\beta}^{q}$ also if $1 / p=1 / q+(\alpha-\beta) / n$.

Proof. Let $f \in \mathscr{L}_{\alpha}^{p}$. Then $f=\mathscr{J}_{\alpha} \phi$, with $\phi \in L^{p}$. For $\beta<\alpha$,

$$
f=\mathscr{J}_{\beta} \mathscr{J}_{\alpha-\beta} \phi=\mathscr{J}_{\beta}\left(G_{\alpha-\beta} * \phi\right)
$$

By part (i) of (1.6), $\mathcal{S}_{\alpha-\beta} \in L^{1}$ and hence $\mathcal{G}_{\alpha-\beta} * \phi \epsilon L^{p}$. Consequently $f \in \mathscr{L}_{\beta}^{p}$. If $1 / p<1 / q+(\alpha-\beta) /(n+2)$ then by (1.6), $\mathcal{G}_{\alpha-\beta} \in L^{r}$ where $1 / p+1 / r=$ $1 / q+1$. Thus by Young's theorem, $\mathcal{S}_{\alpha-\beta} * \phi \in L^{q}$ and hence $f \in \mathscr{L}_{\beta}^{q}$. In the case $1<p<q<\infty$ and $1 / p=1 / q+(\alpha-\beta) /(n+2)$, this is a simple variant of the standard fractional integration theorem as proved in Zygmund [16] and extended by O'Neil [10].
1.8 Theorem. If α is real and $1<p<\infty$, then \AA_{α}^{p} is reflexive and its dual is $\mathcal{L}_{-\alpha}^{p^{\prime}}$, where $1 / p+1 / p^{\prime}=1$. The pairing between \mathcal{L}_{α}^{p} and $\mathcal{L}_{-\alpha}^{p^{\prime}}$ is defined by

$$
[\phi, \psi]=\iint \phi(x, t) \psi(-x,-t) d x d t \quad \text { for } \phi, \psi \in \mathcal{S}
$$

Proof. By Parseval's formula,

$$
\begin{aligned}
{[\phi, \psi] } & =\iint \hat{\phi}(\xi, \tau) \hat{\psi}(\xi, \tau) d \xi d \tau=\iint\left(\mathscr{J}_{-\alpha} \phi\right)^{\wedge}(\xi, \tau)\left(\mathfrak{g}_{\alpha} \psi\right)^{\wedge}(\xi, \tau) d \xi d \tau \\
& =\iint \mathscr{J}_{-\alpha} \phi(x, t) \mathfrak{J}_{\alpha} \psi(-x,-t) d x d t
\end{aligned}
$$

Hence

$$
|[\phi, \psi]| \leq\left\|\mathcal{J}_{-\alpha} \phi\right\|_{p}\left\|\mathfrak{g}_{\alpha} \psi\right\|_{p^{\prime}}=\|\phi\|_{p, \alpha}\|\psi\|_{p^{\prime},-\alpha}
$$

Since \mathcal{S} is dense in every \mathscr{L}_{α}^{p} space with $p<\infty,[\cdot, \cdot]$ has a unique extension to a continuous bilinear form on $\mathscr{L}_{\alpha}^{p} \times \mathscr{L}_{-\alpha}^{\prime}$.

Conversely, if F is in the dual of \mathcal{L}_{α}^{p}, then $F \circ \mathscr{J}_{\alpha}$ is in the dual of L^{p} and hence can be identified with a function $g \in L^{p^{\prime}}$. But then $\mathcal{J}_{-\alpha} g \epsilon \mathfrak{L}_{-\alpha}^{\prime}$ and $\mathcal{J}_{-\alpha} g$ can be identified with F.
1.9 Theorem. Let $1<p<\infty, \alpha>0, k$ a positive integer such that $2 k \leq \alpha$. Then

$$
\|f\|_{p, \alpha} \approx \sum_{|\gamma|+2 j \leq 2 k}\left\|D_{x}^{\gamma} D_{t}^{j} f\right\|_{p, \alpha-2 k}
$$

Proof. Since \mathscr{J}_{β} is an isometry of \mathscr{L}_{α}^{p} onto $\mathscr{L}_{\alpha+\beta}^{p}$ and \mathscr{J}_{β} commutes with differentiation, it suffices to consider the case $\alpha=2 k$.

We have $\mathcal{g}_{-2 k} f=\left(1-\Delta_{x}+D_{t}\right)^{2 k} f$, so clearly
$\|f\|_{p, 2 k}=\left\|\mathcal{S}_{-2 k} f\right\|_{p}=\left\|\left(1-\Delta_{x}+D_{t}\right)^{2 k} f\right\|_{p} \leq c \sum_{|\gamma|+2 j \leq 2 k}\left\|D_{x}^{\gamma} D_{t}^{j} f\right\|_{p}$.
For the reverse inequality, let $f=\mathscr{J}_{2 k} g, g \in L^{p}$. Then $D_{x}^{\gamma} D_{t}^{j} f=D_{x}^{\gamma} D_{t}^{j} \mathcal{J}_{2 k} g$. Thus

$$
\left(D_{x}^{\gamma} D_{t}^{j} f\right) \wedge=\frac{i^{|\gamma|+j} x^{\gamma} t^{j}}{\left(1+|x|^{2}+i t\right)^{k}} \hat{g}
$$

Applying (1.5), $x^{\gamma} t^{j} /\left(1+|x|^{2}+i t\right)^{k} \epsilon M_{p}^{p}$ if $|\gamma|+2 j \leqq 2 k$; hence

$$
\left\|D_{x}^{\gamma} D_{t}^{j} f\right\|_{p} \leqq c\|g\|_{p}=c\|f\|_{p, \alpha}
$$

Using (1.9) it is often possible to reduce questions about \mathcal{L}_{α}^{p} spaces to the case $0 \leqq \alpha<2$.

We now introduce a function H_{α} which is similar to $\mathcal{G}_{\alpha} . H_{\alpha}$ will have homogeneity properties which are useful in characterizing $\mathfrak{L}_{\alpha}^{p}$ spaces.
(1.10), (1.11), and (1.12) below are due to Sampson [11].
1.10 Proposition. Let

$$
\begin{aligned}
H_{\alpha}(x, t) & =t^{(\alpha-n) / 2-1} \exp \left\{-|x|^{2} / 4 t\right\}, & & t>0 \\
& =0, & & t \leq 0
\end{aligned}
$$

Then for $\alpha>0, H_{\alpha} \in \mathbb{S}^{\prime}$. If $0<\alpha<n+2, \hat{H}_{\alpha}$ is a function and

$$
\hat{H}_{\alpha}(x, t)=c(\alpha, n)\left(|x|^{2}+i t\right)^{-\alpha / 2}
$$

1.11 Lemma. For $\alpha>0$, there exist bounded measures μ, μ_{1}, μ_{2} such that

$$
\left(|x|^{2}+i t\right)^{\alpha / 2}=\left(1+|x|^{2}+i t\right)^{\alpha / 2} \hat{\mu}
$$

and

$$
\left(1+|x|^{2}+i t\right)^{\alpha / 2}=\hat{\mu}_{1}+\left(|x|^{2}+i t\right)^{\alpha / 2} \hat{\mu}_{2} .
$$

1.12 Theorem. Let $\alpha>0$. Let $f \in L^{p}$. Then $f \in \mathscr{L}_{\alpha}^{p}$ iff there exists $g \in L^{p}$ such that $\left(|x|^{2}+i t\right)^{\alpha / 2} \hat{f}=\hat{g}$, in which case $\|f\|_{p, \alpha} \approx\|f\|_{p}+\|g\|_{p^{\prime}}$.

If $0<\alpha<n+2$, then $H_{\alpha} \in L^{1}+L^{\infty}$. Hence if the function g above is in $L^{1} \cap L^{\infty}$, we have $f=c(\alpha, n)^{-1} H_{\alpha} * g$.

2. A characterization of $\mathfrak{d}_{\alpha}^{p}$

Let

$$
\Omega_{r}=\left\{(y, s) \epsilon E^{n+1}:|y|<r,-r^{2}<s<r^{2}\right\} .
$$

Let

$$
\Omega_{r}^{+}=\left\{(y, s) \in \Omega_{r}: s>0\right\}
$$

For brevity Ω_{1} and Ω_{1}^{+}will be denoted by Ω and Ω^{+}.
2.1 Definition. For $f \in L_{\text {loc }}^{1}$, let
$S_{\alpha} f(x, t)=\left(\int_{0}^{\infty}\left[\iint_{\Omega^{+}}\left|f\left(x-r y, t-r^{2} s\right)-f(x, t)\right| d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}$
2.2 Theorem. For $0<\alpha<1$ and $1<p<\infty, f \in \mathfrak{L}_{\alpha}^{p}$ iff $f \in L^{p}$ and $S_{\alpha} f \in L^{p}$; in which case $\|f\|_{p, \alpha} \approx\|f\|_{p}+\left\|S_{\alpha} f\right\|_{p}$.

In the case $p=2$, the inequality $\left\|S_{\alpha} f\right\|_{2}+\|f\|_{2} \leq C\|f\|_{2, \alpha}$ is proved using Fourier transform techniques. According to (1.12), $f \in \mathcal{L}_{\alpha}^{p}$ iff $f \epsilon L^{2}$ and $\hat{f}=\hat{H}_{\alpha} \hat{\Phi}$ for some $\Phi \epsilon L^{2}$; moreover, $\|f\|_{2, \alpha} \approx\|f\|_{2}+\|\Phi\|_{2}$.

Applying Schwarz's inequality and then Fubini's theorem,

$$
\begin{aligned}
S_{\alpha} f(x, t)^{2}= & \int_{0}^{\infty}\left(\iint_{\Omega^{+}}\left|f\left(x-r y, t-r^{2} s\right)-f(x, t)\right| d y d s\right)^{2} r^{-1-2 \alpha} d r \\
\leq & C \int_{0}^{\infty}\left(\iint_{|y|+\sqrt{ } s \leq 2} \mid f\left(x-r y, t-r^{2} s\right)\right. \\
& \left.\quad-\left.f(x, t)\right|^{2} d y d s\right) r^{-1-2 \alpha} d r \\
= & C \int_{0}^{\infty}\left(\iint_{|y|+\sqrt{ } s \leq 2}|f(x-y, t-s)-f(x, t)|^{2} d y d s\right) r^{-n-3-2 \alpha} d r \\
= & C \iint_{s>0}|f(x-y, t-s)-f(x, t)|^{2} d y d s \int_{\frac{1}{2}(|y|+\sqrt{ } s)}^{\infty} r^{-n-3-2 \alpha} d r \\
= & C \iint_{s>0}|f(x-y, t-s)-f(x, t)|^{2}(|y|+\sqrt{ } s)^{-n-2-2 \alpha} d y d s
\end{aligned}
$$

Thus by Fubini's theorem and Parseval's equation,
$\left\|S_{\alpha} f\right\|^{2}$

$$
\leq C \iint_{s>0}(|y|+\sqrt{ } s)^{-n-2-2 \alpha} d y d s \iint\left|[f(\cdot-y, \cdot-s)-f]_{\wedge}(\xi, \tau)\right|^{2} d \xi d \tau
$$

Noting that

$$
\begin{aligned}
{[f(\cdot-y, \cdot-s)-f] \wedge(\xi, \tau) } & =\hat{\Phi}(\xi, \tau)\left[H_{\alpha}(\cdot-y, \cdot-s)-H_{\alpha}\right]_{\wedge}(\xi, \tau) \\
& =\hat{\phi}(\xi, \tau)\left[e^{-i y \cdot \xi-i s \tau}-1\right]\left(|\xi|^{2}+i \tau\right)^{-\alpha / 2}
\end{aligned}
$$

and again changing the order of integration,

$$
\begin{aligned}
& \left\|S_{\alpha} f\right\|_{2}^{2} \leq C \iint|\hat{\phi}(\xi, \tau)|^{2} \|\left.\xi\right|^{2} \\
& \quad+\left.i \tau\right|^{-\alpha} d \xi d \tau \iint_{s>0}\left|e^{-i y \cdot \xi-i s \tau}-1\right|^{2}\left(|y|^{2}+\sqrt{ } s\right)^{-n-2-2 \alpha} d y d s
\end{aligned}
$$

Substituting $y=\left(|\xi|^{2}+i \tau\right)^{-1 / 2} y^{\prime}, s=\left(|\xi|^{2}+i \tau\right)^{-1} s^{\prime}$ and using the mean value theorem to estimate the resulting integrand for y, s near 0 , it is readily seen that

$$
\iint_{s>0}\left|e^{-i y \cdot \xi-i s \tau}-1\right|^{2}\left(|y|^{2}+\sqrt{ } s\right)^{-n-2-2 \alpha} d y d s \leq C \|\left.\xi\right|^{2}+\left.i \tau\right|^{\alpha}
$$

Thus

$$
\left\|S_{\alpha} f\right\|_{2}^{2} \leq C \iint|\hat{\phi}(\xi, \tau)|^{2} d \xi d \tau=C\|\hat{\phi}\|_{2}^{2}
$$

As in Strichartz [12, I.2.3], (2.2) is proved using results from the theory of convolution of operators on Banach space valued functions. These results are given below; for a thorough treatment of Banach space valued functions see Hille and Phillips [6].

