LEBESGUE SPACES OF PARABOLIC POTENTIALS

BY
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Introduction

We define a class of spaces £% via Fourier transform techniques. These
spaces have been studied previously by Sampson [11]. They arise in the study
of the heat equation; they are the parabolic analogue of the spaces of Bessel
potentials introduced by Aronszajn and Smith [1] and by Calderén [4]. The
results obtained in this paper are analogous to results obtained by Strichartz
[13] for Bessel potentials.

The first chapter contains the basic facts about £5 spaces. In the second
chapter we characterize some of these spaces in terms of an integral norm of a
difference quotient. We develop an interpolation theory for these spaces in
the third chapter. These results are of some interest in themselves; they are
used in the fourth chapter to find sufficient conditions for the produet of two
functions to be in one of the spaces £% .

Establishing the characterization of Chapter 2 requires a number of cal-
culations. The appendix contains the worst of these.

This paper consists essentially of the author’s doctoral dissertation at Rice
University. I wish to thank my advisor Dr. B. Frank Jones for his help.
Financial support was provided by the United States Air Force, N.A.S.A,,
and the Schlumberger Foundation.

1. Preliminaries

1.1 Notation. Let E™™ denote Euclidean (n + 1)-space. Points in B
will be denoted in the form (z, ¢), where z ¢ E”. Unless explicitly stated other-
wise, all function spaces are assumed to be spaces of functions defined on E™*.

The usual inner product in E" will be denoted by z-y. For z ¢ E",
Ix[ = (z-z)"”. Differential operators are expressed in the form

DEDI = (3/3x1)™ -+ (8/9zn)™(3/08)’;

the order of the multi-index « is denoted by || = a1 + a2 + -++ + an.
The Laplace operator in E” is denoted by A, .
Let 8 denote the space of C” functions ¢ satisfying
SUPG.o |P (@, 1)Di Dig(z, )| < =

for any polynomial P and any «, j. $ is given the usual topology; see
Schwartz [12]. The dual of 8§ is denoted by §'; its elements are called tem-
pered distributions.
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The Fourier transform is defined on 8 by
$l57) = (2m) e [ [ i ) dmay,

it is extended to 8’ in the usual manner. Where no confusion arises, the dual
variables will also be denoted (z, ¢).

The letter C will be used to denote any positive constant whose exact value
need not be known explicitly.

1.2 DeriniTioN. For arbitrary complex «, define J, : 8’ — 8’ by

GaT)» = (1 + lxlz + ,L't)—a/2T,,

where
U+ |z 4+ i) =exp {(—3alln |1+ |2 " +dt| + carg (1 + | z|* + @]},

with —m/2 < arg (1 + |z + i) < =/2.

Since (1 + |z|* + 4t)™* is a C* function each of whose derivatives are
bounded by polynomials, g. defines a continuous operator from §’ into itself.
Note that Jurs = Ju gs and that formally g, = (1 — A, + D)2

1.3 DerinmTiON. For 1 £ p £ «, £5 is the Banach space of tempered
distributions T such that §_, T e L*, with the norm || T |jpe = || 9= T |l»-
Clearly £2 = 9o (I?) and £2.5 = Js(£%).

1.4. DeriNiTION. A locally integrable function m(z, ¢) is said to be a
multiplier (on Fourier transforms of functions) of type (p, ¢) if for every
¢ e8S, mpeS' and the operator T : § — 8’ defined by (T'¢)» = m¢ satisfies
Té e L* with | To |l < C|l¢|l», C independent of ¢ ¢ S. The space of all
multipliers of type (p, ¢q) is denoted M ; these spaces are treated in Hor-
mander [7].

Due to the form of the operator J., the following theorem will be extremely
useful. It is a special case of a theorem proved in Fabes and Riviére [5].

1.5 THEOREM. Let m e L* and suppose
supeoxon (2| + [¢)P | DIDim @, t)| < Co,

whenever[ﬁl 4+ 2k < N,where N > (n+2)/2. ThenmeMpforl <p < o
and the norm of the associated operator is bounded by CoC,, where Cp, depends
only on n and p.

Applying (1.5) to the function (1 + |z |* + 4¢)7*%, we see that ga : L — L*
continuously if Re (a) > 0and 1 < p < « ;the operator norm of g, is bounded
by C, e("mlm"l pn(a) | where P, is a polynomial depending only on n. As a
consequence, £5 = LRew for 1 < p < «. Since our new results are valid
only in the ease 1 < p < o, we will restrict our attention to the case of real .
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1.6 LEmMma. If a > 0, then the function G, defined by

Ga(t,t) = (4m) T (a/2) ™" exp {—t — |z [*/4t}, t> 0
=0, {0
satisfies:

(i) GaelL.

() Galw,t) = A+ |2]> + i)™

(i) For0<a<n+2Geel ifl1<r< n+2)/(n+2—a)and
E("l) = I { ((I?, t) . ga(x7 t) > ’7} ’ < Ca,n'rl—(n+2)/(”+2_a) forn > 0.

(iv) GaeL®ifa>n+ 2.

Proof. (i) is immediate. (ii) is given in Jones [8]. For the last part of
(i), note that G, (x, t) < ct“ ™" e ~Tetis fort > 0. Consequently

Ga Az, N) < AW THTmET TR por Nt > 0.

Then
E@m) = X" {(2,1): Ga(rx, N't) > n} |
é —n—2' (.’12, t) . t > O, ct(a—n)/2—le'—[z|2/4t > n)\ﬂ+2—-a} ,.
Setting N = /"

E(p) < @0l i@ )i > 0, @ S 1)
cﬂ*(n+2) [ (n+2—a)

The first part of (iii) follows by a direct calculation; it also follows from the
estimate for E (7) and the fact that G, e L'

(iv) is obvious.
1.7 TeEOREM. Let a, B8 be real.

(i) £ c £§if a > B;in particular, £5 < L” if a > 0.

(i) Forl =p<g=o,£2C&dfl/p<l/g+ («—B)(n+ 2).
) Ifl<p<gqg< o,then £y < Lfalsoif 1/p = 1/q + (2 — B)/n.
Proof. Letfe£h. Thenf = goo, withep e L. Forg < a,

F=989espd = 98(Gasp* o).

By part (i) of (1.6), Ga—g € L' and hence G,_g*x ¢ ¢ L”. Consequently fe£5 .
If1/p < 1/¢+ (e — B)/(n+ 2) then by (1.6), Go—p e L where 1/p + 1/r =
1/¢ + 1. Thus by Young’s theorem, Ge—s * ¢ € L? and hence fe £§. In the
case l < p<¢g< oand1/p =1/q¢ + (@ — B)/(n + 2), this is a simple
variant of the standard fractional integration theorem as proved in Zygmund
[16] and extended by O’Neil [10].

