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Introduction

We define a class of spaces , via Fourier transform techniques. These
spaces have been studied previously by Sampson [11]. They arise in the study
of the heat equation; they are the parabolic analogue of the spaces of Bessel
potentials introduced by Aronszajn and Smith [1] and by Calder(In [4]. The
results obtained in this paper are analogous to results obtained by Strichartz
[13] for Bessel potentials.
The first chapter contains the basic facts about oC, spaces. In the second

chapter we characterize some of these spaces in terms of an integral norm of
difference quotient. We develop an interpolation theory for these spaces in
the third chapter. These results are of some interest in themselves; they are
used in the fourth chapter to find sufficient conditions for the product of two
functions to be in one of the spaces ,.

Establishing the characterization of Chapter 2 requires a number of cal-
culations. The appendix contains the worst of these.

This paper consists essentially of the author’s doctoral dissertation at Rice
University. I wish to thank my advisor Dr. B. Frank Jones for his help.
Financial support was provided by the United States Air Force, N.A.S.A.,
and the Schlumberger Foundation.

1. Preliminaries

1.1 Notation. Let En+l denote Euclidean (n - 1)-space. Points in E
will be denoted in the form (x, t), where x e E. Unless explicitly stated other-
wise, all function spaces are assumed to be spaces of functions defined on E
The usual inner product in E will be denoted by x.y. For x e E,

xl (x.x). Differential operators are expressed in the form

the order of the multi-index a is denoted by al al as -f-
The Laplace operator in E is denoted by A.

Let $ denote the space of C functions satisfying

sup(,t) IF (x, )D; D 4 (x, t) <
for any polynomial P and any a, j. $ is given the usual topology; see
Schwartz [12]. The dual of $ is denoted by $’; its elements are called tern-
pered distributions.
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The Fourier transform is defined on $ by

it is extended to $’ in the usual manner. Where no confusion arises, the dual
variables will also be denoted (x, t).
The letter C will be used to denote any positive constant whose exact value

need not be known explicitly.

1.2 DEFINITION. For arbitrary complex a, define g" g’ $’ by

( T) (1 + x + it)-/’,
where

( +Ix ]= + it)-/ exp {-[ln l1 +x = + it + i arg (1 +x = + it)l},

with-/2 < arg (1+ .= CSince (1 + ]x ]= + it is a function each of whose derivatives are
bounded by polynomials, B. defines a continuous operator from $’ into itself.
ote that ,+ nd that formally , (1 = D

1.3 DEFiNiTiON. For 1 p , is the Banuch space of tempered
dbuions T such h

_
TL, wh he nor T ]l,

_
T

Clearly ,(L) an4 ,+ ().
1.4. DEFINITION. A locully inegrable function re(x, t) is said to be

multiplier (on Fourier transforms of functions) of ype (p, q) if for every
S, m S and the operator T’$ $ defined by (T) m satisfies
TLqwith Tq C, Cindependent of S. The space of all
multipliers of type (p, q) is denoted M; these spaces ure treated in
mander [7].

Due to the form of the operator ,, the following theorem will be extremely
useful. It is u special case of a theorem proved in Fabes and Rivire [5].

L1.5 THEOREh. Let m e and suppose

sup(.,o(0,0) ([ x [2 + {t[)’’+] D’.D, re(x, t)[ C0,

whenever + 2k N, where N > (n + 2)/2. Then meMfor i < p <
and the norm of the associated operator is bounded by Co C, where C depends
only on n and p.

Applying (1.5) to the function (1 + Ix [= + it)-"/2, we see that ." L L
continuously if Re (a) 0 and 1 < p < m the operator norm of O- is bounded
by C e(’/2)x="[ p. (a)[ where P. is a polynomial depending only on n. As
consequence, 2 2(.) for 1 < p < m. Since our new results are valid
only in the case 1 < p < m, we will restrict our attention to the case of real
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1.6 LEMMA. If a > O, then the function , defined by

.(x, t) (4)-/r(a/2)-t(:-)/- exp {-t- xl/4tl, > o
=0, t=<0

satisfies"
(i) ,eL1.
(ii) 9,(x,t) (1+ x Wit

L(iii) ForO < a < n + 2,,e if l g r < (n W 2 )/ (n W 2 a)and
E (v) (x, t) ,(x, t) > v}[ c,,v-(+)/(+-") for, > O.

L

Proof. (i) is immediate. (ii) is given in Jones [8]. For the last part of
(iii), note that ,(x, t)

_
ct("-’)/-le-lXl/4t for > 0. Consequently

Then
. (hx, ht) <_ Ch"--n--2t(--n)/2--e--Il/4t for ), > 0.

E(V) ,--ll(x, t)’9(hx, ),t) > 7/[

(n-t-2--a)

E (7)

_
-("+2)/(n+2-"1 (x, t)" > 0, ct("-’)/2-1e-[x[ 2/4t > -}

(n+2)

The first part of (iii) follows by a direct calculation;it also follows from the
estimate for E (7) and the fact that , e L.