Let X be a Banach space with norm $\|\cdot\|_{x}$. Let $M(X)$ denote the space of strongly measurable functions defined on E^{n+1} with values in $X . L^{p}(X)$ is the Banach space of functions in $M(X)$ such that the function $(x, t) \rightarrow\|f(x, t)\|_{x}$ is in $L^{p} . \quad L_{\text {oom }}^{\infty}(X)$ is the class of functions in $L^{\infty}(X)$ having compact support.
2.3 Theorem. Let X, Y be Banach spaces. Let $A: L_{\text {com }}^{\infty}(X) \rightarrow M(Y)$ be given by

$$
A \phi(x, t)=\iint k(x-y, t-s) \phi(y, s) d y d s
$$

where $k(x, t)$ is a bounded operator from X into Y for a.e. (x, t). Suppose that
1°. $\|A \phi\|_{L^{2}(Y)} \leq C_{0}\|\phi\|_{L^{2}(\boldsymbol{X})}$ for $\phi \in L_{\mathrm{com}}^{\infty}(X)$
$2^{\circ} . \iint_{C \Omega_{2 r}}\|k(x-z, t-u)-k(x, t)\|_{\mathcal{L}(X, Y)} d x d t \leq C_{1}$ for all $(z, y) \in \Omega_{r}$, where C_{1} is independent of r.

Then $\|A \phi\|_{L^{p}(Y)} \leq C_{p}\|\phi\|_{L^{p}(X)}$ for $1<p<\infty$, all $\phi \in L_{\text {com }}^{\infty}(X)$.
Theorem (2.3) appears in Lewis [9) in a slightly more general form. Theorem (2.4) below is a modification of Theorem 4 of Benedek, Calderón and Panzone [2]. It may be proved along the same lines using (1.5) in place of the multiplier theorem of Hormander.
2.4 Theorem. Let H be a Hilbert space, and for each $p \in(1, \infty)$ let $B: L^{p} \rightarrow L^{p}(H)$ continuously. For $\phi \epsilon L_{\mathrm{com}}^{\infty}$, suppose $B \phi$ is given by

$$
(B \phi) \wedge(x, t)=\hat{\phi}(x, t) h(x, t)
$$

where h is an H-valued function such that
1°. h is bounded in $E^{n+1} \sim(0,0)$, and
2°. the family of functions $\left\{h\left(\rho x, \rho^{2} t\right): 0<\rho<\infty\right\}$ is uniformly equicontinuous in $1 / 2 \leq\left(|x|^{2}+|t|\right)^{1 / 2} \leq 2$.

Suppose that $\|B \phi\|_{L^{2}(H)} \geq C\|\phi\|_{2}$, all $\phi \in L^{2}$. Then also

$$
\|B \phi\|_{L^{p}(H)} \geq C_{p}(B)\|\phi\|_{p} \quad \text { for all } \phi \in L^{p}, 1<p<\infty
$$

In the original version of (2.4), h is an operator-valued function. Although it is not noted in the statement of the theorem, the proof requires that the family of operators $\left\{h^{*} h\right\}$ commute. In our case, $\left\{h^{*} h\right\}$ is a family of complex numbers, so the question of commutativity does not arise.

As a first step in proving (2.2); we have the following:
2.5 Lemma. Let $1<p<\infty, \phi \in L_{\text {com }}^{\infty}$. Let $f=H_{\alpha} * \phi$. Then

$$
\left\|S_{\alpha} f\right\|_{p} \leq C_{p, \alpha}\|\phi\|_{p} \quad \text { for } 0<\alpha<1
$$

Proof. We use (2.3) with $X=\mathbf{C}$ and Y the Banach space of functions $g(r, y, s)$ defined on $(0, \infty) \times \Omega^{+}$such that

$$
\|g\|_{Y}=\left(\int_{0}^{\infty}\left[\iint_{\Omega^{+}}|g(r, y, s)| d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 \mid 2}<\infty
$$

Define $p_{r, y, s}(x, t)=H_{\alpha}\left(x-r y, t-r^{2} s\right)-H_{\alpha}(x, t)$. We will show that $p_{r, y, s}(x, t) \in Y$ for all (x, t) and that the operator $k(x, t): \mathbf{C} \rightarrow Y$ defined by $k(x, t) \lambda=\lambda p_{r, y, s}(x, t)$ satisfies the hypotheses of (2.3). Since the operator A of (2.3) is convolution with $k(x, t)$, we have

$$
A \phi(x, t)=\left[H_{\alpha}\left(\cdot-r y, \cdot-r^{2} s\right)-H_{\alpha}\right] * \phi(x, t)=f\left(x-r y, t-r^{2} s\right)-f(x, t)
$$

Thus

$$
\begin{aligned}
\|A \phi(x, t)\|_{Y} & =\left(\int_{0}^{\infty}\left[\iint_{\Omega^{+}}\left|f\left(x-r y, t-r^{2} s\right)-f(x, t)\right| d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& =S_{\alpha} f(x, t)
\end{aligned}
$$

Hence the conclusion of (2.3) is precisely

$$
\left\|S_{\alpha} f\right\|_{p} \leq C_{p, \alpha}\|\phi\|_{p}
$$

As a first step, we show

$$
\int_{0}^{\infty}\left[\iint_{\Omega^{+}}\left|p_{r, y, s}(x, t)\right| d y d s\right]^{2} r^{-1-2 \alpha} d r<\infty
$$

and hence $p_{r, y, s}(x, t) \in Y$. We have

$$
\begin{array}{ll}
p_{r, y, s}(x, t) & \\
=\left(t-r^{2} s\right)^{(\alpha-n-2) / 2} \exp \left\{-|x-r y|^{2} / 4\left(t-r^{2} s\right)\right\}-t^{(\alpha-n-2) / 2} \exp \left\{-|x|^{2} / 4 t\right\} \\
=-t^{(\alpha-n-2) / 2} \exp \left\{-|x|^{2} / 4 t\right\} & \text { for } 0 \leqq r^{2} s<t \\
=0 & \text { for } 0<t \leq r^{2} s \\
=0 & \text { for } t \leqq 0
\end{array}
$$

If $t \leq 0$, then obviously $p_{r, y, s}(x, t)=0 \epsilon Y$. Let $t>0$. For $r^{2}<\frac{1}{2} t, p_{r, y, s}(x, t)$ is given by a C^{∞} function and by the mean value theorem it is $O(r)$ uniformly for $(y, s) \in \Omega^{+}$. Hence

$$
\int_{0}^{\left(\frac{1}{2} t\right)^{1 / 2}}\left[\iint_{\Omega^{+}}\left|p_{r, y, s}(x, t)\right| d y d s\right]^{2} r^{-1-2 \alpha} d r \leqq C_{x, t} \int_{0}^{\left(\frac{1}{2} t\right)^{1 / 2}} r^{1-2 \alpha} d r \leqq C_{x, t}
$$

since $0<\alpha<1$. Since $\int_{\left(\frac{1}{3} t\right)^{1 / 2}}^{\infty} r^{-1-2 \alpha} d r<\infty$, to conclude that

$$
\int_{\left(\frac{1}{2} t\right)^{1 / 2}}^{\infty}\left[\iint_{\Omega^{+}}\left|p_{r, y, s}(x, t)\right| d y d s\right]^{2} r^{-1-2 \alpha} d r<\infty
$$

it suffices to show that

$$
\iint_{(y, s) \in \Omega^{+}, t-r^{2} s>0}\left(t-r^{2} s\right)^{(\alpha-n-2) / 2} \exp \left\{-|x-r y|^{2} / 4\left(t-r^{2} s\right)\right\} d y d s \leqq C_{t}
$$

for $r^{2} \geq \frac{1}{2} t$. Making the change of variables $x-r y=y^{\prime}, t-r^{2} s=s^{\prime}$, we see that this last integral is dominated by

$$
r^{-n-2} \int_{0}^{t} d s \int s^{(\alpha-n-2) / 2} e^{-|y|^{2} / 4 s} d y=c r^{-n-2} \int_{0}^{t} s^{(\alpha-2) / 2} d s=c_{t} r^{-n-2}
$$

since $0<\alpha<1$. Hence $p_{r, y, s}(x, t) \in Y$ for all (x, t).
We have previously shown $A: L^{2} \rightarrow L^{2}(Y)$ continuously. It remains only to show

$$
\iint_{C \Omega_{2 a}}\|k(\boldsymbol{x}-z, t-u)-k(x, t)\|_{\mathscr{L}(c, Y)} d x d t \leqq C
$$

for all $(z, u) \in \Omega_{a}, c$ independent of $a>0$. This amounts to bounding

$$
\begin{aligned}
\iint_{C \Omega_{2 a}} d x d t\left(\int _ { 0 } ^ { \infty } \left[\iint_{\Omega^{+}} \mid p_{r, y, s}(x-z, t-u)\right.\right. & \\
& \left.\left.-p_{r, y, s}(x, t) \mid d x d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}
\end{aligned}
$$

The computation is quite lengthy; it is given in the appendix.
2.6 Lemma. Let $\phi \in L_{\text {com }}^{\infty}, f=H_{\alpha} * \phi$, where $0<\alpha<1$. Then

$$
\|\phi\|_{p} \leq C_{p, \alpha}\left\|S_{\alpha} f\right\|_{p} \quad \text { for } 1<p<\infty
$$

Proof. Define

$$
T_{\alpha} f(x, t)=\left(\int_{0}^{\infty}\left|\iint_{\Omega^{+}}\left[f\left(x-r y, t-r^{2} s\right)-f(x, t)\right] d y d s\right|^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}
$$

