
STABLE MANIFOLDS OF SEMI-HYPERBOLIC FIXED POINTS
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J. W. ROBBIN

In this paper we show that the argument given in [2] (see also [3, p. 234])
proving the existence of the stable and unstable manifolds of a hyperbolic
fixed point of a smooth map can be sharpened so as to (1) work in the infinite-
dimensional case and (2) yield smoothness with respect to parameters. The
former improvement is essential for the application of the stable manifold
theory to hyperbolic invariant sets as in [5]; the latter is essential for applica-
tions of transversality theory as in [1]. The proof goes through for stable
manifolds of semi-hyperbolic fixed points, answering affirmatively a question
raised in [4] (where the unstable manifold of a semi-hyperbolic fixed point is
constructed; I presume that by the time [5] was written Pugh and Hirsch
knew the answer also).

For our proof we must assume not only that the given map is smooth but
also that its derivatives are (locally) uniformly continuous. We obtain the
corresponding smoothness for the stable manifold. This assumption is, of
course, vacuous in the finite-dimensional case.
Throughout, our notation is that of [1]. The main theorems of the paper are

4.1, 6.3, and 7.1.

1. Notation and terminology
If f X1 -- X2 is a map from a metric space X1 with metric dl to metric

space X2 with metric d, then L (f) denotes the minimum Lipschitz constant
for f. In other words, L) is the infimum of all real numbers K such that

ff (x), ](y)) K d (x, y) for all x, y e X. (We set L if) if no such K
exists.

If X is a topological space and f X X is a map, a point x0 e X is an at-
tractive fixed point iff f (x0) x0 and for all x e X, f (x) x0 as n . If X
is Hausdorff and x0 is an attractive fixed point of f, then x0 is the only fixed
point of f. The contraction principle guarantees the existence of an attractive
fixed point when X is a complete metric space and L (f) < 1.

If f is a function with values in a Banach space, f ]0 denotes the sup norm
of f; i.e. f I0 is the supremum of the real numbers f(x) as x ranges over
the domain of definition of f.

If E is a Banach space and r is a positive real number, then BE denotes the
open ball of radius r about the origin; i.e. BE is the set of all x e E such that

Let E and F be Banach spaces. The product space E X F is always given
the product norm; i.e.
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for x e E and y e F. Thus B (E X F) BrE X Br’. L (E, F) denotes the
Banach space of bounded linear maps from E to F and for k 2, 3, L (E, F)
denotes the Banach space of all bounded, symmetric k-linear maps from Ek to
F. The Banach space J* (E, F) is defined by

J(E,F) L(E,F) X L(E,F) X X L(E,’).
If U E is Ol:n and f U - F is a C (/ >_ 1) map (see [1]),

then jf U ---. J (E, F) is defined by

]f(x) (Df (x), Df(x), ..., Df(x)

for x e U. A map f is uniformly C iff f is C and jf is uniformly continuous.
If U is bounded and convex, f is uniformly C if f is C and Df is uniformly
continuous. This is by the mean value theorem and the fact that a uniformly
continuous function defined on a bounded set is bounded. If is compact (so
that E is finite dimensional) and f extends to a C function defined on , then
f is uniformly C.

Let G be a Banach space, Z

___
G be an open set, and f Z G be a map.

The local stable manifold of f is denoted by W (f) and is defined to be the set
of all pointszeZsuchthatff(z) eZforalln 0, 1, 2, .... Note that
f(W (f))

___
W (f) by definition.

2. Stable manifolds for Lipschitz maps

Throughout 2 and 3, E and F denote Banach spaces, G denotes the
product space G E F, and r is positive real number. Recall that
BG BrE X BrF.

2.1. THEOREM. Let f BG -- G be of the form f (q, b where

BG--E and # BrG---F.

Suppose b has the form

b (x, y By + S (x, y

for (x, y) e BrE X BF BG where B e L (F, F) and S BG -- 1. Assume B is
invertible and let e be a real number with 0 < e

_
1. Assume further that

(1) (Br)

_
Br],

I1B 0" + Iio) < r,
(3) 11B-[I (eL ( - L (S < e,
(4) B- II (eL ( - 1+ L (S < 1.