(iv) is obvious.

1.7 TgEOaEM. Let a, be real.
(i) , ’ if a > ; in particular, 2, L if a > O.
(ii) For l <- p < q <- ,J3. J3 if l/p < 1/q-- (a )/ (n -- 2).
(iii) If1 < p < q < ,then2.. c2]alsoif l/p 1/q -- (a--)/n.

Proof. Letfe,. Thenf= ,,withOeL. Fort < a,

f g g.- (9.- * ).

L L.By part (i) of (1 6) ._ e and hence 9._ e Consequently f e$
If 1/p < 1/q -+- (a )/ (n -- 2) then by (1.6), ._ e L where lip -- 1/r
1/q -- 1. Thus by Young’s theorem, 9._ e Lq and hence f e .C]. In the
case1 < p < q < ndl/p l/q+ (a- )/(n+ 2),thisisasimple
variant of the standard fractional integration theorem as proved in Zygmund
[16] and extended by O’Neil [10].

1.8 THEOmM. If a is real and 1 < p < then 2. is reflexive and its dual
is J3’ where lip -- lip’ 1. The pairing between J3. and J3-’ is defined by

[h, ] f f (x, t)b(-x, --t) dxdt for , b e .
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Proof. By Parseval’s formula,

f]og-. (x, t)og. (--x, --t) dx dt.

Hence

Since $ is dense in every space with p < , [. has a unique extension
to a eonginuous bilinear form on P N -Conversely, if F is in ghe dual of , then F o eq is in ghe dual of L’ and
hence can be idengified with a funegion 17 e L’. Bug then _. !7 e _. and _. 17
can be identified with F.

1.9 THEOREM. Let 1 < p a > O, k a positive integer such that 2

_
a.

Then
If I,,. EI’I+<_ DDf,_

Proof. Since is an isometry of 2 onto .+ and commutes with
differentiation, it suffices to consider the case a 2k.

We hve 2_f (1 A + Dt)f, so clearly

For the reverse inequality, letf g, g e L. ThenDDf DD g.
Thus

D: Di f) + Ix + it) "
Applying (1.5), xt:/(1 + Ix + it) ,M, if l + 2j < 2k; hence

Using (1.9) it is often possible to reduce questions about 2 spaces to the
ease0 a < 2.
We now introduce a function H, which is similar to 9,. H, will have

homogeneity properties which ure useful in ehurueterizing spaces.
(1.10), (1.11), und (1.12) below are due to Sampson [11].

1.10 PaOPOSTON. Let

n(x, t) <-/- exp {-] x l/4t}, > 0

=0, tS0.

Then for a > 0, H, e 8’. If 0 < a < n + 2, , is a function and

a.(x, t) c(., )([ z + it)-/.
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1.11 LEMMA.

and

For a > O, there exist bounded measures , gl t2 such that

(Ix12+it)"/2 (1 + ]xl + it)/2

+ + + ([xl
1.12 THEOREM. Let a > O. Let f eL. Then f

such that (I x 12 + it)"/? , in which case

L L"If 0 < a < n + 2, then H. e + Hence if the function g above is in
Lln L, we have f c (a, n)-H., g.

2. A characterization of

Let
En+ r’-r I(Y, 8) IYl < r,- < s < r}.

For brevity 21 and 2+ will be denoted by

2.1 DEFINITION. For fe Loo, let

(loCIfro r28) 12S.f(x, t)
+

f(x ry, f(x, t) dy ds r--2 dr/1/2
2.2 THEOREM. ForO < a < l and l < p < ,f e 2. ifff e L and S.feL;

in which case f liT,- f 11 + S.f
In the case p 2, the inequality S.f I1. + f Ils cll f 112,. is proved using

Fourier transform techniques. According to (1.12), f e 2. iff f e L and
f /.6 for some q ;moreover,

Applying Schwarz’s inequality and then Fubini’s theorem,

.y(x, t) l(x r, #e) (., t) d ds r-- r+

<_ l(x, r, r28)
,o 1+/=<2

f x, t) j2 dy ds) r--2 dr

f(x y, s) f(x, t)12 dyds) r-’-=- dr

C ]f(x y, s) f(x, t)I dy d=
>o (Ivl+/)

-n-3-2ar dr

C ff f(x y, t- s) f(x, t)I(I y I+ /s)-=--" dy d=.
>0
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Thus by Fubini’s theorem and Parseval’s equation,

_< c f (11 + /)-n--ffllf("--,"--)
>0

Noting that

If(. y, s) f](, r) (,r)[H(. y,. s) H](,r)

(, )[-’-" ] ( +
and again changing the order of integration,

sfil cff I(, ,) I’ll

ir [- d( dr [[ e-’- 1 ( y + s)--- dy ds+
>0

Substituting y ( + ir)-/y’, s ( + ir)-s nd using the mean
value theorem to estimate the resulting integrand for y, s near 0, it is readily
seen that

e-’- 1 ([ s)-’-- ds C irY + dy +
>o

Thus

s.fll c ff i(, ) d dr C 11

As in Strichart [12, 1.2.3], (2.2) is proved using results from the theory of
convolution of operators on Banach space valued functions. These results
are given below; for a thorough treatment of Banaeh space valued functions
see Hille and Phillips [6].