Clearly $0 \leqq T_{\alpha} f \leqq S_{\alpha} f$; we will use (2.4) to show $\|\phi\|_{p} \leqq C_{p, \alpha}\left\|T_{\alpha} f\right\|_{p}$.
Define

$$
k_{r}(x, t)=\iint_{\Omega^{+}} p_{r, y, s}(x, t) d y d s
$$

where $p_{r, r, s}(x, t)=H_{\alpha}\left(x-r y, t-r^{2} s\right)-H_{\alpha}(x, t)$ as before. Then $k_{r} \epsilon L^{1}$ since

$$
\begin{aligned}
\iint\left|k_{r}(x, t)\right| d x d t & \leq \iint d x d t \iint_{\Omega^{+}}\left|p_{r, y, s}(x, t)\right| d y d s \\
& =\iint_{\Omega^{+}} d y d s \iint\left|p_{r, y, s}(x, t)\right| d x d t \\
& \leq 2 \iint_{\Omega^{+}}\left\|H_{\alpha}\right\|_{1} d y d s=C\left\|H_{\alpha}\right\|_{1}
\end{aligned}
$$

Hence for $\phi \epsilon L^{p}$, the convolution $k_{r} * \phi$ converges absolutely a.e. By the above calculation, we may change the order of integration so that

$$
k_{r} * \phi(x, t)=\iint_{\Omega^{+}} p_{r, y, s} * \phi(x, t) d y d s \quad \text { a.e. }
$$

Let H be the Hilbert space of functions defined on ($0, \infty$) whose modulus is square integrable with respect to the measure $r^{-1-2 \alpha} d r$. Let $B \phi(x, r)=$ $k_{r} * \phi(x, t)$. Then

$$
\begin{aligned}
\|B \phi(x, t)\|_{H}^{2} & =\int_{0}^{\infty}\left|k_{r} * \phi(x, t)\right|^{2} r^{-1-2 \alpha} d r \\
& =\int_{0}^{\infty}\left|\iint_{\Omega^{+}} p_{r, y, s} * \phi(x, t) d y d s\right|^{2} r^{-1-2 \alpha} d r \\
& =\int_{0}^{\infty}\left|\iint_{\Omega^{+}}\left[f\left(x-r y, t-r^{2} s\right)-f(x, t)\right] d y d s\right|^{2} r^{-1-2 \alpha} d r \\
& =T_{\alpha} f(x, t)^{2}
\end{aligned}
$$

Hence $B \phi(x, t) \epsilon H$ a.e. and

$$
\|B \phi\|_{L^{p}(\boldsymbol{H})}=\left\|T_{\alpha} f\right\|_{p} \leq\left\|S_{\alpha} f\right\|_{p} \leq C_{p, \alpha}\|\phi\|_{p}
$$

For $\phi \epsilon L_{\mathrm{com}}^{\infty},(B \phi)^{\wedge}(\xi, \tau)=\hat{\phi}(\xi, \tau) \hat{k}_{r}(\xi, \tau)$. We compute

$$
\begin{aligned}
\hat{k}_{r}(\xi, \tau) & =(2 \pi)^{-(n+1) / 2} \iint e^{-i x \cdot \xi-i t \tau} k_{r}(x, t) d x d t \\
& =\iint_{\Omega^{+}} d y d s\left[(2 \pi)^{-n+1 / 2} \iint e^{-i x \cdot \xi-i t \tau} p_{r, y, s}(x, t) d x d t\right] \\
& =\iint_{\Omega^{+}} p_{r, y, s}(\xi, \tau) d y d s \\
& =\hat{H}_{\alpha}(\xi, \tau) \iint_{\Omega^{+}}\left(e^{-i r y \cdot \xi-i r^{2} s \tau}-1\right) d y d s \\
& =C\left(|\xi|^{2}+i \tau\right)^{-\alpha / 2} \iint_{\Omega^{+}}\left(e^{-i r y \cdot \xi-i r^{2} s \tau}-1\right) d y d s
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\|\hat{k}_{r}(\xi, \tau)\right\|_{H}^{2}=C \|\left.\xi\right|^{2}+\left.i \tau\right|^{-\alpha} \int_{0}^{\infty}\left|\iint_{\Omega^{+}}\left(e^{-i r y \cdot \xi-i r^{2} s \tau}-1\right) d y d s\right|^{2} \cdot r^{-1-2 \alpha} d r \\
& \quad=C \int_{0}^{\infty}\left|\iint_{\Omega^{+}}\left(\exp \left\{\frac{-i r y \cdot \xi}{\|\left.\xi\right|^{2}+\left.i \tau\right|^{1 / 2}}-\frac{i r^{2} s \tau}{\|\left.\xi\right|^{2}+i \tau \mid}\right\}-1\right) d y d s\right| r^{-1-2 \alpha} d r
\end{aligned}
$$

Using the mean value theorem to estimate the integrand for $0<r<1$, we see that this integral converges absolutely for $0<\alpha<1$. Consequently $\left\|\hat{k_{r}}(\xi, \tau)\right\|_{H}$ is a continuous function away from $(\xi, \tau)=(0,0) . \mathrm{As}$

$$
\left\|\hat{k}_{r}\left(\lambda \xi, \lambda^{2} \tau\right)\right\|_{H}=\left\|\hat{k}_{r}(\xi, \tau)\right\|_{H} \quad \text { for } \lambda>0
$$

and

$$
\left\|\hat{k}_{r}(\xi, \tau)\right\|_{H} \neq 0 \quad \text { for }(\xi, \tau) \neq(0,0)
$$

we have $\left\|\hat{k}_{r}(\xi, \tau)\right\|_{H} \geq C$ for $(\xi, \tau) \neq(0,0)$. Consequently

$$
\|B \phi\|_{L^{2}(H)} \geq C\|\phi\|_{2}, \quad \text { all } \phi \in L^{2}
$$

The equicontinuity condition in (2.4) follows immediately since

$$
\left\|\hat{k}_{r}\left(\rho \xi, \rho^{2} \tau\right)-\hat{k}_{r}\left(\rho \xi^{\prime}, \rho^{2} \tau^{\prime}\right)\right\|_{H}=\left\|\hat{k_{r}}(\xi, \tau)-\hat{\hat{k}_{r}}\left(\xi^{\prime}, \tau^{\prime}\right)\right\|_{H}
$$

Thus (2.4) is applicable and

$$
\left\|T_{\alpha} f\right\|_{p}=\|B \phi\|_{L^{p}(H)} \geqq C_{p, \alpha}\|\phi\|_{p}, \quad \text { all } \phi \in L_{\mathrm{com}}^{\infty}, 1<p<\infty .
$$

Proof of Theorem (2.2). Let $\phi \in L^{1} \cap L^{\infty}$. Let A be the operator defined in the proof of (2.3). Then we have

$$
C\|A \phi\|_{L^{p}(Y)} \leq\|\phi\|_{p} \leq C^{\prime}\|A \phi\|_{L p(Y)} .
$$

Since $H_{\alpha} \in L^{1}+L^{\infty}$, the convolution

$$
\phi * p_{r, y, s}=\phi *\left(H_{\alpha}\left(\cdot-r y, \cdot-r^{2} s\right)-H_{\alpha}\right)
$$

converges absolutely, so that $A \phi=\phi * p_{r, y, s}$, and for $f=H_{\alpha} * \phi$ we have

$$
C\left\|S_{\alpha} f\right\|_{p} \leq\|\phi\|_{p} \leqq C^{\prime}\left\|S_{\alpha} f\right\|_{p}
$$

Let $\psi \epsilon L^{1} \cap L^{\infty}, f=\mathcal{G}_{\alpha} * \psi$. Then $f \epsilon \mathscr{L}_{\alpha}^{p}$ and $\hat{f}=\left(1+|x|^{2}+i t\right)^{-\alpha / 2} \hat{\psi}$. By (1.11), there exists a bounded measure μ such that

$$
\left(1+|x|^{2}+i t\right)^{-\alpha / 2}=\left(|x|^{2}+i t\right)^{-\alpha / 2} \hat{\mu}(x, t)
$$

Thus

$$
\hat{f}(x, t)=\left(|x|^{2}+i t\right)^{-\alpha / 2} \hat{\mu}(x, t) \hat{\phi}(x, t)=\left(|x|^{2}+i t\right)^{-\alpha / 2}(\mu * \psi) \wedge(x, t)
$$

But $\mu * \psi \in L^{1} \cap L^{\infty}$; hence $f=C H_{\alpha} *(\mu * \psi)$ and

$$
\left\|S_{\alpha} f\right\|_{p} \leqq C\|\mu * \psi\|_{p} \leq C\|\psi\|_{p}=C\|f\|_{p, \alpha}
$$

By (1.12),

$$
\|f\|_{p, \alpha} \leqq C\|f\|_{p}+C\|\mu * \psi\|_{p} \leqq C\|f\|_{p}+C\left\|S_{\alpha} f\right\|_{p}
$$

Since the functions $\left\{\mathcal{S}_{\alpha} * \psi: \psi \in L^{1} \cap L^{\infty}\right\}$ are dense in \mathscr{L}_{α}^{p}, we have

$$
C\|f\|_{p, \alpha} \leqq\|f\|_{p}+\left\|S_{\alpha} f\right\|_{p} \leqq C^{\prime}\|f\|_{p, \alpha} \quad \text { for all } f \in \mathscr{L}_{\alpha}^{p}
$$

Suppose now that $f \epsilon L^{p}$ and $S_{\alpha} f \in L^{p}$. We must show that $f \epsilon \mathscr{L}_{\alpha}^{p}$. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ satisfy
(i) $g_{n} \in S$,
(ii) $g_{n} \geqq 0$
(iii) $\left\|g_{n}\right\|_{1}=1$
(iv) $\phi * g_{n} \rightarrow \phi$ in L^{p} for all $\phi \epsilon L^{p}$.

Since \mathcal{S} is invariant under $\mathscr{J}_{\alpha}, g_{n}=\mathcal{G}_{\alpha} * h_{n}$ with $h_{n} \in \mathcal{S}$. We have

$$
f * g_{n}=f *\left(\mathcal{G}_{\alpha} * h_{n}\right)=\mathcal{G}_{\alpha} *\left(f * h_{n}\right)
$$

Since $f * h_{n} \in L^{p}$, we have $f * g_{n} \in \mathcal{L}_{\alpha}^{p}$ and

$$
\left\|f * g_{n}\right\|_{p, \alpha} \leqq C\left\|f * g_{n}\right\|_{p}+C\left\|S_{\alpha}\left(f * g_{n}\right)\right\|_{p}
$$

Since $g_{n} \geqq 0$, Minkowski's inequality gives us $S_{\alpha}\left(f * g_{n}\right) \leqq g_{n} * S_{\alpha} f$. Thus

$$
\left\|f * g_{n}\right\|_{p, \alpha} \leqq C\left\|f * g_{n}\right\|_{p}+C\left\|g_{n} * S_{\alpha} f\right\|_{p} \leq C\|f\|_{p}+C\left\|S_{\alpha} f\right\|_{p}
$$

Consequently some subsequence $f * g_{n_{k}}$ converges weakly in \mathscr{L}_{α}^{p}. But $f * g_{n} \rightarrow f$ in L^{p}; therefore $f \epsilon \mathscr{L}_{\alpha}^{p}$.
2.7 Remark. Theorem (2.2) remains valid if Ω^{+}is replaced by Ω in the definition of S_{α}; the proof is longer but is essentially the same. Also, if the integrand $f\left(x-r y, t-r^{2} s\right)-f(x, t)$ is replaced by the mixed second difference $f\left(x+r y, t-r^{2} s\right)+f\left(x-r y, t-r^{2} s\right)-2 f(x, t)$ we obtain a characterization of $\mathfrak{L}_{\alpha}^{p}$ valid for $0<\alpha<2$.