1.8 THEOREM. [fatsrealandl < p < o, then £ s reﬂem'z)e and its dual
is £2., , where 1/p 4+ 1/p’ = 1. The pairing between £% and £2. is defined by

6,91 = [ [ 6(z, OW(—x, —t) dadt for ¢, ¥ 5.
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Proof. By Parseval’s formula,

6,91 = [[o(6 D06 7) di dr = [[ (90 @)7(E, 1) (gt (& 1) d dr

= ff(g_a (2, 1) ga ¥ (—x, —t) dz dt.

Hence

[, W1 < N1 9-ablloll Gt llor = [l @ llnall ¥ 1157, —a-

Since 8 is dense in every £5 space with p < o, [, -] has a unique extension
to a continuous bilinear form on £ X £/_a .

Conversely, if F is in the dual of £5 , then F o g, is in the dual of L” and
hence can be identified with a function g e L. But then §_og e £ o and g_ag
can be identified with F.

1.9 THEOREM. Letl < p < o, a > 0,k a positive integer such that 2k < a.
Then - )
[ flloa & 2iiyireicen | DI Def |l p,asi -

Proof. Since gs is an isometry of £5 onto £544 and Js commutes with
differentiation, it suffices to consider the case a = 2f.

We have o/ = (1 — A, + D,)™, so clearly

[ fllpoe = 1 9-uflls = [| @ — A + D)™ |lp < ¢ Diyszicen | DIDIf |l

For the reverse inequality, let f = goxg, g ¢ L?. Then D} D{f = D? Di g g.
Thus s
v j L ,L"Y Jx’ytl
DiDD = G ap ¥ o f
Applying (1.5), 2t/ (1 + |« |* + it)* e M2 if | v | 4+ 27 < 2k; hence
ID2Dif s S cllglls = el Sl

Using (1.9) it is often possible to reduce questions about £7 spaces to the
case 0 = a < 2.

We now introduce a function H, which is similar to G,. H, will have
homogeneity properties which are useful in characterizing £ spaces.

(1.10), (1.11), and (1.12) below are due to Sampson [11].

1.10 ProrosrrioN. Let
H.(z,t) = {“ ™" exp {—|z|*/4t}, t>0
=0, t <0.
Then fora > 0, Ha 8. If0 < a < n + 2, A, is a function and
A.(z,t) = c(a,n) (| x]2 + )"
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1.11 LemMa. For a > 0, there exist bounded measures u, pi, po such that
(ol + )™ = @+ 2] + )"
and
A+ |z + )" =+ (2 + ).

1.12 THEOREM. Let o > 0. Let fe L*. Then fe L% iff there exists g ¢ L”
such that (| z|* + it)*f = g, in which case || flpa =~ || fllp + || 9o

If0 < o < n+ 2, then Hy e L' + L*. Hence if the function ¢ above is in
L'n L”, we have f = ¢(a, n) "Hga % g.
2. A characterization of g3

Let,
Q= {(s)e By <r, =" <s <.
Let
O = {(y,s) eQ:s> 0].

For brevity @ and i will be denoted by 2 and Q.

2.1 DeriNiTION. For fe Lioo, let

Sedf 0 = (fow [fj;z @ = 1yt = 1) — f(a, ) | dy dsT i dr)m

2.2 THEOREM. For0 < a<landl <p < «,feLLifffe L” and SafeL?;
in which case || f ||p.« R fllo + | Safls-

In the case p = 2, the inequality || Sof ]z + || f|l2 £ C|| f 2.« is proved using
Fourier transform techniques. According to (1.12), fe£2 iff fe L’ and
f = H.® for some ® e L’; moreover, || flse =~ | fll: + || @ 2.

Applying Schwarz’s inequality and then Fubini’s theorem,

Saf(x, t)2 _ j(')m (fj;z+ |f(x _ Ty’t _ 7‘28) _ f(x, t) |dy dS) r—1—2a dr

sC */Om(f‘/;ulh/sﬂ o =yt = r')

— fz, ) P dy ds) T dr

- ¢ '/0‘ (‘[jl\ui-i-\/sgzlf(x =yt —s) — flz,?) |2 dy ds) P g

®©

¢ fj;>0 |f@ =yt —8) — fle, t) [ dydsf* g2 g

Uyl+vs)

Cff»o [f(z —y,t —8) —fz, O P (Jy| + V)™ ™ dyds.
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Thus by Fubini’s theorem and Parseval’s equation,

[l Safll3

<o f[ Ayl 4o =ayas [5G~y =) = e(er) P dr
Noting that
UG =y = 8) = Al 1)

& (E; T)[Ha(' - Y — S) - Ha]"(gy7')
= o = 0 + i)

and again changing the order of integration,

18.718 < ¢ [[ 19667 Pl&P

i dedr [[ 1T o 1Py 4 V) dy ds

Substituting y = ([£* + )%, s = (| £|* + 4r) "¢’ and using the mean
value theorem to estimate the resulting integrand for y, s near 0, it is readily
seen that

fj:»o | 1Py P+ V) " dy ds < O£+ [°
Thus

1851 < ¢ [[ 16 Pagar = C| 43

As in Strichartz [12, 1.2.3], (2.2) is proved using results from the theory of
convolution of operators on Banach space valued functions. These results
are given below; for a thorough treatment of Banach space valued functions
see Hille and Phillips [6].

Let X be aBanach space with norm || - ||x. Let M (X) denote the space of
strongly measurable functions defined on E"* with values in X. L?(X) is
the Banach space of functions in M (X) such that the function
(x, t) — || f(=, t) ||z is in L”. Lewm(X) is the class of functions in L*(X)
having compact support.

2.3 TueorEM. Let X, Y be Banach spaces. Let A : Lom(X) — M (Y)
be given by

49(2,1) = [[ k@ — 4,8 = $)o(y, 5) dy ds
where k (z, t) is a bounded operator from X into Y for a.e. (x,t). Suppose that
1° | A¢ |lzen < Coll ¢ ||z2cm for ¢ € Loom (X)

2°. »[/;'9 ” k(x —2,t— u) - k(x’ t) ”-G(X.Y) dedt < leor all (27 Z/) €y,
2r
where Cy vs independent of r.



616 RICHARD J. BAGBY

Then || A¢ ||zo(ry < Cpl| ¢ ||zo@ for 1 < p < 0, all ¢ € Loom (X).
Theorem (2.3) appears in Lewis [9) in a slightly more general form.
Theorem (2.4) below is a modification of Theorem 4 of Benedek, Calderén

and Panzone [2]. It may be proved along the same lines using (1.5) in place
of the multiplier theorem of Hormander.