LetX be a Banaeh space with norm x Let M (X) denote the space of
strongly measurable functions defined on E+ with values in X. L (X) is
the Banach space of functions in M(X) such that the function
(x, ) Ill(x, $)II is in L’. Loo(X) is the class of functions in L(X)
having compact support.

2.3 THEOREM. Let X, Y be Banach spaces. Let A’Loo, (X) M (Y)
be given by

A(x, t) jJ k(x y, s)(y, s) dy ds

where k (x, t) is a bounded operator from X into Y for a.e. (x, t). Suppose that
1. A (r) _< Co[[ (x) for C e Loom (X)
2. I]- I! k(x z, u) It(x, t)][(,,)dxdt <_ Cfor all (z, Y) r

where C is independent of r.
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Then A L(Y) g Cll ,(x) for 1 < p < , all Lcom (X).
Theorem (2.3) appears in Lewis [9) in a slightly more general form.

Theorem (2.4) below is a modification of Theorem 4 of Benedek, Calder6n
and Panzone [2]. It may be proved along the same lines using (1.5) in place
of the multiplier theorem of Hormander.

2.4 THEOREM. Let H be a Hilbert space, and for each p (1, let
B L ---+ L (H) continuously. For Lcom, suppose BO is given by

(B)^(x, t) $(x, t)h(x, t),
where h is an H-valued function such that

1. h is bounded in En+l (0, 0), and
2. the family of functions h(px, t)’O < p < } is uniformly equicon-

tinuous in 1/2 _< ([ x [9. q_ t[)i/e _< 2.
L9."Suppose that B 112(,) >_ CII I! all Then also

B ,(H) >_ C (B)I[ ]1 for all

In the original version of (2.4), h is an operator-valued function. Although
it is not noted in the statement of the theorem, the proof requires that the
family of operators h * h} commute. In our case, h * h} is a family of complex
numbers, so the question of commututivity does not arise.
As a first step in proving (2.2);we have the following:

2.5 LEMMA. Let 1 < p < e Lom Letf H, . Then

Proof. We use (2.3) with X C and Y the Banach space of functions
g (r, y, s) defined on (0, X f+ such that

g lir g(r, y, s) dy ds r--" dr < .
+

Define p,,,,(x, t) H,(x ry, rs) H,(x, t). We will show that
p,,, (x, t) e Y for all (x, t) and that the operator k (x, t) C -- Y defined by
k (x, t)k kp,,., (x, t) satisfies the hypotheses of (2.3). Since the operator
A of (2.3) is convolution with k (x, t), we have

A (x, t) [H, (. ry, rs) H,] (x, t) f(x ry, rs) f (x, t).

Thus

A (x, t)I1 /1/2If(x ry, rs) f(x, t) ]dy ds r--" dr

S,f(x, t).

Hence the conclusion of (2.3) is precisely
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As a first step, we show

fo (t) ds r--"dr <

and hence p.,.,. (x, t) e Y. We hve

p.... (x. t)

(t rs)("-’-)i exp --I x ry [/4 (t rs)} ("-’-)i

for0 -< rs <
--t(:-"-2)/2 exp {--Ix 114ti for 0 < <_ r2s
0 for _< 0

For r < 1/2t, p.,,. (x, t)If < 0, then obviously pr,y,8 (x, t) 0 e Y. Let > 0.
Cis given by a function and by the mean value theorem it is 0 (r) uniformly

for (y, s) e 2+. Hence

p.,.,(x, t)]dy de r--" dr C.,, r-" dr C,t
0

since 0 < < 1. Since r-1- dr < , go conclude
t)ll

,,, I.,.,.(x, ) dy r-’-: dr <

it suffices to show that

exp ry

forr If. Mkinlthe ohntofwribles ry y’,t s ’,
e see that this lst inteTrl is dominated by

r-n- ds s(-n-)i2 e--lsl/s dy cr-n- s(-)/2 ds c r-n-2

sino 0 ; ; 1. ence p.,., (x, ) Y for 11 (x, ).
We hve reviously shon A L L (Y) continuously. It red.ins only

to show

Z

for 11 (z, u) Oa, C independent of a > 0. This amounts to bounding

ffc dxdt Ip,,(x--z,t--u)
2a

pr,, Z, dz ds r-1- dr

he eompugation is quite lengthy;it is given in he appendix.
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2.6 LEMMA. Let d e Lm f H, , where 0 < a < 1. Then