3. Interpolation

In this section we review the definition of complex interpolation of Banach spaces given by Calderon [3], and we state some of his results. We then give an interpolation theorem for \mathscr{L}_{α}^{p} spaces.
3.1 Definition. Let A_{0} and A_{1} be Banach spaces continuously embedded in a Hausdorff topological vector space V. We assume $A_{0} \cap A_{1}$ is dense in both A_{0} and $A_{1} . \quad A_{0}+A_{1}$ is a Banach space with the norm

$$
\|w\|_{A_{0}+\Lambda_{1}}=\inf \left\{\|x\|_{A_{0}}+\|y\|_{A_{1}}: x \in A_{0}, y \in A_{1}, w=x+y\right\}
$$

Let \mathfrak{F} be the space of functions f defined on $0 \leqq \operatorname{Re}(z) \leqq 1$ and with values in $A_{0}+A_{1}$ such that
(1) f is bounded and continuous;
(2) f is holomorphic for $0<\operatorname{Re}(z)<1$;
(3) for real $t, f(i t) \in A_{0}$ with

$$
\sup \|f(i t)\|_{A_{0}}<\infty \quad \text { and } \quad\|f(i t)\|_{A_{0}} \rightarrow 0 \quad \text { as } t \rightarrow \pm \infty
$$

(4) for real $t, f(1+i t) \epsilon A_{1}$ with

$$
\sup \|f(1+i t)\|_{A_{1}}<\infty \quad \text { and } \quad\|f(1+i t)\|_{A_{1}} \rightarrow 0 \quad \text { as } t \rightarrow \pm \infty
$$

(For a discussion of holomorphic functions taking values in a Banach space see Hille and Phillips [6].)
\mathcal{F} is a Banach space with respect to the norm

$$
\|f\|=\max \left\{\sup \|f(i t)\|_{A_{0}}, \sup \|f(1+i t)\|_{A_{1}}\right\}
$$

For $0<s<1$, let $\mathscr{H}_{s}=\{f \in \mathfrak{F}: f(s)=0\}$. Then \mathscr{H}_{s} is a closed subspace of \mathfrak{F}. We define $A_{s}=\left[A_{0}, A_{1}\right]_{s}=\mathfrak{F} / \mathfrak{T}_{s} ;$ i.e., $A_{s}=\{f(s): f \in \mathfrak{F}\}$ with the norm

$$
\|x\|_{A_{s}}=\inf \left\{\|f\|_{\mathcal{F}}: f \in \mathscr{F} \text { and } f(s)=x\right\}
$$

(A_{0}, A_{1}) is called an interpolation pair; A_{s} is called an intermediate space.
3.2. Theorem (Multilinear Interpolation). Let $\left(A_{0}^{(k)}, A_{1}^{(k)}(k=1, \cdots, m)\right.$ and $\left(B_{0}, B_{1}\right)$ be interpolation pairs. Let L be a multilinear map from $\prod_{k=1}^{m} A_{0}^{(k)} \cap A_{1}^{(k)}$ into $B_{0} \cap B_{1}$ such that

$$
\left\|L\left(x_{1}, \cdots, x_{m}\right)\right\|_{B_{i}} \leqq M_{i} \prod_{k=1}^{m}\left\|x_{k}\right\| A_{i}^{(k)} \quad \text { for } i=0,1
$$

Then L can be extended uniquely to a multilinear map from $\prod_{k=1}^{m} A_{s}^{(k)}$ into B_{s} satisfying

$$
\left\|L\left(x_{1}, \cdots, x_{m}\right)\right\|_{B s} \leqq M_{0}^{1-s} M_{1}^{s} \prod_{k=1}^{n}\left\|x_{k}\right\| A_{s}^{(k)}
$$

3.3 Theorem (Duality). Let A_{0}, A_{1} be reflexive Banach spaces. Then $\left[A_{0}, A_{1}\right]_{s}^{\prime}=\left[A_{0}^{\prime}, A_{1}^{\prime}\right]_{s}$.
3.4 Theorem. Let $1<p_{0}<\infty, 1<p_{1}<\infty$. Let α_{0}, α_{1} be any real numbers. Then $\left[\mathcal{L}_{\alpha_{0}}^{p_{0}}, \mathfrak{L}_{\alpha_{1}}^{p_{1}}\right]_{s}=\mathscr{L}_{\alpha}^{p}$ where $0<s<1,1 / p=(1-s) / p_{0}+s / p_{1}$, and $\alpha=(1-s) \alpha_{0}+s \alpha_{1}$.

Proof. By (1.8), \mathscr{L}_{α}^{p} is reflexive for $1<p<\infty$. Hence if we prove $\mathscr{L}_{\alpha}^{p} \subset\left[\mathscr{L}_{\alpha_{0}}^{p_{0}}, \mathcal{L}_{\alpha_{1}}^{p_{1}}\right]_{s}$ with the inclusion map continuous, then by duality we have also

$$
\mathscr{L}_{\alpha}^{p}=\left(\mathscr{L}_{\alpha}^{p_{\alpha}^{\prime}}\right)^{\prime} \supset\left[\mathcal{L}_{-\alpha_{0}}^{p_{0}^{\prime}}, \mathscr{L}_{\alpha_{1}}^{p_{1}^{\prime}}\right]_{s}^{\prime}=\left[\mathscr{L}_{\alpha_{0}}^{p_{0}}, \mathscr{L}_{\alpha_{1}}^{p_{1}}\right]_{s}
$$

and therefore $\mathscr{L}_{\alpha}^{p}=\left[\mathscr{L}_{\alpha_{0}}^{p_{0}}, \mathscr{L}_{\alpha_{1}}^{p_{1}}\right]_{s}$.

Let $f=\mathscr{J}_{\alpha} \psi$, where ψ is simple. Since simple functions are dense in L^{p} and \mathcal{d}_{α} is an isometric isomorphism of L^{p} onto \mathcal{L}_{α}^{p}, the class of all such functions f is dense in $\mathfrak{L}_{\alpha}^{p}$. To prove the theorem we need only to find a function $F \in \mathcal{F}$ such that $F(s)=f$,

$$
\|F(i t)\|_{p_{0}, \alpha_{0}} \leqq C\|f\|_{p, \alpha} \text { and }\|F(1+i t)\|_{p_{1}, \alpha_{1}} \leqq C\|f\|_{p, \alpha}
$$

where C is independent of f.
Let us note some properties of the operator valued function \mathcal{J}_{z}.
1°. For $\operatorname{Re} z \geqq 0$ and $1<q<\infty, \mathscr{J}_{z}: L^{q} \rightarrow L^{q}$ continuously with $\left\|\mathcal{J}_{z}\right\|_{\mathcal{L}\left(L^{q}\right)} \leqq C_{q} e^{(\pi / 2) \operatorname{Im} z}|P(z)|$ where P is a polynomial determined by n.
2°. For $\operatorname{Re} z>0$ and $1<q<\infty, g_{z}$ is a holomorphic $\mathscr{L}\left(L^{q}\right)$-valued function.
3°. For each $f \in L^{q}(1<q<\infty), \mathscr{J}_{z} f$ is a continuous L^{q}-valued function on $\operatorname{Re} z \geqq 0$.

Statement 1° was noted after (1.5). To prove 2°, since S is dense in both L^{q} and $\left(L^{q}\right)^{\prime}$ it suffices to prove that for each $\phi, \psi \in \mathbb{S}$ the function

$$
z \rightarrow \iint \phi(x, t) \mathfrak{g}_{z} \psi(x, t) d x d t
$$

is holomorphic. But it follows immediately from Parseval's formula that the above function is entire.

For 3°, note that for $\operatorname{Re} z \geqq 0, \mathcal{J}_{z}$ is uniformly bounded in $\mathfrak{L}\left(L^{q}\right)$ for z in $N\left(z_{0}\right) \cap\{z: \operatorname{Re} z \geqq 0\}$, where $N\left(z_{0}\right)$ is a neighborhood of z_{0}. Hence it suffices to prove that $\mathscr{J}_{z} \phi$ is a continuous L^{q}-valued function for each $\phi \in S$. As above, $\mathscr{J}_{z} \phi$ is an entire L^{q}-valued function and hence continuous.

Express $\psi=\sum_{k=1}^{n} a_{k} \chi_{E_{k}}$, where $a_{k} \in \mathbf{C}, a_{k} \neq 0, \chi_{E_{k}}$ is the characteristic function of a set E_{k} of finite measure, and the sets $\left\{E_{k}\right\}$ are pairwise disjoint.

Define

$$
g(z)=\sum_{k=1}^{n}\left|a_{k}\right|^{p\left((1-z) / p_{0}+z / p_{1}\right)} \operatorname{sgn}\left(a_{k}\right) \chi_{E_{k}}
$$

For $1<q<\infty, g(z)$ is a bounded and continuous L^{q}-valued function on $0 \leqq \operatorname{Re} z \leqq 1$ which is also holomorphic in $0<\operatorname{Re} z<1$. Moreover

$$
\begin{gathered}
g(s)=\sum_{k=1}^{N}\left|a_{k}\right|^{\left.p(1-s) / p_{0}+s / p_{1}\right)} \operatorname{sgn}\left(a_{k}\right) \chi_{E_{k}}=\psi, \\
\|g(i t)\|_{p_{0}}^{p_{0}}=\sum_{k=1}^{N}\left|a_{k}\right|^{p}\left|E_{k}\right|=\|\psi\|_{p}^{p}
\end{gathered}
$$

and

$$
\|g(1+i t)\|_{p_{1}}^{p_{1}}=\sum_{k=1}^{N}\left|a_{k}\right|^{p}\left|E_{k}\right|=\|\psi\|_{p}^{p}
$$

Define

$$
F(z)=\|\psi\|_{p}^{1-p\left((1-z) / p_{0}+z / p_{1}\right)} e^{z^{2-s^{2}}} g_{\alpha_{0}(1-z)+\alpha_{1} z} g(z)
$$

Then

$$
\begin{gathered}
F(s)=\|\psi\|_{p}^{1-p\left((1-s) / p_{0}+s / p_{1}\right)} \mathscr{J}_{\alpha_{0}(1-s)+\alpha_{1} s} g(s)=\mathscr{J}_{\alpha} \psi=f . \\
F(i t)=\|\psi\|_{p}^{\left.1-p(1-i t) / p_{0}+i t / p_{1}\right)} e^{-t-s^{2}} \mathscr{J}_{\alpha_{0}(1-i t)+\alpha_{1} i t} g(i t) .
\end{gathered}
$$

$F(i t) \epsilon \AA_{\alpha_{0}}^{p_{0}}$ with

$$
\|F(i t)\|_{p_{0}, \alpha_{0}}=\|\psi\|_{p}^{1-p / p_{0}}\left\|e^{-t^{2-s^{2}} \mathcal{J}\left(\alpha_{1}-\alpha_{0}\right) i t}(i t)\right\|_{p_{0}}
$$

Hence by 1° above, $\|F(i t)\|_{p_{0}, \alpha_{0}} \rightarrow 0$ as $t \rightarrow \pm \infty$ and

$$
\begin{aligned}
\|F(i t)\|_{p_{0}, \alpha_{0}} & \leqq C\|\psi\|_{p}^{1-p / p_{0}}\|g(i t)\|_{p_{0}} \\
& =C\|\psi\|_{p}^{1-p / p_{0}}\|\psi\|_{p}^{p / p_{0}}=C\|\psi\|_{p}=C\|f\|_{p, \alpha}
\end{aligned}
$$

Similarly $F(1+i t) \epsilon \mathscr{L}_{\alpha_{1}}^{p_{1}},\|F(1+i t)\|_{p_{1}, \alpha_{1}} \rightarrow 0$ as $t \rightarrow \pm \infty$, and

$$
\|F(1+i t)\|_{p_{1}, \alpha_{1}} \leq C\|f\|_{p, \alpha}
$$

For convenience, assume $\alpha_{0} \leqq \alpha_{1}$. Then $e^{z^{2--s^{2}} g_{\alpha_{0}(1-z)+\alpha_{1} z} \text { is a uniformly }}$ bounded operator from $L^{p_{0}}$ to $\mathscr{L}_{\alpha_{0}}^{p_{0}}$ for $0 \leqq \operatorname{Re} z \leqq 1$, holomorphic for $0<\operatorname{Re} z<1$. Consequently $F(z)$ is bounded as a function with values in $\mathcal{L}_{\alpha_{0}}^{p_{0}}$ (and hence as a function with values in $\mathscr{L}_{\alpha_{0}}^{p_{0}}+\mathcal{L}_{\alpha_{1}}^{p_{1}}$) for $0 \leqq \operatorname{Re} z \leqq 1$, holomorphic for $0<\operatorname{Re} z<1$. Since

$$
\mathscr{J}_{\alpha_{0}(1-z)+\alpha_{1} z} g(z)=\sum_{k=1}^{N}\left|a_{k}\right|^{p\left((1-z) / p_{0}+z / p_{1}\right)} \operatorname{sgn}\left(a_{k}\right) \mathscr{J}_{\alpha_{0}(1-z)+\alpha_{1} z} \chi_{E_{k}},
$$

it follows from 3° above that $F(z)$ is a continuous $\mathcal{L}_{\alpha_{0}}^{p_{0}}$-valued function for $0 \leqq \operatorname{Re} z \leqq 1$.