2.4 TreorEM. Let H be a Hilbert space, and for each p e (1, ) let

B: L* — L (H) continuously. For ¢ € Loom , suppose Be is given by
(Bp)~(z, t) = $(x, )h(z, t),

where h is an H-valued function such that

1°.  h is bounded in E"*' ~ (0, 0), and

2°. the family of functions {h(px, pt) : 0 < p < o} is uniformly equicon-
tinuous in 1/2 < ([ [* 4+ [¢)" < 2.

Suppose that || Bé |2 > C|| ¢ 2, all ¢ e L2, Then also

| B¢ oy 2 Cor(B)ll ¢l forallpel’, 1 <p < o.

In the original version of (2.4), A is an operator-valued function. Although
it is not noted in the statement of the theorem, the proof requires that the
family of operators {A* h} commute. In our case, {A* A} is a family of complex
numbers, so the question of commutativity does not arise.

As a first step in proving (2.2); we have the following:

2.5 LEMMA. Letl <p < ©,¢peLopm. Letf= Hox¢. Then
I Saf“zz < Crll ¢”@ Jor0 < o<1

Proof. We use (2.3) with X = C and Y the Banach space of functions
g(r, y, s) defined on (0, ©) X @ such that

lglle = ([:[[fmlg(r, Y, 8) | dy ds:r i dr>112< .

Define pry, (@, t) = Ho(x — 1y, t — 1°s) — Hu(z, t). We will show that
Pry.s (&, t) e Y for all (z, t) and that the operator k(z, t) : C — Y defined by
k(x, )N = Apry.s(x, t) satisfies the hypotheses of (2.3). Since the operator
A of (2.3) is convolution with k (z, t), we have

Ad’(x)t) = [Ha(' - Ty, — ,',23) - Ha]*¢(x7 t) =f(x - Ty,t - 'I'28) _f(x; t)

Thus
(f:[ffﬂ+ |f(x — ry, t — r’s) — f(=,t) |dy ol.s]2 P dr>1/2

lA¢(z, 1) ||v
= Sa.f(z,t).

Hence the conclusion of (2.3) is precisely

[ 8afllo < Crall 5.
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As a first step, we show

fow [f/;z+ | Prys(z, 1) | dy ds:r T A < o

and hence p,ys(x,t) e Y. We have
Dry.s (@, t)
= (=) P x| @ — 1[4 — 1%8)} — TP exp {—| 2 [2/4)
for0 < s < ¢
= — TP exp {— |z [*/4t} for0 < t < 7%
=0 fort <0

Ift < 0, then obviously p, .. (x,¢) =0e Y. Lett>0. Forr’ < i, pry.(x,t)
is given by a C* function and by the mean value theorem it is O (r) uniformly
for (y, s) eQ'. Hence

Ge)1/2 2 Ge)1/2
| Pros(, 8) | dy ds | 7% dr £ Ca, . P dr £ C, .
0 o+t 0

]

since 0 < o < 1. Since f e 7 ** dr < «, to conclude that
(€15)

© 2
—1—2a
f(%l)m [[L+ [ Drys (2, t) | dy ds] r dr < «

it suffices to show that

ff( S (t — )™ PP exp {— |x —ry|/a(t — 1)} dy ds = C,
Yy 8)€ , L—T“8

for ¥ > 3t. Making the change of variables x — ry = ¢/, t — r’s = &,
we see that this last integral is dominated by

t t
—n—2 - —n—2)/2  —|y|2/4 —n—2 —2)/2 —n—2
- [dsfs(an)/elzl\/sdy=crn fs(‘" 12 s = ¢, 1"
J0 0

since 0 < a < 1. Hence p,, . (z,t) e Y forall (z,¢).
We have previously shown 4 : L’ — L*(Y) continuously. It remains only
to show

[[ ke =26 —w) = k@0 s dedi < €
CQga
for all (2, ) € Q. , c independent of @ > 0. This amounts to bounding
f[ dxdt(/ [f[ |pr,y,s<x“‘2,t—u)
Y CQgq (1] vt
2 1/2
— Prys(, t) | d ds:l e dr)

The computation is quite lengthy; it is given in the appendix.
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2.6 LEMMA. Let e Logm,f = Hyx ¢, where0 < a < 1. Then

[élls < Coall Saflls forl <p < w.
Proof. Define

Taf(z,t) = (_[ fj;ﬁ [f(@ — ry,t —r's) — f(z,t)]dy ds 21'—1—2"‘ dr)llz.

Clearly 0 < Tof < S.f; we will use (2.4) to show || ¢ |l, £ Coall Taf|l»-
Define

kr(z,t) = fj;,+ Dry.s(2, 1) dy ds,

where p,,: (@, t) = Ho(@ — ry, t — 1°s) — Ha(x, t) as before. Then k, e L'
since

ff|k,(x, £) | dw dt < ff do dth+lp,,u.s(x,t) | dy ds

= /:/;+ dy ds /f I prm.s(x, t) I dx dt

<2 [ I Hludyds = C| Hal.

Hence for ¢ ¢ L?, the convolution k. * ¢ converges absolutely a.e. By the
above caleulation, we may change the order of integration so that

r % o(z, t) = ,[/;,+ Prys *x 0(x, 1) dy ds a.e.

Let H be the Hilbert space of functions defined on (0, © ) whose modulus is
square integrable with respect to the measure r *dr. Let Bé(z, r) =
k.x¢(z,t). Then

| Bz, t) |k = l | Tor % ¢(z, ) 772 dr
-
-

= T.f(z, 1)’

Hence B¢ (x, t) ¢ H a.e. and
[ B¢ [lzoy = | Taflls < | Saflls < Coall@|l5-

2
ff+ Dry,s * d(x, 1) dy ds T
Q

ffm [f(e = ry,t — %) — f(x,0)] dy ds 21"_1_2“ dr
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For ¢ € Loym, (Bop)~ (&, 7) = (&, 7)kr(t, 7). We compute

Be ) = (207 [[ 5, (0, 1)

= f];ﬁ_ dy ds [(211-)—"“/2 ff T (3, ) da dt:l
= ffm Dry.s(E 7) dy ds
= Aule ) [[ @ 1) ayas

— C(l 5 |2 + iT)—a/2 fj;z+ (e-—iw~E—ir%r _ 1) dy ds
Thus

2
—1—2
o dr

Vol ) W = clel i [ [ (e = 1) ay as

e[ .. (e"p{u TEea usrﬁf i \} - l)dy o

Using the mean value theorem to estimate the integrand for 0 < r < 1,
we see that this integral converges absolutely for 0 < @ < 1. Consequently
|| £, =) ||z is a continuous function away from (¢, r) = (0, 0). As

[ &\, N2 1w = || £:(5, 7) |z forh >0

—1—2
r Y dr

and
[ £ v) |z = 0 for (5 1) = (0,0),
we have || &, (¢, 7) ||z > C for (¢ 7) # (0,0). Consequently
| Bé [|u2cy > Cll @2, all gL’
The equicontinuity condition in (2.4) follows immediately since
I & (ot, 0°7) — B (o, 0'7') lw = || Koty 7) — B (8, ') ||
Thus (2.4) is applicable and
| Tafllp = || B¢ ||zocy Z Choell @ 1lp, all ¢eLloom,1 <p< .