I111 - C.,ll S,f ][v forl < p <
Proof. Define

T,f(x, t)
+
[f(x ry, rs) f(x, t)] dy de r-- dr

Clearly 0 T,f S,f; we will use (2.4) to show
Define

ff dy ds,}(x,t)
+
p,,.(x, t)

where p.,, (x, t) H. (x ry, rs H. @, t) as before.
since

Then/or e L

JJ [kr(x, t) dx dt <_ JJ dx dt JJ+ p.,,.(x, t) dy ds

fro+ dy ds ff P..,(x, t) dx dt

<_ 2 uff +
g II1 dy ds C [I H [i.

Hence for e L, the convolution It,. converges absolutely a.e. By the
ubove culculution, we muy chunge the order of integration so thut

ffu p.. x, dy a.e., ,(x, t)
+

ds

Let H be the Hilbert spuce of functions defined on (0, whose modulus is
square integrable with respect to the measure r-1-2 dr. Let Bh(x, r)
/or b (x, t). Then

t) dr

f P.,,. * 4 x, dy r-l-2a dr
+

]. fo+ I(x , ) (x, )1 r--" r

T,,f(x, t)

Hence BO (x, t) e H a.e. und
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ffa+ dy ds I (2r)-’+l/ ff
flu+ p,,8(, r) dy ds

p.., , t) dx dt

ft,(, r) ffa+ (e-"-’ 1 dy ds

Thus

ff ( { -iry.} Jr’st})_1fC dy

--1--2ar dr

d8 r-1-2a dr

Using the mean value theorem to estimate the integrand for 0 < r 1,
we see that this integral converges absolutely for 0 a 1.
)(, r)II- is a continuous function away from (, r)

and
E,(e,  )II. 0 for (, ) (0, 0),

we have (, r)]u C for (, r) (0, 0). Consequently

Be lira(,) k C[[ ][2, all C e n2.
The equicontinuity condition in (2.4) follows immediately since

Thus (2.4) is applicable and

L L.Proof of Theorem (2.2) Let
in the proof of (2.3). Then we have

LSince H e + L the convolution

.p.,, . (H,(. ry, r2s) H,)

Consequently
(0, 0). As

alleL:m,1 < p < .
Let A be the operator defined
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converges absolutely, so that A pr,u,8, and for f Ha we have

eli af ll <_ I] <- C’II Sf
LLet n L ,f .. Thenfe nd] (1 + Ix[ + it)-.

By (1.11), there exists bounded mesure such that

(1 + [x + it)-"/ ([x + it)-"/(x,t).
Thus

f(x, t) ( x + it )-"/ (x, ) (x, t) (] x + it )-"/ (u , (x, ).

But u * e L n L=; hence f CH. (u * ) and

By (1.12),

LSince the functions { e n L} are dense in 2, we have

Suppose now that f e Lp and S,f e Lp. We must show that f e 2. Let
.= stisfy
(i) g.,
(ii) g.0

(iv) .g.OinLforlloeL.
Since $ is inwrint under , g. h. with h. e $. We hve

Since f h. e L, we hve f g. e 2 nd

Since g. 0, Minkowski’s inequMity gives us S.(f. g.) g. Sf. Thus

Consequently some subsequence f,g, converges weakly in 2. But
f, g, f in L; therefore f e.

2.7 Remark. Theorem (2.2) remains valid if + is replaced by in the
definition of S the proof is longer but is essentially the same. Also, if the
integrand f(x ry, rs) f(x, t) is repluced by the medsecond dif-
ference f(x + ry, rs + f(x ry, rs 2f (x, t) we obtain a charac-
terization of 2 valid for 0 < a < 2.

3. interpolation
In this section we review the definition of complex interpolation of Banach

spaces given by Calder6n [3], and we state some of his results. We then gNe
an inteoolation theorem for 2 spa,ces.
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3.1 DEFINITION. Let A0 and AI be Banach spaces continuously embedded
in a Hausdorff topological vector space V. We assume Ao n A is dense in both
A0 and A. Ao -t- A is a Banach space with the norm

II w I[xo+x, inf {[[ x [Ix0 -f- y [Ix," x e A0, y eA, w x A- y}.

Let fi; be the space of functions f defined on 0 __< Re (z) =< I and with values
in A0 A- A such that

(1) f is bounded and continuous;
(2) f is holomorphic for 0 < Re (z) < 1;
(3) for real t, f(it) Ao with

sup Ill(it)[Ix, < and f(it)]lx,--O as t-- :t:;

(4) for real t, f (1 A- it) e AI with

sup ]If(1 A- it)IlXl < and Ilf(1 + it)II, o as - +/-.