Thus $F_{\in \mathcal{F},} F(s)=f$, and $\|F\|_{\mathcal{F}} \leqq C\|f\|_{p, \alpha}$. The theorem is proved.

4. Multipliers on \mathscr{L}_{α}^{p} spaces

In this chapter we use the results of the previous two chapters to determine conditions for the product of two functions to be in an \mathscr{L}_{α}^{p} space.

The results are analogous to those obtained by Strichartz [13]; the only real difference is that we lack a suitable characterization of \mathcal{L}_{α}^{p} for $1 \leqq \alpha \leqq 2$. This problem has been circumvented in Theorem 4.5, but it has prevented us from obtaining localization results analogous to those of Strichartz [13].
4.1 Definition. A function ϕ is called a multiplier on \mathscr{L}_{α}^{p} if $\phi f \epsilon \mathfrak{L}_{\alpha}^{p}$ whenever $f \epsilon \mathscr{L}_{\alpha}^{p}$ and $\|\phi f\|_{p, \alpha} \leqq K\|f\|_{p, \alpha}$ for some K independent of $f \in \mathscr{L}_{\alpha}^{p}$. The space of multipliers on \mathcal{L}_{α}^{p} is denoted $M \mathcal{L}_{\alpha}^{p}$.
4.2 Proposition. $M \mathcal{L}_{\alpha}^{p} \subset M \mathcal{L}_{\beta}^{p}$ if $\alpha \geqq \beta \geqq 0$. In particular, $M \mathscr{L}_{\alpha}^{p} \subset L^{\infty}$ if $\alpha \geqq 0$.

Proof. Let $f \in M \mathscr{L}_{\alpha}^{p}, \alpha \geq 0$. Let $1 / p+1 / q=1$. Then by duality,

$$
\|f \phi\|_{q,-\alpha} \leqq K\|\phi\|_{q,-\alpha} \quad \text { as well as } \quad\|f \phi\|_{p, \alpha} \leqq K\|\phi\|_{p, \alpha}
$$

for all $\phi \in \mathscr{L}_{\alpha}^{p} \cap \mathcal{L}_{-\alpha}^{q}$. Interpolating according to (3.2) and identifying the interpolated spaces according to (3.4), we see that $\|f \phi\|_{2} \leqq K\|\phi\|_{2}$ for all $\phi \epsilon L^{2}$, and hence $f \in L^{\infty}$. But then $f \in M \mathscr{L}_{0}^{p}$. Interpolating again, $f \in M \mathscr{L}_{\beta}^{p}$ if $0 \leqq \beta \leqq \alpha$.
4.3 Lemma. Let $0<\alpha<1, f \in L^{\infty}$. Then $S_{\alpha}(f g) \leqq\|f\|_{\infty} S_{\alpha} g+|g| S_{\alpha} f$.

Proof. Noting that

$$
\begin{aligned}
& f\left(x-r y, t-r^{2} s\right) g\left(x-r y, t-r^{2} s\right)-f(x, t) g(x, t) \\
& =f\left(x-r y, t-r^{2} s\right)\left[g\left(x-r y, t-r^{2} s\right)-g(x, t)\right] \\
& \quad+g(x, t)\left[f\left(x-r y, t-r^{2} s\right)-f(x, t)\right]
\end{aligned}
$$

and that the functional

$$
\phi \rightarrow\left(\int_{0}^{\infty}\left[\iint_{\Omega^{+}}|\phi| d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}
$$

is a semi-norm, the result follows immediately.
4.4 Lemma. Let $1<p<\infty, \alpha>(n+2) / p$. Suppose k is an integer such that $2 k<\alpha<2 k+1$, and let $0 \leqq j \leqq 2 k$. Let $f \in \mathscr{L}_{\alpha-j}^{p}, g \epsilon \mathfrak{L}_{\alpha-(2 k-j)}^{p}$. Then $f g \in \mathcal{L}_{\alpha-2 k}^{p}$ and $\|f g\|_{p, \alpha-2 k} \leqq C\|f\|_{p, \alpha-j}\|g\|_{p, \alpha-(2 k-j)}$.

Proof. First assume $j=0$. Since $0<\alpha-2 k<1$, we may use (2.2). We have

$$
\|f g\|_{p} \leqq\|f\|_{\infty}\|g\|_{p} \leqq C\|f\|_{p, \alpha}\|g\|_{p, \alpha-2 k}
$$

by (1.7), since $\alpha>(n+2) / p$. By (4.3),

$$
\left\|S_{\alpha-2 k}(f g)\right\|_{p} \leqq\|f\|_{\infty}\left\|S_{\alpha-2 k} g\right\|_{p}+\left\|g S_{\alpha-2 k} f\right\|_{p}
$$

by (1.7) and (2.2),

$$
\|f\|_{\infty}\left\|S_{\alpha-2 k} g\right\|_{p} \leqq C\|f\|_{p, \alpha}\|g\|_{p, \alpha-2 k}
$$

To estimate $\left\|g S_{\alpha-2 k} f\right\|_{p}$, we find $q, r \in(1, \infty)$ such that
(i) $1 / q+1 / r=1 / p$
(ii) $\|g\|_{q} \leqq C\|g\|_{p, \alpha-2 k}$
(iii) $\left\|S_{\alpha-2 k} f\right\|_{r} \leqq C\|f\|_{p, \alpha}$.

The result will then follow from Hölder's inequality.
By (1.7), (ii) is satisfied if

$$
\begin{equation*}
1 / q \leqq 1 / p<1 / q+(\alpha-2 k) /(n+2) \tag{*}
\end{equation*}
$$

Also, $\left\|S_{\alpha-2 k} f\right\|_{r} \leqq C\|f\|_{r, \alpha-2 k}$ so that (iii) is satisfied if

$$
1 / r \leqq 1 / p<1 / r+2 k /(n+2)
$$

Combining (*) and (**), we see that we may pick q, r such that (ii) and (iii) are satisfied and such that $1 / q+1 / r$ is any positive number between $2 / p-\alpha /(n+2)$ and $2 / p$. As $\alpha>(n+2) / p, 1 / p$ lies in this range.

Hence by (2.2),

$$
\|f g\|_{p, \alpha-2 k} \leqq C\left(\|f g\|_{p}+\left\|S_{\alpha-2 k}(f g)\right\|_{p}\right) \leqq C\|f\|_{p, \alpha}\|g\|_{p, \alpha-2 k}
$$

We have now shown that multiplication defines a continuous bilinear map from $\mathscr{L}_{\alpha}^{p} \times \mathscr{L}_{\alpha-2 k}^{p}$ into $\mathscr{L}_{\alpha-2 k}^{p}$ and therefore also from $\mathscr{L}_{\alpha-2 k}^{p} \times \mathscr{L}_{\alpha}^{p}$ into $\mathscr{L}_{\alpha-2 k}^{p}$. Hence by (3.2)

$$
\|f g\|_{p, \alpha-2 k} \leqq C\|f\|_{\left[\mathcal{S}_{\left.\alpha^{p}, \mathcal{S}_{\alpha}{ }^{p}-2 k\right] s}\right.}\|g\|_{\left[\mathcal{S}_{\alpha^{p}-2 k, \mathcal{S}_{\left.\alpha^{p}\right]_{s}}} .\right.}
$$

Choosing $s=1-j / 2 k$, by (3.4), $\left[\mathscr{L}_{\alpha}^{p}, \mathfrak{L}_{\alpha-2 k}^{p}\right]_{s}=\mathscr{L}_{\alpha-j}^{p}$ and $\left[\mathcal{L}_{\alpha-2 k}^{p}, \mathfrak{L}_{\alpha}^{p}\right]_{s}=$ $\mathscr{L}_{\alpha-(2 k-j)}^{p}$, so the lemma is proved.
4.5 Theorem. Let $1<p<\infty, \alpha>(n+2) / p$. Let $f, g \in \mathcal{L}_{\alpha}^{p}$. Then $f g \epsilon \mathscr{L}_{\alpha}^{p}$ and

$$
\|f g\|_{p, \alpha} \leqq C\|f\|_{p, \alpha}\|g\|_{p, \alpha}
$$

Proof. Case (i). Suppose some integer k satisfies $2 k<\alpha<2 k+1$. By (1.9), fg $\epsilon \mathcal{L}_{\alpha}^{p}$ if $D_{x}^{\gamma} D_{t}^{j}(f g) \epsilon \mathscr{L}_{\alpha-2 k}^{p}$ for every nonnegative integer j and multiindex γ such that $|\gamma|+2 j \leqq 2 k$; moreover

$$
\|f g\|_{p, \alpha} \leqq C \sum_{|\gamma|+2 j \leqq 2 k}\left\|D_{x}^{\gamma} D_{t}^{j}(f g)\right\|_{p, \alpha-2 k}
$$

By Leibnitz's rule,

$$
D_{x}^{\gamma} D_{t}^{j}(f g)=\sum_{\beta \leqq \gamma, l \leq j} C(\beta, \gamma, l, j)\left(D_{x}^{\beta} D_{t}^{l} f\right)\left(D_{x}^{\gamma-\beta} D_{t}^{j} g\right)
$$

Again by (1.9),
$\left\|D_{x}^{\beta} D_{t}^{l} f\right\|_{p, \alpha-|\beta|-2 l} \leqq C\|f\|_{p, \alpha}$ and $\left\|D_{x}^{\gamma-\beta} D_{t}^{j-l} g\right\|_{p, \alpha-|\gamma-\beta|-2(j-l)} \leqq C\|g\|_{p, \alpha}$.
Hence by (4.4),

$$
\left(D_{x}^{\beta} D_{t}^{l} f\right)\left(D_{x}^{\gamma-\beta} D_{t}^{j-l} g\right) \epsilon \mathscr{L}_{\alpha-|\gamma|-2 j}^{p}
$$

and

$$
\left\|\left(D_{x}^{\beta} D_{t}^{l} f\right)\left(D_{x}^{\gamma-\beta} D_{t}^{j-l} g\right)\right\|_{p, \alpha-|\gamma|-2 j} \leqq C\|f\|_{p, \alpha}\|g\|_{p, \alpha}
$$

As $|\gamma|+2 j \leqq 2 k, \mathcal{L}_{\alpha-|\gamma|-2 j}^{p} \subset \mathcal{L}_{\alpha-2 k}^{p}$ and the result follows.
Case (ii). Arbitrary $\alpha>(n+2) / p$. Applying interpolation theory to the bilinear operator $(f, g) \rightarrow f g$, we see that

$$
\begin{aligned}
& \left\{(x, y) \in E^{2}: 0<x<1\right. \\
& \left.\quad \text { and }\|f g\|_{1 / x, y} \leqq C_{x, y}\|f\|_{1 / x, y}\|g\|_{1 / x, y} \text { for all } f, g \in \mathscr{L}_{y}^{1 / x}\right\}
\end{aligned}
$$

is convex. Since the convex hull of

$$
\{(1 / p, \alpha): 1<p<\infty, \alpha>(n+2) / p, 2 k<\alpha<2 k+1 \text { for some integer } k\}
$$

is the set $\{(x, y): 0<x<1, y>(n+1) x\}$ the result follows for all p, α such that $1<p<\infty$ and $\alpha>(n+2) / p$.
4.6 Remark. If $0<\alpha \leqq(n+2) / p$, we no longer have $\mathfrak{L}_{\alpha}^{p} \subset L^{\infty}$. Since $M \mathcal{L}_{\alpha}^{p} \subset L^{\infty}$ by (4.2), the above theorem fails in this case. However, some substitute results are available.
4.7 Theorem. Let $f \in L^{\infty} \cap \mathscr{L}_{(n+2) / p}^{p}$, where $1<p<\infty$. Then $f \in M \mathscr{L}_{\alpha}^{q}$ if $1<q<\infty, \alpha<(n+2) / q, \alpha \leq(n+2) / p$, and $0<\alpha<1$.