Proof of Theorem (2.2). Let ¢ e L' n L®. Let A be the operator defined
in the proof of (2.3). Then we have

Cldd ey < [[@lls < C'l| A |l zoc) -
Since H, e L' + L®, the convolution

S*Prye = ¢x (Ho(- — 1y, - — 7'23) — H,)
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converges absolutely, so that A¢ = ¢ * p, 4.5, and for f = H, * ¢ we have

CliSaflls < Nl @lls = C'l| Safll-

LetyeL'n L, f = Go#¢. Then fe£Z and f = (1 + |z|® + )™
By (1.11), there exists a bounded measure u such that

A+ e 4+ @)™ = (e + i) i, t).
Thus
Fa ) = (=" + @) 4@, )é@, t) = (' + i) * ) (=, 1).
But uxy e L' n L, hence f = CH, * (uxy) and

” Saf”p = C” wxy “'n < C” 2 ”ﬂ = C”f“p,a .
By (1.12),

[l = CllS Mo + Clluxd s = Cllflln + Cll Saf Il -

Since the functions {G, *¢ : ¢ € L' n L} are dense in £%, we have
Clfllpa = I1fllp + | Saflls S C'|| fllpa forallfeLy.

Suppose now that fe L” and S,fe L. We must show that fe£y. Let
{gn} n=1 satisfy
1) gnes,
i) ¢g.20
(i) flgnll =1
(iv) ¢*g,— ¢ in L for all ¢ ¢ L”.
Since § is invariant under go, gn = Ga * b, with h, eS. We have

Jrgn = f% (Gaxhn) = Gax (f*hn).

Since f* h, e L”, we have f*g, e £5 and

1 f%gnllpa < Cllf*gnlls + CllSa(f*ga) 5.
Since g, = 0, Minkowski’s inequality gives us Sa(f*gs) < ¢gn*Saf. Thus

| f *gx “z).a = C“f*gn ”p + 0” gn*Saf“p < C”f”p + C” Saf”z:-

Consequently some subsequence f#*g,, converges weakly in £7. But
f*gn — fin L”; therefore fe £% .

2.7 Remark. Theorem (2.2) remains valid if 9" is replaced by Q in the
definition of S, ; the proof is longer but is essentially the same. Also, if the
integrand f(x — ry, t — r°s) — f(z, t) is replaced by the mixedsecond dif-
ference f(z + ry,t — r’s) + f(x — ry, t — 1’s) — 2f(z, ) we obtain a charac-
terization of £5 valid for0 < a < 2.

3. Interpolation

In this section we review the definition of complex interpolation of Banach
spaces given by Calderén [3], and we state some of his results. We then give
an interpolation theorem for £ spaces.
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3.1 DEriNiTION. Let Ao and 4, be Banach spaces continuously embedded
in a Hausdorff topological vector space V. We assume Ao n 4, is dense in both
Aoand A,. Ao+ A;is a Banach space with the norm

“w”A(H‘Al = inf{”x”Ao + “y“41 : .’l)éAo, y€A1, w=2z-+ y}
Let & be the space of functions f defined on 0 < Re (¢) < 1 and with values
in Ao + A1 such that

(1) fis bounded and continuous;
(2) fis holomorphic for 0 < Re (2) < 1;
(8) for real t, f(it) e Ay with

sup || f(#) la, <  and [ ()[4 =0 ast— Eeo;
(4) forrealt, f(1 + t) e Ay with
sup ||f(L + @t)|la, < © and [[f(1 + 4t)|la, >0 ast— £,
(For a discussion of holomorphic functions taking values in a Banach space
see Hille and Phillips [6].)
¥ is a Banach space with respect to the norm
[ f1| = max {sup || f(it) |4y, sup [| (1 + 32) |la,}.

For0 < s <1,let 9, = {feF : f(s) = 0}. Then 9, is a closed subspace of
§. We define 4, = [4o, A1l = F/N,; le., 4s = {f(s) : feF} with the
norm

| #|la, = inf{||flls : feF and f(s) = =}.
(4o, Ay) is called an interpolation pair; 4, is called an intermediate space.

3.2. TueoreM (Multilinear Interpolation). Let (AP, A% (k=1,---,m)
and (Bo, Bi) be interpolation pairs. Let L be a multilinear map from
Ty AP 0 AS® into By n By such that

ILG@, - @) o < M I o)) A fori= 0, L.
Then L can be extended uniquely to a multtlinear map from HZ;l AP into B,
satisfying
” L(xly tTt xm) ”Ba é Mé—sM: H;cn=1 ” Tk ” Aﬁk).

3.3 THEOREM (Duality). Let Ao, Ay be reflexive Banach spaces. Then
AO ’ l] = [AO ’ ]8 .

34 THEOREM. Let 1 < po < o,1 < p1 < ». Let ap, ay be any real
numbers. Then [£3), £21], = £5 where0 < s < 1,1/p = (1 — 8)/po + 8/m1,
and a = (1 - S)LY() -+ say.

Proof. By (1.8), £% is reflexive for 1 < p < «. Hence if we prove
£ c [£2), £31] with the inclusion map continuous, then by duality we
have also

£z = (°B a), ££gto ) °B"0t1 [£gg ’ £‘m]
and therefore £5 = [£2), L5, .
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Let f = ga ¥, where ¢ is simple. Since simple functions are dense in L” and
Je 1s an isometric isomorphism of L” onto £% , the class of all such functions f
is dense in £5. To prove the theorem we need only to find a function F ¢ &
such that F (s) = f,

IF @) llpoas < ClIfllpe and [[F (A +5t)[p1er = C[[fllpea;

where C is independent of f.
Let us note some properties of the operator valued function g, .