(For a discussion of holomorphic functions taking values in a Banach space
see Hille and Phillips [6]. )

ff is a Banach spuce with respect to the norm

I]f[] max {sup [f(it)o, sup f(1 + it)

For 0 < s < 1, let {f e ff f(s) 0}. Then , is a closed sub,ace of
ft. We define A, [A0, A], ff/, i.e., A, {f(s):feff} with the
norm

]x[[. inf{fv:feffandf(s) x}.
(A0, A) is called an interpolation pair; A, is called an intermediate space.

3.2. TEoE (Multilinear Interpolation). Let (A), A) (k 1, m)
and (Bo, B) be interpolation pairs. Let L be a multilinear map fr

A) n A) into Bo n B ch that

L(xi, x) ll,, M= x A) for i 0,1.

Then L can be extended uniquely to a multilinear map from
satisfying

L (x x ],, < ,

3.3 THEOREM (Duality). Let Ao, A be reflexive Banach spaces. Then
[d0, A]: [A,

3.4 THEOREM. Let 1 po < , 1 < p < . Let o, a be any real
numbers. Then [2, 2.t]. 2 where O < s < 1, lip (1 s)/po + sips,
anda (1 S)ao+

Proof. By (1.8), 2 is reflexive for 1 < p < . Hence if we prove
2 [o,, ,], with the inclusion map continuous, then by duality we
have Mso

and therefore
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Let f a , where is simple. Since simple functions are dense in L and
a is an isometric isomorphism of L onto 2, the class of all such functions f
is dense in 2,. To prove the theorem we need only to find a function F e fi;

such that F (s) f,

F(it)[[0,-0 -< C mlfii,, and F(1 + it),,, C (f(,,
where C is independent of f.

Let us note some properties of the operator vMued function g.

1. For Re z 0 and 1 q , Lq Lq continuously with
l(,> Cq e(/) P (z) where P is a polynomial determined by n.

2. For Re z > 0 and 1 q < , g= is a holomohic 2 (Lq)-valued func-
tion.

3. For eachf e Lq (1 < q < ), f is a continuous Lq-valued function on
Rez 0.

Statement 1 was noted after (1.5). To prove 2, since $ is dense in both
L and (Lq) it suffices to prove that for each , e $ the function

z ff (x, t) (x, t) dx dt

is holomorphic. But it follows immediately from Parseval’s formula that the
above function is entire.
For 3, note that for Re z 0, g= is uniformly bounded in (Lq) for z in

N (z0) n z Re z 0), where N (z0) is a neighborhood of z0. Hence it suffices
to prove that g is a continuous Lq-valued function for each e S. As above,
gz is an entire Lq-valued function and hence continuous.

Express a x, where a e C, a 0, xs is the characteristic
function of a set E of finite measure, and the sets [E} are pairwise disjoint.

Define

For 1 < q < , g (z) is a bounded and continuous Lq-valued function on
0 Re z I which is also holomorphic in 0 < Re z < 1. Moreover

g(s) ES a!(a-’)/+’/’) sg- (a)x if,

and

Define

Then
i--m((i--s)/mo+/pi) d(s) o-+. () f.

1--P( (1--it) /PO’ittPl) e--t’--s2ao(l_it).t-aiit g (it).F (t)
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T0 withF (it) 0
]1F (it)]1o.,o b 1-l e-*-8

Hence by 1 above, F (it)]]o, 0 as and

c I1-’ II’ c w II, c f
Similarly F (1 + ), 2’,, F (z + ) I1,,, o , d

F (1 + it) I1,
For convenience, assume a0 _-< 31. Then e -0(-,)+-x, is a Ulfiformly

bounded operator from L to for 0 Re z 1, holomohic for
0 < Re z < 1. Consequently F (z) is bounded as a function with values in

(and hence as a function th values in + 2)for0 =< Rez =< I,
holomohic for 0 < Re z < 1. Since

it follows from 3 above that F (z) is a continuous 2-valued function for
0Rezl.
Thus Re if, F (s) f, and F ]Iv C f ][.,.

The theorem is proved.

4. Multipliers on spaces
In this chapter we use the results of the previous two chapters to determine

conditions for the product of two functions to be in an . space.
The results are analogous to those obtained by Strichartz [13]; the only real

difference is that we lack a suitable characterization of 2, for 1

_
a _< 2.

This problem has been circumvented in Theorem 4.5, but it has prevented us
from obtaining localization results analogous to those of Striehartz [13].