Proof. The restriction $0<\alpha<1$ allows to use (2.2). As in (4.4), the problem reduces to showing that $|g| S_{\alpha} f \in L^{q}$. Again we find r, s such that $g \in L^{r}, S_{\alpha} f \in L^{s}$, and $1 / r+1 / s=1 / q$.

By (1.7), $g \in L^{r}$ for $1 / r=1 / q-\alpha /(n+2) . \quad S_{\alpha} f \in L^{s}$ if $f \epsilon \mathscr{L}_{\alpha}^{s}$; again by (1.7), $f \in \mathscr{L}_{\alpha}^{s}$ for
$1 / p=1 / s+((n+2) / p-\alpha) /(n+2)=1 / s+1 / p-\alpha /(n+2)$
or $s=(n+2) / \alpha$. But then $1 / r+1 / s=1 / q-\alpha /(n+2)+\alpha /(n+2)=$ $1 / q$, and the theorem follows.
4.8 Remark. As in Strichartz [13, II 3.6 and II 3.7], this result can be strengthened. Virtually the same arguments show $f \in M \mathcal{L}_{\alpha}^{p}$ if $1<p<\infty$, $0<\alpha<1, \alpha<(n+2) / p, f \in L^{\infty}$, and

$$
\left.\mid\left\{(x, t): S_{\alpha} f(x, t)>\lambda\right)\right\} \mid \leqq(K / \lambda)^{(n+2) / \alpha} \quad \text { for all } \lambda>0
$$

Appendix

Here we perform the calculations to prove

$$
\begin{aligned}
& \iint_{C \Omega_{2 a}} d x d t\left(\int _ { 0 } ^ { \infty } \left[\iint_{\Omega^{+}} \mid p_{r, y, s}(x-z, t-u)\right.\right. \\
&\left.\left.-p_{r, y, s}(x, t) \mid d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C
\end{aligned}
$$

independently of $a>0,(z, u) \in \Omega_{a}$. Recall

$$
\begin{array}{rlrl}
p_{r, y, s}(x, t) & =H_{\alpha}\left(x-r y, t-r^{2} s\right)-H_{\alpha}(x, t) \\
& =t^{(\alpha-n) / 2-1} \exp \left\{-|x|^{2} / 4 t\right\}, & & t>0 \\
H_{\alpha}(x, t) & =0, & & t \leqq 0
\end{array}
$$

Note that it suffices to prove the estimate for the case $a=1$; the change of variables $x=a^{-1} x^{\prime}, t=a^{-2} t^{\prime}, r=a^{-1} r^{\prime}$ then establishes the estimate for all other values of $a>0$.

To simplify notation, let

$$
I(E)=\iint_{E}\left|p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)\right| d y d s
$$

for E any measurable subset of E^{n+1}. Of course, $I(E)$ depends on $(x, t),(z, u)$, and r.

Step 1. We estimate $\iint_{|t| \geqq 4} d x d t\left(\int_{0}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}$. For $t \leqq-4$ and $(z, u) \in \Omega, I\left(\Omega^{+}\right) \equiv 0$. For $t \geqq 4$, we have

$$
\begin{aligned}
\left(\int_{0}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq\left(\int_{0}^{\frac{1}{t} t^{1 / 2}} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & \\
& +\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}
\end{aligned}
$$

(a) First we show $\iint_{t \geqq 4} d x d t\left(\int_{0}^{\frac{1}{2} t^{1 / 2}} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C$.

Since $t \geqq 4,|u| \leqq 1,0 \leqq s \leqq 1$, and $0 \leqq r^{2} \leqq \frac{1}{4} t$ we have $t, t-u, t-r^{2} s$, and $t-u-r^{2} s \geqq 2$; hence $p_{r, y, s}$ is a C^{∞} function. By the mean value theorem $p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)=-\sum_{i=1}^{n} z_{i} D_{x_{i}} p_{r, y, s}(\xi, \tau)-u D_{t} p_{r, y, s}(\xi, \tau)$ for some (ξ, τ) on the line from (x, t) to $(x-z, t-u)$. In full detail,

$$
\begin{aligned}
p_{r, y, s}(x & -z, t-u)-p_{r, y, s}(x, t) \\
= & -\sum_{i=1}^{n} z_{i}\left[-\frac{1}{2}\left(\tau-r^{2} s\right)^{(\alpha-n) / 2}\left(\xi_{i}-r y_{i}\right) \exp \left\{-|\xi-r y|^{2} / 4\left(\tau-r^{2} s\right)\right\}\right. \\
& \left.+\frac{1}{2} \tau^{(\alpha-n) / 2-2} \xi_{i} \exp \left\{-|\xi|^{2} / 4 \tau\right\}\right] \\
& -u\left[((\alpha-n) / 2-1)\left(\tau-r^{2} s\right)^{(\alpha-n) / 2-2} \exp \left\{-|\xi-r y|^{2} / 4\left(\tau-r^{2} s\right)\right\}\right. \\
& \left.-((\alpha-n) / 2-1) \tau^{(\alpha-n) / 2-2} \exp \left\{-|\xi|^{2} / 4 \tau\right\}\right] \\
& -u\left[\left(\tau-r^{2} s\right)^{(\alpha-n) / 2-3_{1}}|\xi-r y|^{2} \exp \left\{-|\xi-r y|^{2} / 4\left(\tau-r^{2} s\right)\right\}\right. \\
& \left.-\tau^{(\alpha-n) / 2-3 \frac{1}{4}}|\xi|^{2} \exp \left\{-|\xi|^{2} / 4 \tau\right\}\right] \\
= & -\sum_{i=1}^{n} z_{i} I_{i}-u J-u K .
\end{aligned}
$$

Recall $\left|z_{i}\right| \leqq 1$ and $|u| \leqq 1$. Each of the terms I_{i}, J, and K is treated separately; for brevity only the calculations for J will be given. Exactly the same techniques are used to treat I_{i} and K.

Again applying the mean value theorem,

$$
\begin{align*}
& J=((\alpha-n) / 2-1) \exp \left\{-\left|\xi^{\prime}\right|^{2} / 4 \tau^{\prime}\right\}\left[-\frac{1}{2} \tau^{(\alpha-n) / 2-3} \sum_{j=1}^{n} r y_{j} \xi_{j}^{i}\right. \tag{*}\\
&\left.-r^{2} s((\alpha-n) / 2-2) \tau^{\prime(\alpha-n) / 2-3}+\frac{1}{4} r^{2} s\left|\xi^{\prime}\right|^{2} \tau^{\prime(\alpha-n) / 2-4}\right]
\end{align*}
$$

where $\left(\xi^{\prime}, \tau^{\prime}\right)$ is on the line from (ξ, τ) to $\left(\xi-r y, \tau-r^{2} s\right)$ and hence lies in the rectangle with vertices
$(x, t), \quad(x-z, t-u),\left(x-r y, t-r^{2} s\right) \quad$ and $\quad\left(x-z-r y, t-u-r^{2} s\right)$.
Note that $\frac{1}{2} t \leqq \tau^{\prime} \leqq 2 t$. To estimate $\left|\xi^{\prime}\right|$, we consider separately the cases $|x| \leqq 2 t^{1 / 2}$ and $|x| \geqq 2 t^{1 / 2}$.

For $|x| \leqq 2 t^{1 / 2}$, we have $\left|\xi^{\prime}\right| \leqq 3 t^{1 / 2}$. Estimating the exponential by 1, we have from (*),

$$
|J| \leqq C\left(r t^{(\alpha-n) / 2-5 / 2}+r^{2} t^{(\alpha-n) / 2-3}\right) \leqq C r t^{(\alpha-n) / 2-5 / 2}
$$

since $r<\frac{1}{2} t^{1 / 2}$.
Treating I_{i} and K similarly, we have

$$
\left|p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)\right| \leqq C r t^{(\alpha-n) / 2-5 / 2}
$$

for $r \leqq \frac{1}{2} t^{1 / 2},|x| \leqq 2 t^{1 / 2}$. Thus we have

$$
\begin{aligned}
& \iint_{t \geqq 4, \mid x}>2 t^{1 / 2} d x d t\left(\int_{0}^{\frac{1}{t} t^{1 / 2}} I(\Omega)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& \quad \leqq C \iint_{t \geqq 4,|x| \leqq 2 t^{1 / 2}}\left(\int_{0}^{\frac{1}{2} t^{1 / 2}} r^{1-2 \alpha} t^{\alpha-n-5} d r\right)^{1 / 2} d x d t \\
& \quad=C \iint_{t \geqq 4,|x| \leqq 2 t^{1 / 2}} t^{-n / 2-2} d x d t=C \int_{4}^{\infty} t^{-2} d t=C .
\end{aligned}
$$

For $|x| \geqq 2 t^{1 / 2}$ and $0 \leqq r \leqq \frac{1}{2} t^{1 / 2}$, we have $\frac{1}{2}|x| \leqq\left|\xi^{\prime}\right| \leqq 2|x|$. Thus from (*),

$$
\begin{aligned}
|J| & \leqq C e^{-|x|^{2 / c t}}\left[r|x| t^{(\alpha-n) / 2-3}+r^{2} t^{(\alpha-n) / 2-3}+r^{2}|x|^{2} t^{(\alpha-n) / 2-4}\right] \\
& \leqq C r t^{(\alpha-n) / 2-7 / 2}|x|^{2} e^{-|x|^{2} / c t}
\end{aligned}
$$

Treating I_{i} and K similarly, we have

$$
\left|p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)\right| \leqq c r t^{(\alpha-n) / 2-7 / 2}|x|^{2} e^{-|x|^{2} / c t}
$$

for $|x| \geqq 2 t^{1 / 2}$ and $0 \leqq r \leqq \frac{1}{2} t^{1 / 2}$. Hence

$$
\begin{aligned}
& \iint_{t \geqq 4 \mid x \geqq 2 t^{1 / 2}} d x d t\left(\int_{0}^{\frac{1}{t^{1 / 2}}} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& \leqq C \iint_{t \geqq 4,|x| \geqq 2 t^{1 / 2}} t^{(\alpha-n) / 2-7 / 2}|x|^{2} e^{-|x|^{2} / c t} d x d t\left(\int_{0}^{\frac{1}{t} t^{1 / 2}} r^{1-2 \alpha} d r\right)^{1 / 2} \\
& \leqq C \iint_{t \geqq 4} t^{-n / 2-3}|x|^{2} e^{-|x|^{2} / c t} d x d t \\
& =C \int_{4}^{\infty} t^{-2} d t=C \text {. }
\end{aligned}
$$

(b) Now we show $\iint_{t \geqq 4} d x d t\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C$.