1° ForRez 2 0and 1 < ¢ < =, g, : L* = L* continuously with
| gellewa < Cq €% | P(2)| where P is a polynomial determined by .

2°. ForRez> 0and1 < g < =, g,1s a holomorphic £ (L*)-valued func-
tion.

3°. ForeachfeL? (1 < gq < »),9.fisa continuous L*-valued function on
Rez = 0.

_Statement 1° was noted after (1.5). To prove 2°, since § is dense in both
L% and (L*)’ it suffices to prove that for each ¢, ¢ € $ the function

2— ff oz, 1) g. ¥(x,t) dz di

is holomorphic. But it follows immediately from Parseval’s formula that the
above function is entire.

Tor 3°, note that for Re z = 0, g, is uniformly bounded in £ (L*) for z in
N (20) n {z: Rez = 0}, where N (2) is a neighborhood of z,. Hence it suffices
to prove that g, ¢ is a continuous L% valued function for each ¢ € S. As above,
9. ¢ is an entire L?-valued function and hence continuous.

Express ¢y = Sor ax X&, , Where a; € C, ar, # 0, xg, is the characteristic
function of a set E of finite measure, and the sets {E,} are pairwise disjoint.

Define

g(z) - Zl?—l i % lp((l—z)/po+z/p1) sgn (ak)XEk .

For1 < ¢ < =, g(2) is a bounded and continuous L’-valued function on
0 =< Re z = 1 which is also holomorphicin 0 < Rez < 1. Moreover

g(s) — Zg’_l laklp((l—s)/po+a/p1) sgn (ak)XE,, —_ '/’;

@) lI5s = 220= | al|”| Ee| = [l¥l3
and
g + ) |33 = 20= | a [P Be| = [[¥]l5.
Define
Fe) = ¥ 50 g0y tans 9 (2).
Then

F(s) = |5 gogmirare g (5) = dutb = .

F (’Lt) = ” ‘// “;—p((l—it)/po+it/p1)e—t2—azgao(l_”)+a1“ g (’Lt)
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F (it) e £3% with
7 Gt llpoms = 19157 || € Giaranrit 9 Gt) [lno -
Hence by 1° above, || F (i) ||py,ao — 0 as t — == and
I F (t) llpgao = C 9157 1 9t ||

Cle Iz 1¥lI3™ = Cl¥lo = Cllfllpe-
Similarly F (1 + it) € £21, | F(1 + @) [|p.00 — 0 85t — 0, and

[ F @+ 3t) [lprar < C | fllpe

For convenience, assume ap < o1. Then e”’"”gja,,u_,)wlz is a uniformly
bounded operator from L to £3) for 0 < Re z < 1, holomorphic for
0 < Rez < 1. Consequently F (z) is bounded as a function with values in
£2? (and hence as a function with values in £5 + £3!) for0 < Rez < 1,
holomorphic for 0 < Rez < 1. Since

I

Jao(1—2)+a1z g(z) = Zi’_l I a lp((l—-s)/po-l-z/m) sgn (ak)é]ao(l—z)+a1z Xz »

it follows from 3° above that F (z) is a continuous £33-valued function for
0<Rez=1.

Thus F eS, F(s) = f,and || Flls < C || fllpe-
The theorem is proved.

4. Multipliers on £7, spaces

In this chapter we use the results of the previous two chapters to determine
conditions for the product of two functions to be in an £% space.

The results are analogous to those obtained by Strichartz [13]; the only real
difference is that we lack a suitable characterization of €% for 1 < a < 2.
This problem has been circumvented in Theorem 4.5, but it has prevented us
from obtaining localization results analogous to those of Strichartz [13].

4.1 DerFINITION. A function ¢ is called a multiplier on £3 if ¢f ¢ £5 when-
ever f e £5 and || ¢f ||p.« < K || f||»,« for some K independent of f e £5. The
space of multipliers on £7 is denoted M L% .

4.2 ProposITION. MSLL C M&§ if « = 8 2 0. In particular, M£E  L”
ifa = 0.

Proof. LetfeMSLs,a > 0. Let1l/p + 1/¢ = 1. Then by duality,
[follo—e = Kl dllo—a aswellas [[f]se = K || ¢]sa

for all ¢ ¢ £2 n £2,. Interpolating according to (3.2) and identifying the
interpolated spaces according to (3.4), we see that || fé |l < K || ¢ |l; for all
¢ ¢ L, and hence f ¢ L”. But then f e M£Z. Interpolating again, f ¢ M£§ if
0=8=e
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43Lemva. Let0 < a < 1,feL”. ThenSa(fg) < ||flloSag + | g| S« f-
Proof. Noting that
fl —ry,t = ') — 1y, t — 1's) — f(z, 1) (@, )
=fl@— 1y, t = rs)lgx — ry, t — 7's) — g(x, )]
+ g(@, Olf @ — ry, t — 1%) — f(=,1)]
and that the functional

¢ — (fom [f fﬂ+ ¢ | dy ds]* . dr)m

is a semi-norm, the result follows immediately.

44 LEMMA. Letl <p < wo,a> (n+ 2)/p. Supposek is an integer such
that 2k < a < 2k + 1,andlet0 < j < 2k. LetfeLh ;,9e¢Lh _u_j. Then
fg e Lo and || fg llp.a2r < C || fllpa—i || 9 lp.a—cr—s -

Proof. First assume j = 0. Since 0 < a — 2k < 1, we may use (2.2).
We have

Ifglle = I fllellglls = Cllflloellgllpase
by (1.7), since « > (n + 2)/p. By (4.3),

| Sa2 (fg) 1o = (| flleo | Sazr g ll» + || 9Sawaw fll» 5
by (1.7) and (2.2),

[l | Sa2t g lls = C ([ flloe [| 9 lpsc2r -
To estimate || gSa—2 f ||», we find g, 7 € (1, ) such that
i) g+ 1/r=1/p

(i) [lglle = Cllgllpa2
(i) || Saeefllr = C | fllpa-

The result will then follow from Hélder’s inequality.
By (1.7), (i) is satisfied if

(*) 1/ £ 1/p < 1/q + (a — 2k)/(n + 2).
Also, || Sask fll» < C || f||r.e—2x s0 that (iil) s satisfied if
(%) 1/r = 1/p < 1/r 4+ 2k/(n + 2).

Combining (*) and (**), we see that we may pick ¢, r such that (ii) and
(iii) are satisfied and such that 1/¢ + 1/r is any positive number between
2/p — a/(n+ 2) and 2/p. Asa > (n + 2)/p, 1/p lies in this range.