4.1 DEFINITION. /k function is called a multiplier on ., if f e ., when-
ever f e 2 and cf I].- - g !] if [1. for some g independent of f e 2,. The
space of multipliers on , is denoted M2,

4.2 PROPOSITION.
ifa>=O.

M2 c M2$ if a >__ >__ O. In particular, M2 c L"

Proof. LetfeM2,,a >_ 0. Letl/p + 1/q 1. Then by duality,

f II,-. - K I!,-. s well as f I1, - K I1,.
for all e n q_. Interpolating according to (3.2) and identifying the
interpolated spaces according to (3.4), we see that I! f 112 - K 113 for all

Le L, and hence f e But then f e M2 Interpolating again, f e M25 if
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4.3LEMMA. Let O <, < 1 f Then Sa(fg) f ll S, g + g S, f.

Proof. Noting that

f(x ry, r s)g (x ry, rs) f(x, t)g(x, t)

f(x ry, rs)[g(x ry, s) g(x, t)]

+ g(x, t)(x ry, rs) f(x, t)]

and that the functional

---> +
dy ds r-1-" dr)

is u semi-norm, the result follows immediately.

4.4 LEA. Let i p a (n - 2 /p. Suppose k is an integer such
that 2 o < 2 ,g __). Then
fg _. and

Proof. First assumej 0. Since0 < a- 2k < 1, wemayuse (2.2).
We have

by (1.7), since a ) (n + 2)/p. By (4.3),

by (1.7) and (2.2),

To estimate gS_ f ], we find q, r e (1, such that

(i) /q + /r i/p

The result will then follow from HSlder’s inequality.
By (1.7), (ii) is satisfied if

(,) 1/q l/p< l/q + (a 2k)/(n + 2).

f I C f 1,,_ so that (iii) satisfied if

(**) l/r l/p < l/r + 2k/ (n + 2).

Combining (,) and (**), we see that we may pick q, r such that (ii) and
(iii) are satisfied and such that 1/q + 1/r is any positive number between
2/p a/(n + 2) and 2/p. As a > (n + 2)/p, l/p lies in this range.
Hence by (2.2),
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We have now shown that multiplication defines u continuous bilineur map
from 2 X a--2k a--2k a--2k.

Hence by (3.2)

,_] 2

_
and ,],Choosing s

__), so the lemma is proved.

4.5TnEoag. Let 1 < p < , a > (n + 2 )/p. Let L g e . Then
fg e and

Proof. Ce (i). Suppose some integer k satisfies 2k < a < 2k + 1. By
(1.9) fg e (fg) for every nonnegative integer j and multi-a--2k

index 7 such that W 2j 2k; moreover

By Leibnitz’s role,

DD DD D-D
Again by (1.9),

Hence by (4.4),
(D-aD-g

and
(D-aD-

2--1-, c 2,_ and the result follows.
Case (ii). Arbitrary a > (n + 2)/p. Applying interpolation theory to

the bilinear operator (f, g) fg, we see that

E{(x,y), "0<x<l,
9.1/xd

is convex. Since the convex hull of

(l/p, a) 1 < p < ,a > (n + 2)/p, 2k < a < 2k + 1 for some integer k}

is the set (x, y) 0 < x < 1, y > (n + 1 )x} the result follows for all p, a such
thatl < p < anda > (nW2)/p.

4.6 Remark. If 0 < a (n W 2)/p, we no longer have 2 c L. Since
M c L by (4.2), the above theorem fails in this ease. However, some
substitute resalts are available.

L4.7TaEOaM. Let f e n2,+)/, where 1 < p < Then f e M2 if
< q < , < (n + 2)/q, (n + 2)/p, andO < < 1.
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Proof. The restriction 0 < a < 1 allows to use (2.2). As in (4.4), the
problem reduces to showing that [gl S. f e Lq. Again we find r, s such that
geL,SfeL’,andl/r+ 1/s 1/q.

L LBy (1.7) g e for 1/r 1/q a/(n + 2). S. f e if f e again by
(1.7) fe for

lip 1Is -P- ((n -P- 2)/p a)/(n -t- 2) 1Is -t- lip a/(n -P- 2)

or s (n -P- 2)/a. But then 1/r -P- 1Is 1/q a/(n -t- 2) -t- a/(n - 2)

l/q, nd the theorem follows.

4.8 RE,hilts. As in Strichurtz [13, II 3.6 und II 3.7], this result can be
strengthened. Virtuully the sume arguments show f eM if 1 p ,
0 <: a < 1, a . (n+ 2)/p,fL",nd

I{(x,t) S,f(x,t) > X)}I -< (K/X)("+)/" for allX> 0.

Appendix
tIere we perform the calculations to prove

ffo dx dt p.,.,.(x z, u)
’12

p,,(z, ) d d r-- dr <- 6’

independengly of > 0, (z, ) e f,. Recall

p,,.,(x, t) H.(x ry, r2s) H=(x, t),

exp {-I x 1 /4t}, > 0
H.(x, t)

=0, t_<_0.

Note that it suffices to prove the estimute for the case a 1; the change of
vuribles x a-x, a-V, r a-r then estublishes the estimate for all
other values of a > 0.
To simplify notation, let

ff: p.,,,(x z, u) p.,,,,(x, t) idyI(E) ds

forE any measurable subset of E"+. Of course, I (E) depends on (x, t), (z, u),
and r.