Express $\Omega^{+}=E_{1} \cup E_{2} \cup E_{3}$ where $r^{2} s \leqq t-2, t-2 \leqq r^{2} s \leqq t+2$, and $t+2 \leqq r^{2} s$ respectively. We estimate the terms $\iint_{t \geqq 4} d x d t\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty} I\left(E_{k}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}$ separately.
(i) The term in $I\left(E_{1}\right)$.

$$
\begin{aligned}
& \left|p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)\right| \\
& \quad \leqq\left|H_{\alpha}(x-z, t-u)-H_{\alpha}(x, t)\right|+\mid H_{\alpha}\left(x-z-r y, t-u-r^{2} s\right) \\
& \quad-H_{\alpha}\left(x-r y, t-r^{2} s\right) \mid \\
& = \\
& \quad P+Q
\end{aligned}
$$

By the mean value theorem,

$$
P \leqq C\left(\tau^{(\alpha-n) / 2-2}|\xi|+\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-3}|\xi|^{2}\right) \exp \left\{-|\xi|^{2} / 4 \tau\right\}
$$

for some (ξ, τ) on the line from (x, t) to $(x-z, t-u)$. Note $\frac{1}{2} t<\tau<2 t$.
For $|x| \leqq 2$, we estimate $|\xi|$ and the exponential term by constants to obtain

$$
P \leqq C\left(\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-3}\right) \leqq C t^{(\alpha-n) / 2-2}
$$

For $|x| \geqq 2$, we have $\frac{1}{2}|x| \leqq|\xi| \leqq 2|x|$. Thus

$$
P \leqq C\left(t^{(\alpha-n) / 2-2}|x|+t^{(\alpha-n) / 2-2}+t^{(\alpha-n) / 2-3}|x|^{2}\right) e^{-|x|^{2} / c t}
$$

It follows readily that

$$
\iint_{t \geqq 4} d x d t\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty}\left[\iint_{E_{1}} P d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C
$$

For the term in Q, we again have by the mean value theorem

$$
Q \leqq C\left(\tau^{(\alpha-n) / 2-2}|\xi|+\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-3}|\xi|^{2}\right) e^{-|\xi|^{2} / 4 \tau}
$$

where (ξ, τ) is on the line from $\left(x-r y, t-r^{2} s\right)$ to $\left(x-z-r y, t-u-r^{2} s\right)$. Since $t-r^{2} s \geqq 2$ in E_{1}, we have $\frac{1}{2}\left(t-r^{2} s\right) \leqq \tau \leqq 2\left(t-r^{2} s\right)$. In order to estimate ξ, we must consider several cases separately.

First we estimate for $|x| \leqq 2$. Since

$$
\begin{gathered}
|\xi| \exp \left\{-|\xi|^{2} / 4 \tau\right\} \leqq C \tau^{1 / 2} \text { and }|\xi|^{2} \exp \left\{-|\xi|^{2} / 4 \tau\right\} \leqq C \tau \\
Q \leqq C \tau^{(\alpha-n) / 2-3 / 2} \leqq C\left(t-r^{2} s\right)^{(\alpha-n) / 2-3 / 2}
\end{gathered}
$$

Thus

$$
\iint_{E_{1}} Q d y d s \leqq C \int_{0}^{(t-2) r^{-2}}\left(t-r^{2} s\right)^{(\alpha-n) / 2-3 / 2} d s \leqq C r^{-2}
$$

and so

$$
\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty}\left[\iint_{E_{1}} Q d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C\left(\int_{\frac{3}{2} t^{1 / 2}}^{\infty} r^{-5-2 \alpha} d r\right)^{1 / 2}=C t^{-1-\alpha / 2^{\prime}}
$$

This is integrable over $\{(x, t)||x| \leqq 2, t \geqq 4\}$.
For $|x| \geqq 2$, our estimates must be more delicate. We write $E_{1}=F_{1} \cup F_{2} \cup F_{3}$, where $|x-r y| \leqq \frac{3}{2}, \frac{3}{2} \leqq|x-r y| \leqq \frac{3}{4}|x|$, and $\frac{3}{4}|x| \leqq|x-r y|$ respectively. Note that $F_{1}=F_{2}=\emptyset$ unless $r \geqq \frac{1}{4}|x|$ and hence unless $r \geqq \frac{1}{8}|x|+\frac{1}{4} t^{1 / 2}$.

For $(y, s) \in F_{1}$ we have $|\xi| \leqq C$. Thus

$$
Q \leqq C\left(\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-2}+\tau^{(\alpha-n) / 2-3}\right) \leqq C\left(t-r^{2} s\right)^{(\alpha-n) / 2-2}
$$

Noting that $\left|\left\{\left.y\left||x-r y| \leqq \frac{3}{2}\right\} \right\rvert\,=C r^{-n}\right.\right.$,

$$
\iint_{F_{1}} Q d y d s \leqq C r^{-n} \int_{0}^{(t-2) r^{-2}}\left(t-r^{2} s\right)^{(\alpha-n) / 2-2} d s \leqq C r^{-n-2}
$$

Hence

$$
\begin{aligned}
\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty}\left[\iint_{F_{1}} Q d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & \leqq C\left(\int_{\frac{z}{1}|x|+\frac{t}{} t^{1 / 2}} r^{-2 n-5-2 \alpha} d r\right)^{1 / 2} \\
& =C\left(\frac{1}{2}|x|+t^{1 / 2}\right)^{-n-2-\alpha}
\end{aligned}
$$

This is integrable over $\{(x, t)||x| \geqq 2, t>4\}$.
For $(y, s) \in F_{2}$,

$$
|\xi| \leqq|x-r y|+1 \leqq C|x-r y| \quad \text { and } \quad|\xi| \geqq|x-r y|-1 \geqq C|x-r y|
$$

so we have

$$
\begin{aligned}
& Q \leqq C\left(\left(t-r^{2}\right)^{(\alpha-n) / 2-2}|x-r y|+\left(t-r^{2} s\right)^{(\alpha-n) / 2-2}\right. \\
& \left.\quad+\left(t-r^{2} s\right)^{(\alpha-n) / 2-3}|x-r y|^{2}\right) \exp \left\{-|x-r y|^{2} / C\left(t-r^{2} s\right)\right\}
\end{aligned}
$$

Making the change of variable $y^{\prime}=\left(t-r^{2} s\right)^{-1 / 2}(x-r y)$ and enlarging the y integration to E^{n}, we see

$$
\begin{aligned}
\iint_{F_{2}} Q d y d s & \leqq C r^{-n} \int_{0}^{(t-2) r^{-2}}\left[\left(t-r^{2} s\right)^{\alpha / 2-3 / 2}+\left(t-r^{2} s\right)^{(\alpha-n) / 2-2}\right] d s \\
& \leqq C r^{-n-2}
\end{aligned}
$$

Exactly as for F_{1}, we see

$$
\left(\int_{\frac{3}{2} t^{1 / 2}}^{\infty}\left[\iint_{F_{2}} Q d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq C\left(\frac{1}{2}|x|+t^{1 / 2}\right)^{-n-2-\alpha}
$$

For $(y, s) \in F_{3}$ we have

$$
|\xi| \geqq|x-r y|-1 \geqq \frac{3}{4}|x|-1 \geqq \frac{1}{4}|x|
$$

and thus $|\xi|^{2} \geqq \frac{1}{2}|\xi|^{2}+\frac{1}{32}|x|^{2}$. Hence

$$
\begin{aligned}
|\xi| \exp \left\{-|\xi|^{2} / 4 \tau\right\} & \leqq|\xi| \exp \left\{-|\xi|^{2} / 8 \tau\right\} \exp \left\{-|x|^{2} / 128 \tau\right\} \\
& \leqq C \tau^{1 / 2} \exp \left\{-|x|^{2} / 128 \tau\right\} \\
& \leqq C\left(t-r^{2} s\right)^{1 / 2} \exp \left\{-|x|^{2} / c\left(t-r^{2} s\right)\right\}
\end{aligned}
$$

Similarly,

$$
|\xi|^{2} \exp \left\{-|\xi|^{2} / 4 \tau\right\} \leqq C\left(t-r^{2} s\right) \exp \left\{-|x|^{2} / c\left(t-r^{2} s\right)\right\}
$$

Thus

$$
Q \leqq C\left(t-r^{2} s\right)^{(\alpha-n) / 2-3 / 2} \exp \left\{|x|^{2} / c\left(t-r^{2} s\right)\right\}
$$

and
$\iint_{F_{3}} Q d y d s \leqq c \int_{0}^{(t-2) r^{-2}}\left(t-r^{2} s\right)^{(\alpha-n) / 2-3 / 2} \exp \left\{-|x|^{2} / c\left(t-r^{2} s\right)\right\} d s$

$$
\begin{aligned}
& \leqq c|x|^{\alpha-n-1} r^{-2} \int_{0}^{\infty} s^{(\alpha-n) / 2-3 / 2} e^{-1 / 8} d s \\
& =c|x|^{\alpha-n-1} r^{-2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\int_{\frac{3}{t} t^{1 / 2}}^{\infty}\left[\iint_{F_{3}} Q d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & \leqq c|x|^{\alpha-n-1}\left(\int_{\frac{z}{2} t^{1 / 2}}^{\infty} r^{-5-2 \alpha} d r\right)^{1 / 2} \\
& =c|x|^{\alpha-n-1} t^{-1-\alpha / 2}
\end{aligned}
$$

which is integrable over $\{(x, t):|x| \geqq 2, t \geqq 4\}$.
We have now shown

$$
\iint_{t \geqq 4} d x d t\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty} I\left(E_{1}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \leqq c
$$

(ii) The term in $I\left(E_{3}\right)$. For $t \geqq 4$ and $t+2 \leqq r^{2} s$ we have

$$
p_{r, y, s}(x-z, t-u)-p_{r, y, s}(x, t)=H_{\alpha}(x, t)-H_{\alpha}(x-z, t-u)
$$

This can be treated exactly as the term P in (i) above.
(iii) The term in $I\left(E_{2}\right)$. In this region both $p_{r, y, s}(x, t)$ and $p_{r, y, s}(x-z$, $t-u$) may have a singularity. The two terms are handled separately. We have

$$
\left|p_{r, y, s}(x, t)\right| \leqq H_{\alpha}(x, t)+H_{\alpha}\left(x-r y, t-r^{2} s\right)
$$

Note that

$$
\begin{aligned}
\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty}\left[\iint_{B_{2}} H_{\alpha}(x, t) d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & =c t^{-1 / 2-\alpha / 2} H_{\alpha}(x, t) \\
& =c t^{-n / 2-3 / 2} \exp \left\{-\frac{|x|^{2}}{4 t}\right\}
\end{aligned}
$$

This is integrable over $\{(x, t): t \geqq 4\}$.
For the other term we estimate separately the r-integration over the intervals $\frac{1}{2} t^{1 / 2} \leqq r \leqq \frac{1}{4}|x|$ and $r \leqq \max \left(\frac{1}{2} t^{1 / 2}, \frac{1}{4}|x|\right)$.