Hence by (2.2),

179 lp.a2e < CUSgllp + | Sa-r () 12) = C 1 f o | 9 llpae -
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We have now shown that multiplication defines a continuous bilinear map
from £5 X £2_2 into £3_s and therefore also from £5 2 X £ into £5_zx.
Hence by (3.2)

1 f9 lp.a2e = C || flliear.ear—2t16 || 9 |l 1€ar—28,20216 -

Choosing s = 1 — j/2k, by (3.4), [€%, L5-x]s = £5—; and [L5_2%, £3], =
L5 _2x—j , 50 the lemma is proved.

4.5 THEOREM. Let1 < p < w,a > (n + 2)/p. Letf, g e £y. Then
fg e £ and

179 1lp.a = Cl[fllpe 19 llpse-

Proof. Case (). Suppose some integer k satisfies 2k < « < 2k + 1. By
(1.9), fg € £% if DID’ (fg) e £5—o for every nonnegative integer j and multi-
index v such that [ 7[ + 25 < 2k; moreover

159 llpe < C 2imisiso | DIDI(fg) llpacsh -
By Leibnitz’s rule,
DIDi(fg) = Lssrasi C B, 7, L 7)(DEDL ) (DI*Dig).
Again by (1.9),
| DED: S |lpa—isi—2t < C || fllpa 80d || DIPDITg [lp.air—pi-2i-d = C g llp.a

Hence by (4.4), )
(DS DL f)(DIPD) € £2_1y1-ss
and )
| (D% D: f)DI D) llpiacini2i = C | fllpia | 9 llpva-

As | 'y] + 25 < 2k, £5_|4—2; © La—2 and the result follows.
Case (ii). Arbitrary o > (n + 2)/p. Applying interpolation theory to
the bilinear operator (f, g) — fg, we see that

f(,y) e B> :0<a <1,

and || fg ey S Cow [[f lvsw || 9 o for all f, g e £,"%}
is convex. Since the convex hull of
{(/p,a):1<p<o,a> (n+2)/p, 2k < a <2k + 1for some integer k}

istheset { (z,y) : 0 <z <1,y > (n+ 1)z} the result follows for all p, a such
that 1 < p < @ anda > (n + 2)/p.

MgLE © L” by (4.2), the above theorem fails in this case. However, some
substitute results are available.

4.6 Remark. If0 < a £ (n + 2)/p, we no longer have £5 < L”. Since

4.7 THEOREM. Let fe L°NELlni0)p, where 1 < p < . Then f ¢ MLY if
1<g< w,a< (m+2)/q,a L (n+2)/p,and0 < a < 1.
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Proof. The restriction 0 < a < 1 allows to use (2.2). Asin (4.4), the
problem reduces to showing that I g[ S.feL? Again we find 7, s such that
geL,Syfel’and 1/r + 1/s = 1/q.

By (1.7),9ge L' for 1/r = 1/q — a/(n + 2). S,feL’if fe £} ; again by
(1.7), f e £ for

Ip =1/s+ ((n+2)/p —a)/(n+2) =1/s+ 1/p — a/(n + 2)
or s= (n+2)/a. Butthenl/r4+1/s=1/g—a/(n+2)+a/(n+2) =
1/q, and the theorem follows.

4.8 REMARK. As in Strichartz [13, II 3.6 and II 3.7], this result can be
strengthened. Virtually the same arguments show f e M3 if 1 < p < =,
0<a<la< (n+2)/p,feL” and

[{(,t) : Saf(x, t) >N} = (KNP forallx > 0.

Appendix
Here we perform the calculations to prove

f./;ﬂza dz df (j‘;w[fj;ﬁ | Prys(x — 2,8 — u)

2 12
- prm,s(x, t) ldy ds] 7‘—1—20‘ dr) < C

independently of @ > 0, (2, 4) ¢ % . Reecall
p"ﬂ/y&(x’ t) = Hu(x - Ty,t - r2s) - Ha(il»‘, t))

— t(a—-n)/?.——l _ 2
Hao, 1) exp {—|z|*/4t}, t>0
=0, t<o.

Note that it suffices to prove the estimate for the case @ = 1; the change of
variables z = o'/, t = ¢ ', r = a7’ then establishes the estimate for all
other values of ¢ > 0.

To simplify notation, let

18) = [ [prasle = 2t = 0) = praa(s, ) |dy ds

for E any measurable subset of E*™.  Of course, I (E) dependson (z,t), (z,u)>
and .

Step 1. We estimate [ [1,z4 dz dt(f5 I (@) dr)'®. Fort < —4 and
(z,u) e, I(QY) =0. Fort = 4, we have

w 1/2 jeil2 12
< L QhH)y e dr) < < f (@4t dr)
0

o 1/2
+ <[ I(Q+)2r—1—-2a d’l‘) .
j11/2
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(a) First we show [[ize dz dt(J3" I(Sf')2 T ) <
Slncet>4|u|SIOSs 1L,and0 =7 < 1twehavett—-u,t—rs,
and ¢ — u — 1’s = 2;hence p,4,.isa C° function. By the mean value theorem
Dras (@ — 2,8 —U) — Prye(,t) = —Zi-lzli,- Pras(E7) — UD Pry e (§7)
for some (£, 7) on the line from (z, t) to (x — 2, ¢ — ). In full detail,
Pras(@ — 2,8 — U) — Pry,s(,t)
= —2laal—30 — ) (5 — rys) exp {—| & — ry[/4(r — 1))
+ 1 exp (= £ [/40))
—u[((@=n)/2 = 1)@ — 78) ™ Pexp {—[ £ — ry[//4(r — 1)}
— (@ = n)/2 — )7 exp {—| £[*/4r}]
—uf(r — )T £ — ry|Pexp {—[ £ — ry[/a (G — )
(a—-'n)/2—31 | EIZ exp {_I £|2/4:T}]
= — Z,_lz,l — uJ — uk.

Recall |2;| < 1and |u| < 1. Each of the terms I;, J, and K is treated
separately; for brevity only the calculations for J will be given. Exactly the
same techniques are used to treat I; and K.