Step 1. We estimate ffll_ dx dt(f I (gt+)r--" dr). For --< -4 and
(z,u) eil, I(fl+)- 0. Fort >= 4, we have

I(il+)r--" d <__ I (12+)r--" d

-p I([t+)r-i-" dr
tll2
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(a) First we show ff,, dx dt(fo:’ I(ft+)r--" dr)/ <= C.
Sinoo _>_ 1",0 _<_ 1, 0  t,voh  o ,t-

and u rs >- 2;hence p.,,, is a C function. By the mean value theorem

p.,,,(x z,t u) p,u,.(x,t) -z,D,p,v,.(, r) uDp,,.(, )
for some (,r) ontheline from (x, t) to (x z, u). In full detail,
p,..,(x z, u) p,..,(x, t)

--E, z,[--(r s)("-’)/(,- ry,)exp {--I ryl/4( rs)}
1 (a--n)/2--2+ : , exp {- ]/}]

(a--n)u[((a n)/2 1)(r rs exp l- ry]/4(r rs)}
((a n)/2 1)r("-’)/- exp {--
u[( )("-")-_

z I- uJ uK.

Recall z 1 andu 1. Each of the terms I,, J, and K is treated
separately; for brety only the calculations for J will be given. Exactly the
same techniques are used to treat I and K.
Again applying the mean value theorem,

1 t(a--n)/2--](.) J ((a n)/2 1) exp {-[ ’[/dr’}[-r

_
ry

:s((. )/2 2)’("-)/-’ + :s ’where (, r’) is on the line from (, r) to ( ry, r s) and hence lies in
the rectangle with vertices

(x,t), (x z,t u ), (x ry, rs and (x z ry, u s).
Note that t r’ 2t. To estimute ’, we consider separately the cases

For Ix 2t/, we have ’[ 3t/. Estimating the exponential by 1, we
have from (.),

J < C (rt("-)/-/ + rt("-)/-) < err("-)/-

since r < t.
Treating I and K similarly, we have

p.., (x z, u) p,,., (x, t) Crt("-’)

t 2t/forr < ,Ix[ Thuswehuve

dx dt I -- dr

C r-t-"- dr dx dt

C -’/- dx dt C - dt C.
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For Ix > 2t/ and 0 < r <= ,wehve1/21xl -< I’1 -< 21xl. Thus
from (.),

J <= Ce-Il"/t[r x (-)/2- "4- r2t(a-n) _1.. r21 x 12 (’-’)/2-’]
Crt(-’)/2-mlx e-il 2/.

Treating I and K similarly, we have

for ]x >= 2t1/ and 0 =< r <= t1/ Hence

f dx dt I + r--" dr

C (-")/-m ]x [e-i=’/t dx dt r- dr

C ff t-"/-)x[e-’’ dz dt
t4- d

(b) Now we show II,a dx dt(yi,, I (fl+)’r--’" dr)/’ C.
Express+ EuEuEawherers t- 2, t- 2 s 2, and
+ 2 s respectively. We estimate the terms

fft dx dt(fi,, I (E)r-- dr)’/ separately.
(i) The term in I (E).

,..,( z, )

H.( z, u)
H.(x ry, rs)

=PWQ.

By the mean value theorem,
(-.)/- <.-.>/- I/4}

for some (f,v) on the line from (x,t) to (x-- z,t-- u). Notet < v < 2t.
For Ix 2, we estimate ] and the exponential term by constants to ob-

tain
(a--n)/2--2

T
(a--n)/2--a Ct(a-n) /2-2P C(r("-)/2- + r +

For ix Z 2, w ix lx I. Tu
P C (t("-)=- x + ("-)- + ("-)-’ x ):’’’.

It follows readily that

d d P dy d r
4 tl/2
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For the term in Q, we again have by the mean value theorem
(--)/2--2 T(--n)/2--3 2/4"

where (., 7") is on the line from (x ry, r28) to (x z ry, u r2s ).
Sincet- r2s _-> 2inEl,wehave1/2(t- r2s <_ 7" <__ 2 (t r2s ). In order to
estimate , we must consider several cases separately.

First we estimate for Ix __< 2. Since

Thus

1 exp {-I ]2/47.} --< C7./2 and

Q <= CT(O-n)/2-312 C (g r28) (.-n)]2-3/2.

ffE f0Q dy ds <- C (t r2s)(,-n)/2-3/2 ds <- Cr-2

and so

[SS )1,,Q dy ds r-1-" dr <= C
tl/2 tl/2

This is integrable over (x, t) I[ x --< 2, __> 4}.

1/2
r-5-2 dr| Ct-1-al2’.