For $|x| \geqq 2 t^{1 / 2}$ we have

$$
\begin{aligned}
& \left(\int_{\frac{1}{2} t^{1 / 2}}^{t|x|}\left[\iint_{\mathbb{E}_{2}} H_{\alpha}\left(x-r y, t-r^{2} s\right) d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& \leqq\left(\int _ { \frac { 1 } { 2 } t ^ { 1 / 2 } } ^ { \frac { 2 } { | x | } } \left[\int_{(t-2) r^{-2}}^{t r^{-2}} d s \int_{|y| \leqq 1}\left(t-r^{2} s\right)^{(\alpha-n) / 2-1}\right.\right. \\
& \left.\left.\exp \left\{-|x-r y|^{2} / 4\left(t-r^{2} s\right)\right\} d y\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& \leqq c\left(\int _ { \frac { 3 } { t } t ^ { 1 / 2 } } ^ { \infty } \left[\int_{(t-2) r^{-2}}^{t r^{-2}} d s \int_{|y| \leqq 1}\left(t-r^{2} s\right)^{(\alpha-n) / 2-1}\right.\right. \\
& \left.\left.\exp \left\{-|x|^{2} / 16\left(t-r^{2} s\right)\right\} d y\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} \\
& =c\left(\int_{\frac{1}{2} t^{1 / 2}}^{\infty}\left[\int_{0}^{2} s^{(\alpha-n) / 2-1} e^{-|x|^{2} / 16 s} d s\right]^{2} r^{-5-2 \alpha} d r\right)^{1 / 2} \\
& \leqq c|x|^{\alpha-n-2}\left(\int_{\frac{1}{2} t 1 / 2}^{\infty} r^{-5-2 \alpha} d r\right)^{1 / 2} \\
& =c|x|^{\alpha-n-2} t^{-1-\alpha / 2}
\end{aligned}
$$

since

$$
s^{(\alpha-n) / 2-1} e^{-|x|^{2 / 168}} \leqq c|x|^{\alpha-n-2}
$$

Of course, $|x|^{\alpha-n-2} t^{-1-\alpha / 2}$ is integrable over $\left\{(x, t):|x| \geqq 2 t^{1 / 2}, t \geqq 4\right\}$.
For the second interval,

$$
\begin{aligned}
& \left(\int_{\max \left(z|x|, \frac{7}{t} 1 / 2\right)}^{\infty}\left[\iint_{E_{2}} H_{\alpha}\left(x-r y, t-r^{2} s\right) d y d s\right]^{2} r^{-1-2 \alpha} d r\right) \\
& \leqq\left(\int _ { \ddagger | x | + \frac { z } { } t ^ { 1 / 2 } } ^ { \infty } \left[\int_{(t-2) r^{-2}}^{t r^{-2}} d s \int\left(t-r^{2} s\right)^{(\alpha-n) / 2-1}\right.\right. \\
& \left.\left.\quad \exp \left\{-|x-r y|^{2} / 4\left(t-r^{2} s\right)\right\} d y\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =c\left(\int_{\frac{1}{\delta}|x|+\frac{1}{4} t^{1 / 2}}^{\infty}\left[\int_{0}^{2} s^{\alpha / 2-1} d s\right]^{2} r^{-2 n-5-2 \alpha} d r\right)^{1 / 2} \\
& =c\left(\frac{1}{2}|x|+t^{1 / 2}\right)^{-n-2-\alpha} .
\end{aligned}
$$

This is integrable over $\{(x, t): t \geqq 4\}$.
Treating the term in $p_{r, y, s}(x-z, t-u)$ similarly, we complete Step 1.
Step 2. It remains only to bound

$$
\iint_{|t| \leqq 4,|x| \geqq 2} d x d t\left(\int_{0}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right) .
$$

Since the t-integration is over a compact set this is comparatively easy; the crucial thing is to show that $I\left(\Omega^{+}\right)=O(r)$ as $r \rightarrow 0$.
(a) First we estimate $\left(\int_{0}^{\frac{1}{x \mid}} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}$.

$$
I\left(\Omega^{+}\right) \leqq \iint_{\Omega^{+}}\left|p_{r, y, s}(x, t)\right| d y d s+\iint_{\Omega^{+}}\left|p_{r, y, s}(x-z, t-u)\right| d y d s
$$

We treat the two terms separately. Recall

$$
p_{r, y, s}(x, t)=H_{\alpha}\left(x-r y, t-r^{2} s\right)-H_{\alpha}(x, t)
$$

with H_{α} a C^{∞} function. By the mean value theorem,

$$
p_{r, y, s}(x, t)=-r \sum_{i=1}^{n} y_{i} D_{x_{i}} H_{\alpha}(\xi, \tau)-r^{2} s D_{t} H_{\alpha}(\xi, \tau)
$$

for some (ξ, τ) on the line from (x, t) to $\left(x-r y, t-r^{2} s\right)$.
Note that

$$
\begin{aligned}
D_{x_{i}} H_{\alpha}(\xi, \tau) & =-\frac{1}{2} \xi_{i} \tau_{2}^{(\alpha-n) / 2-2} \exp \left\{-|\xi|^{2} / 4 \tau\right\}, & & \tau>0 \\
& =0, & & \tau \leqq 0
\end{aligned}
$$

and

$$
\sup _{\tau>0} \tau^{(\alpha-n) / 2-2} \exp \left\{-|\xi|^{2} / 4 \tau\right\}=c|\xi|^{\alpha-n-4}
$$

Also

$$
\begin{aligned}
D_{t} & H_{\alpha}(\xi, \tau) & \\
& =\left[((\alpha-n) / 2-1) \tau^{(\alpha-n) / 2-2}+\frac{1}{4}|\xi|^{2} \tau^{(\alpha-n) / 2-3}\right] \exp \left\{-|\xi|^{2} / 4\right\}, & \tau>0 \\
& =0, & \tau \leqq 0
\end{aligned}
$$

and

$$
\sup _{\tau>0} \tau^{(\alpha-n) / 2-3} \exp \left\{-|\xi|^{2} / 4 \tau\right\}=c|\xi|^{\alpha-n-6}
$$

Hence

$$
\begin{aligned}
\left|p_{r, y, s}(x, t)\right| \leqq c r|\xi|^{\alpha-n-3}+ & c r^{2}|\xi|^{\alpha-n-4} \\
& \leqq c r|x|^{\alpha-n-3}+c r^{2}|x|^{\alpha-n-4} \quad \text { since } r \leqq|x| / 4 \\
& \leqq c r|x|^{\alpha-n-3} .
\end{aligned}
$$

Similarly, we obtain $\left|p_{r, y, s}(x-z, t-u)\right| \leqq c r|x|^{\alpha-n-3}$ for $|x| \geqq 2, r \leqq \frac{1}{4}|x|$.

Thus

$$
\begin{aligned}
\left(\int_{0}^{\frac{1}{1|x|}} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & \leqq c|x|^{\alpha-n-3}\left(\int_{0}^{\frac{1}{2}|x|} r^{1-2 \alpha} d r\right)^{1 / 2} \\
& =c|x|^{-n-2}
\end{aligned}
$$

which is integrable over $\{(x, t):|t| \leqq 4,|x| \geqq 2\}$.
(b) It remains only to estimate $\left(\int_{\ddagger|x|}^{\infty} I\left(\Omega^{+}\right)^{2} r^{-1-2 \alpha} d r\right)^{1 / 2}$.

Here we may use

$$
\begin{aligned}
I\left(\Omega^{+}\right) \leqq & \iint_{\Omega^{+}} H_{\alpha}(x, t) d y d s+\iint_{\Omega^{+}} H_{\alpha}\left(x-r y, t-r^{2} s\right) d y d s \\
& +\iint_{\Omega^{+}} H_{\alpha}(x-z, t-u) d y d s+\iint_{\Omega^{+}} H_{\alpha}(x-z-r y \\
& \left.t-u-r^{2} s\right) d y d s
\end{aligned}
$$

First,

$$
\begin{array}{rlrl}
\left(\int_{\frac{2}{2}|x|}^{\infty}\left[\iint_{\Omega^{+}} H_{\alpha}(x, t) d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} & =c|x|^{-\alpha} t^{(\alpha-n) / 2-1} e^{-|x|^{2} / 4 t}, & t>0 \\
& =0, & & t \leqq 0
\end{array}
$$

which is integrable over $\{(x, t):|t| \leqq 4,|x| \geqq 2\}$.
The term in $H_{\alpha}(x-z, t-u)$ is handled in the same manner.
Next, we have

$$
\begin{aligned}
&\left(\int_{\frac{1}{\mid}|x|}^{\infty}\right. {\left.\left[\iint_{\Omega^{+}} H_{\alpha}\left(x-r y, t-r^{2} s\right) d y d s\right]^{2} r^{-1-2 \alpha} d r\right)^{1 / 2} } \\
& \leqq\left(\int _ { \ddagger | x | } ^ { \infty } \left[\int_{0 \leqq s \leqq t r^{-2}} d s \int\left(t-r^{2} s\right)^{(\alpha-n) / 2-1}\right.\right. \\
&\left.\left.\exp \left\{-|x-r y|^{2} / 4\left(t-r^{2} s\right)\right\} d y\right]^{2} r^{-1-2 \alpha} d r\right)^{1 /} \\
&=c\left(\int_{\frac{z}{2}|x|}^{\infty}\left[\int_{0 \leqq s \leqq t r^{-2}}\left(t-r^{2} s\right)^{\alpha / 2-1} d s\right]^{2} r^{-2 n-1-2 \alpha} d r\right)^{1 / 2} \\
&= \begin{cases}c t^{\alpha / 2}\left(\int_{\frac{2}{2}|x|}^{\infty} r^{-2 n-5-2 \alpha} d r\right)^{1 / 2}, & t>0 \\
0, & t \leqq 0 \\
0, & t>0\end{cases} \\
& \qquad \begin{array}{ll}
c t^{\alpha / 2}|x|^{-n-2-\alpha}, & t>0
\end{array}
\end{aligned}
$$

which is integrable over $\{(x, t):|x| \geq 2,|t| \leq 4\}$.
The term in $H_{\alpha}\left(x-z-r y, t-u-r^{2} s\right)$ is handled in exactly the same manner, and we are done.

Bibliography

1. N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier, vol. 11 (1961), pp. 385-475.
2. M. Benedek, A. P. Calderón, and M. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A., vol. 48 (1962), pp. 356-365.
3. A. P. Calderón, Intermediate spaces and interpolation, Studia Math., vol. 24 (1964), pp. 113-190.
4. ——, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., vol. 5 (1961), pp. 33-49.
5. E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math, vol. 27 (1966), pp. 19-38.
6. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. XXXI, rev. ed., Amer. Math. Soc., Providence, 1957.
7. L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math., vol. 104 (1960), 93-140.
8. B. F. Jones, Jr., Lipschitz spaces and the heat equation, J. Math. Mech., vol. 18 (1968), pp. 379-410.
9. J. E. Lewis, Mixed estimates for singular integrals and an application to initial value problems of parabolic type, Proc. Symp. Pure Math., vol. 10 (1968), pp. 218-231.
10. R. O'Neil, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 300-328.
11. C. H. Sampson, A characterization of parabolic Lebesgue spaces, Dissertation, Rice University, 1968.
12. L. Schwartz, Theorie des distributions, rev. ed., Hermann, Paris, 1966.
13. R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., vol. 16 (1967), pp. 1031-1061.
14. M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space, II: Translation invariant operators, duality, and interpolation, J. Math. Mech., vol. 14 (1965), pp. 821-840.
15. A. Zygmund, Trigonometric series, vol. I-II, 2nd ed., Cambridge University Press, Cambridge, 1959.
16. On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pures Appl., vol. 35 (1956), pp. 223-248.

New Mexico State University
Las Cruces, New Mexico

[^0]: Received April 15, 1969.