Again applying the mean value theorem,

() J = ((@—n)/2 — 1) exp {—| & [/ar'} =3 "7 Xiuary; &

_ 7'28((a . n)/z _ Z)T/(a—n)/2—3 + ir2s I s/ |2T,(a—-n)/2—-4]
where (£, 7') is on the line from (¢, 7) to (¢ — ry, + — 7’s) and hence lies in
the rectangle with vertices

(,t), (x—2zt—u), @—ry,t—1s) and (@ —z—ry,t —u— rs).
Note that 3 < 7' < 2¢. To estimate l 4 [, we consider separately the cases
lz| < 2t1/2and|x| > 2t
For | z| = 2" we have | ¢| < 3t"*. Estimating the exponential by 1, we
have from (*),

,Jl § C(Tt(a~n)/2_5/2 + r2t(a—-n)/2—3) é Crt(a—n)/2—5/2’

. 1/2
since r < 3%

Treating I; and K similarly, we have

Iprys(x - Z,t— u) — DPry,s (x t)l
for r < %%, I x| < 21, Thus we have

;gllz 1/2
f f dz dt < f (@)% dr)
t24, |z g2t1/2 0
je112 1/2
C f f ( f prens dr) dz dt
tz4,|z) <261/2 0

—n[2—2 _ % 2 _
¢ ff‘34»lm|§2u/zt dw di = CL dt C.

—n) [2—5/2
C?‘t(a n)[2—5/

IIA
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For |z| = 2" and 0 < r <}, wehave } || = |¥¢| = 2|z|. Thus
from (%),

lJl § Ce—lxﬂ/ct[r I xl t(a—-n)/2—3 + r2t(a—n)/2—3 + 7'2 ! x |2 t(a—n)/2—4]

— . —lz]2
é Crt(“ n) /2 7/2,15'26 [E] Ict.

Treating I; and K similarly, we have
|prm,s (.’13 2t — u) - Dra, 3(17 t)l CTt(a n)/2—7/2 |$'2 —lz|2/ct

for i wl 2 2" and 0 < r < 4. Hence

;tuz 1/2
[f do dt ( [ raryy dr)
tz4le z2:1/2 0

3t1/2 1/2
< C ff t(a—ﬂ)/2-7/2 lx!zg—wﬁ/ct dx dt (f P2 dr)
- t24, |z|22t1/2 o
C ff t—n/2—8 |x|2e~|wlzlc¢ dx dt

t=4

- wat”zdt-—- c.

IIA

(b) Now we show [ [,z dx dt (f“uz T@) 7% dr)'® = C.
Expressﬂ = EiuE,uE;wherer’'s <t — 2,t — 2 £ 1’
t + 2 < r’s respectively. We estimate the terms
ff¢24 dx dt (fw/z I(E) 7% dr)? separately.
(i) The term in I (E).
Ipr.v.s(x — 2t — u) — Pry.(, t)i
=< |H.,(x —z,t—u) — Ha(x;t)l + |H,,,(x —z—ry, t —u—rs)
— H,(x — ry, t — 1’s) |
=P + Q.
By the mean value theorem,
P é C(T(a—n)/2—2 lE‘ + T(a—n)/2—2 + T(a—n)/2—3 I 212) exp {__I E|2/4T}

for some (£, 7) on the line from (z,t) to (x — 2,{ — u). Note ¥ < r < 2t.
For | z| < 2, we estimate | £| and the exponential term by constants to ob-
tain

<t+ 2, and

é C(T(a—n)/2~2 + T(a—n)/2—2 + T(a—-n)/2-—3) _S_ Ct(a—”)/2_2.
For |z| = 2, wehave } |z| < || < 2|z|. Thus

< C(t(a—n)/2-2 I xl + t(a——n)/2—2 + t(a—n)/2—3 | T lz)e—mz/cz‘
It follows readily that

®© 2 2 1/2
ftg4dxdt(f%tllz[fEldeds]r dr) < C.



LEBESGUE SPACES OF PARABOLIC POTENTIALS 629

For the term in @, we again have by the mean value theorem
Q < C(T(a—n)/2—2 I El + T(a—n)/2—2 + T(a—n)/2—8 l Elz)e—m%f
where (£, 7) is on the line from (x — ry, t — r’s) to ( — 2z — ry, t — u — 7’s).
Since t — r’s = 2in By, we have 3(t — r’s) < 7 £ 2(t — ’s). In order to

estimate £, we must consider several cases separately.
First we estimate for | 2| < 2. Since

IE[ exp {—]5]2/41-} < ¢'* and |£|2 exp {~|£]2/47-} < Cr

Q é CT(a-—n)/2—3/2 é C(t _ TZS)(a—n)/2—3/2.
Thus

(t—2)r—2
ff Qdyds é C[ (t _ 7'28)(a_”)/2_3/2 ds é Cr-2
E) 0

and so

* 2 —1—2 12 ® —5—2, 12 —l—a/?
(Lm[fm()dyds:l . dr> < C<j;tmr dr) = o

This is integrable over { (z, ¢) | |z| < 2, ¢ = 4}.

For |z| = 2, our estimates must be more delicate. We write
Ey = FiuFyuFy, where |[v — ry| < 4,8 < |z — ry| < 2|z, and
2 |z| = |z — ry| respectively. Note that F; = Fy = unlessr = % | x| and
hence unless » = & | x| + £

For (y, s) € F1 we have I g = C. Thus
Q < O(T(a—n)/2—2 + T(a—n)/2—2 + T(a-n)/2-3) < C(t . 7'28)(‘1—”)/2‘2.

Noting that | {y | |2 — ry| < 3t =0

K

(t—2)r—2
f Qdyds < Or™ f (t — o¥)@™/22 g
Fi 0

IA

=2
Cr ™,

Hence
1/2
C <[ T—'2n—-5—2a d’r
HER L

) 2 1ta 1/2
(Lm[thdyds:l r dr)
C(‘% lxl + t1/2)—-n—2—a.

This is integrable over { (z, t) | |z| = 2,¢ > 4}.
For (y,s) e Fs,

gl <le—ry|+1=Clz—ry| and [f]z|e—my|-12Clz-ry],

IIA

so we have
Q é C((t _ r2)(a—n)/2*2 ’x _ ryl + (t - 7'28)(&—71,)/2—2

+ =P — ry|D exp {—|x — ry /O — 7’s)}.
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Making the change of variable ¢’ = (¢ — ’s)™?