I

For xl -> 2, our estimates must be more delicate. We write
E1 F1 IJ F tJ F, where Ix ryl <=
1 x -< x ry respectively. Note that F1 F2 0 unless r __> lx and

!#1/2hence unless r > -lx] +
For (y,)eFwehavel(I -< (2. Thus

(-n)Q _< C (,-(-- + - + __< C ( r)(-’/-.

Noting that {U x ryl <- Cr-n,

ffl
Hence

tl12

Q dy ds <= Cr
,0

r28 (a-n)12-2 d8 Cr-n--2.

Q dy ds r--2" dr <-_ C r-2n--2: dr

This is integrable over {(x, t) ll x
For (y, s) e F,

l <=i x ryl + i <= C x ry

c(-- xl / t/2)-n-2-:.
__> 2, >4}.

and ll->-Ix-ry]- 1 >_ CIx-ryl,

so we have

Q <__ C((t- r)("-n)/2-lx- ryl+ (t- r28) ("-n)/2-2-- (t r28)(a-n)/2--31X ryl) exp {-I x ryl’/C(t r’s)i.
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Making the change of variable y’ (t rs)-/ (x ry) and enlarging the
y integration to E", we see

ff Q dy ds <- Cr f [(t rs)"-a -{- (t r)(")’-] ds

Cr-"-

Exactly as for F, we see

,, Q dy ds r--" dr C( x +
For (y, s) e Fa we have

l x--ry 1 lx 1

[l exp /--[[’/4r} a 1[ exp/--[[’/8r} exp {--Ix
a Cr’/2 exp {--Ix 1’/128r}

Similarly,

exp - /4r} C (t rs) exp - x [/c (t rs)}.
Thus

Q C(t- r)("-’)-z exp {[ l/c(-
and

ff,, Q dy ds c f,-2),-, (t- r’s) (-")/’-/’ exp 1-1 x I’/c(t- #s)} ds

hus

Q dy ds r-- cl x r dr

c x I----’,
Sic is iteble over (, ) ] , }.
We hve now shown

dx dt I E --" d c.
,4 11

(ii) The term in I (E ). Fort 4sndt+2 swehsve

p.,,.( z, u) p.,,.(, t) H.(z, t) H.( z, u).

This cn be treated exactly s the te P in (i) bove.
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(iii) The term in I (E.). In this region both pr,,, (x, t) and p,,,, (x z,
u) may have a singularity. The two terms are handled separately. We

have
p,..,(x, t)] <__ H,(x, t) + H(x ry, t- rs).

Note that

H,(x, t) dy ds r--" dr c ,(x, t)
tl/2

This is integrable over (x, t) __> 4}.
For the other term we estimate separately the r-integration over the intervals

1 112 1 112

For[x 2t1/ we have

H,(x ry, r28) dy ds r-1-2a dr
tll2

’’-’ i,ds (t r28) (a-n)/.--- ,dtt 112 t--2)r-2 Yl I.

C x [a--n--2t--l-a/2
since

Of course, Ix 1"-’-2t-1-"/ is integrable over (x, t) Ix >-- 2tl/2,
_

4}.
For the second interwl,
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C IX -[- 1/

This is integrable over (x, t) >__ 4}.
Treating the term in p,.., (x z, u) similarly, we complete Step 1.

Step 2. It remains only to bound

If, (/," )dx dt I (ft+)2r-1-2a dr

Since the t-integration is over compact set this is comparatively esy; the
crucial thing is to show that I (+) 0 (r) s r O.
() First we estimate

l(fl+)

We tret the two terms slprtely. ReIll

p,.,.=(=, t) H.(x ry, r==) H.(x, t),

with H, C function, ly the mean vMue theorem,

p,.,.=(x,

or some (I, r) on th line from (z, t) to ( ry, r==).
lore thI

D, S,(,
=0, r0
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Thus

(f0till
I(2+)2r-1-2 dr)I/2 - c x

clx]-’-,
which is integrable over {(x, t) "It] -< 4, Ix] 2}.

(b) It remains only to estimate (fi I (+)r-- r)/.
Here we my use

1--2a /1/2

r dr

H(x z- ry,

t-- u-- rs ) dy ds.
First,

ill +
H,(x, t) dy ds r-l-2"dr c x

0

which is integmble over {(x, t) It[ <- 4, {x >__ 2}.
The term in H, (x z, u) is handled in the same manner.

Next, we have

Iff,+ H(x ry, r28) dy dsl r-- 2drl]
ds f (t r:s) ("-’)/-

expt x I/( rs ]
( rs /- ds r-’--edr

lz[ str-2
C

t>O

t-<O

ct/2 r-2’-5- dr > 0

,0, <- 0

fct"/ix -’--, > 0

O, tO

whichisintegrableover{(x,t)" x 2,r]tzs)
4}.

The term in H. (x z ry, is handled in exactly the same
munner, and we are done.
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