(z — ry) and enlarging the
y integration to E", we see

(t—2)r
f,,, Q dy ds < Cr—-nfo [(t — r2s)a/2~3/2 + (t _ r2s)(a—n)/2—2] ds
2

—n—2
=C0r™

Exactly as for /1, we see

" 2 1/2
([oll], eavas [ rmar)” s e or 4 0

For (y, s) € F'3 we have
¢l zle—m|—12%|2] -121]a]
and thus | £[* = 3| £]* + 9% | =|. Hence
| £] exp {—|£[*/47} = || exp {—|&["/87} exp {—|z|*/1287)
< 0 exp {—! x |2/1287}

SO — ) exp {—|z[/ct — s)}.
Similarly,

| £ exp {—|£]7/4r} < C @t — s) exp {—| & [*/c(t — r"s)}.
Thus
Q C@E— )™ exp (|2 /et — 7%s)}
and
pQdyds S c [P ¢ — ) M exp {(—| 2 [/ct — 75)} ds
3
é P , z Ia—n—l —2 J‘oo s(¢)¢—n)/2-—-3!/2e—1/3 ds

a—n—1 —2

clz
Thus

© 2 1/2 © 1/2
—1—2a a—n—1 —b6—2a
(fw”[ffya@dyds] r dr) = ¢z (Luzr dr)

a—n—1 -—l—a/ 2

= o] :

which is integrable over { (z, ¢) : ‘ x| =2tz 4}
We have now shown

0 1/2
f dz dt ( f 1(B)y 2 dr) <o
t=4 *tll2

(ii) The termin I (B;). Fort = 4and ¢+ 2 < r*s we have
prm,a(x — 2t — U) — Pry,e(, t) = Ho(x,t) — Ho(x — 2, ¢t — u).

This can be treated exactly as the term P in (i) above.
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@iii) The term in I (E,). In this region both p,,.(z, t) and p,y.(x — 2,

t — u) may have a singularity. The two terms are handled separately. We
have

[p,,,,,a(x, t)l S Hyo(z,t) + Ho(x — 1y, t — ”s).
Note that

0 2 1/2
(f [f Hy(zx,t) dy ds] piRe dr) = ot PH, (2, t)
;,1/2 Ey

2
_ n/2-38/2 _ l_x_l_
ct exp{ T } .
This is integrable over { (z, £) : ¢ = 4}.
For the other term we estimate separately the r-integration over the intervals
Y <rs< llxl and r = max (3 1 Ix[)
For | xl = 2t we have

el : e
f f Ha(x - T?/,t - /"28) dy ds] r—l—za dr
3t1/2 Egy
FE] tr=2 2 2
(L e
yer/e | J(e—2)r—2 lyl =1

2 1/2
exp{— |z — ry |*/4(t — %)} dy] P dr)

L tr—2

¢ (f [f ds f (t _ 7'28)(a_”)/2—1

je1/2 (t—2)r—2 Jyl g1

2 1/2
exp{— |z |*/16(¢ — %)} dy] r_l'z"‘dr)
2 1/2
f (a-'n)/2~1 —lezllﬂs ds r—5—2adr
itll2
1/2
é c l x la—n—2 < f r—5~2a d’!‘)
Ji1/2

Ia—n—~2 t—l—al2

IIA

I

clz

since \
s(a—’n)/2~le—-|zl /168 é ¢ I z |a—-n—2

Of course, | z|* "1 |

For the second 1nterva1

0 2
( f [ f Ho(x — ry,t — 7's) dy ds] r_1_2°‘dr>
max(}|z),4t1/2) E,
) tr—2
< ([ [f ds / (t ,rs)(a—n)ﬂ—l
$lz|+3e1/2 (t—2)r—2

2 1/2
exp{— |z — ry [*/4(t — %)} dy:l r“1"2°‘dr>

is integrable over { (z, t) : |z| = 262 ¢t = 4}.



632 RICHARD J. BAGBY

0 2 2 1/2
¢ f [f sa/2—l ds] r—2n—5—2ddr>
Hal+iet/z | Jo

1 —n—2—a
c<§lx[+t”2> .

This is integrable over { (z, ¢) : t = 4}.
Treating the term in p,y,, (* — 2, { — w) similarly, we complete Step 1.

I

Step 2. It remains only to bound

f f dz dt ( f 1(QH)y = dr) .
[t sS4z 22 0

Since the ¢-integration is over a compact set this is comparatively easy; the
crucial thing is to show that I (27) = O(r) asr — 0.
(a) First we estimate ([3"*' 1(@%)% 77 dr)'2,

10 5 [ e 0) lyds + [ 1powala = 20— w) [y ds.
We treat the two terms separately. Recall
Prys(®, ) = Ha(x — 1y, t — 7'23) — Ha(z, t),
with H, a C” function. By the mean value theorem,

Pry.s ((I), t) = - Z?"l Yi Dwi Hd(s; 7') - 7'28DLH¢:(£, T)

for some (£, 7) on the line from (z,¢) to (x — ry, t — °s).

Note that
D., Ho(t,7) = =3t 75" P exp {—|£[//4r}, 7> 0
= 0, t=0
and
SUPrso T(a—n)/2—2 exp {___l E |2/4:7'} =c l E'a—n—4.
Also
Dt Ha (E’ 7')
= [((@ — n)/2 — )7 ™" 4+ [ exp (—|£]7/4}, 7> 0
= 0, T =0
and
Sup.a 7 exp (| £[*/ar) = ¢ €]
Hence

]p,,y,s(a}, t)l é or | Ela—n—B + 07'2 I sla—”—4
<ol + o |2]|*" sincer < |2|/4
Ser|zx|

Similarly, we obtain | p, .. (x — 2,t —w) | S er |2 |* " for|z| = 2,7 < %| =]
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PYED] 1/2 =] 1/2
(f I(Q+)2r—-1—2a dT) é ¢ | z |a-n—-8 (f rl—2a d?’)
0 0

™,

Thus

=c|a

which is integrable over { (z, ¢) : |[t]| < 4,|2| = 2}.
(b) It remains only to estimate ([5. (@)%~ dr)'.
Here we may use

I(QY) = f/;,+ H,(xz, t) dy ds + fj;ﬁ Ho(x — ry,t — 7%s) dy ds

+ [ Haa =zt —wayas + [[ Hiw—2 -1,

t —u — 1r's) dy ds.
First,

o 2 1/2
([ [ 0 ana] s = e e, o
il Q

= 0, t=0

IIA

which is integrable over { (z, ¢) : [t]| < 4,|z| = 2}.
The term in H,(x — 2, t — %) is handled in the same manner.
Next, we have

) H 2 12
(f [ff o — 1y, t —1's) dy ds:l - dr)

P1ED] o+
(f [[ ds f (1 — 1)t

tl=| 0§8_$_tr‘2

2 1/
exp{— |z — ry [//4(t — s)} dy] r—l—2udr>
) 2 12
§— p23)2 g ] —2n—1—2a d)

‘ (‘/;lf"l [‘/(;égétr-—z ( r 8) s| r .

0 1/2

Cta/? (f r—2n—5—2a dr) , ¢ > 0
FIED!

0,

t=0

IIA

cta/2 I x |—n-—2—a’ > 0
0, t=0
which is integrable over { (z, ) : |z| > 2, t| < 4}.

The term in Ho(x — 2 — 1y, t — u — r°s) is handled in exactly the same
manner, and we are done.
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