Then there is a unique function g BrE ---> Brl’ such that L (g <_ e and

f(graph (g)) graph (g).

Moreover if
(5) L() < 1,

then f graph (g has an attractive fixed point.
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Proof. Let 9 be the metric space of all maps g ]r]
_

Brl such that
L(g) _< e. The metric onisd(gl,g) Jig1 gl[0. 9 is not complete
(because Br is open) but this is not important. For g e 9 define I’ (g) Brl! -. "by

F(g) B-l(g opo (1, g)- S o (1, g)).

(Here 1 denotes the identity map of E. By (1), F (g) is well defined. Note
that f (graph (g))

___
graph (g) if and only if F (g) g.

As g o p (1, g)[10 _< g [10 and S (1, g)ll0 _< S I1o it follows that

By (3),

But Ilgll0-< r, henceby (2), [IF(g)[[0 < r. Hence

F (g) BE - BF.

L(r(g)) _< L(B-1)(L(g)L(p)L(1, g) -t- L(S)L(1, g))- B- II (eL (p -t- L (S

for g e 9. We have shown that F
For gl, g2

e o o (,

< e, o (1,

<_ (eL(p) -t-

Hence
S (1, g) S (1, g) _< L (S) g. g: II0.

r (e,) r (e) 110 B-1 (eL (p)

Thus by (4), F 9 - 9 is contraction map. Note that F (9) ----- 9’ where ’is the set of all g e 9 with g II0 -< B- II (r + S [10) <: r (by () above).
As ’ is a complete metric space, it follows from the contraction principle that
F has a unique attractive fixed point g. Clearly f (graph(g)) graph(g) by
the definition of F.
Now assume (5). Then f[ graph (g) is a contraction map in the metric d on

graph(g) defined by

for z (xl, g (x)), z (x2, g (x)) e graph(g). This metric determines the
topology on graph(g) which it inherits as a subset of BG. This completes the
proof.
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2.2 COaOLL+RY. Suppose f is as in 2.1 and satisfies (1)- (4) and also
(6) II B-ill L@) < 1.

Let g be as in the conclusion of 2.1 and define a real number K by

II B-111L(S)L(+) L(S).g I] 8-1

Then

(7) K > 1;

K II Y g(x)II <- !1 +(x, y) g@(x, y))II.

then graph (g) W’ (f). If (5) holds, f has a unique fixed point which is an
attractive fixed point of f W8 (f).

Proof. (6) insures that K is well defined. Note that (5), together with
(4), implies (6) but we will need 2.2 under the weaker hypothesis of (6).
As r(g) g,

Bg(x) g((x, g(x))) S(x, g(x))

forxBrE. Now for (x,y)BrE XBrF

S(y g(x) -4- g(x)) - S(x, y) g@(x, y))II

liB(y- g(x)) +go(x,g(x)) -S(z,g(x)) +S(x,y) go(x,y)[

B (y g (x)) [g o (z, y) g o (x, g (x))] [S (z, g (x)) S (x, y )]

S(y--g(z)) n(g)L()y- g(x) l L(S) y- g(x) i
( S- ]-- L(g)L() L(S))]]y g(z)

As g B-(g o (1, g) S o (1, g)) and as L(1, g) g 1, it follows that
L(g) B- (L(g)L@) + L(S)) or

L(g) li B- II L(S)
1 !1 S

Combining these two inequalities gives

Now suppose K > 1. Let z (x0, y0) e BG BE X BF. If
z e graph(g), then f (z) e graph(g) for n 0, 1, 2, (as f(graph(g))
graph(g) ). Assume z graph(g) that is, y0 g (x0). We must show that
z e W’ (f); i.e. it is not the case that (z) e BG for all n. Suppose the contrary.
Then ff (z) is defined for all n and we may define (x,, y) f (z). In ew
of the first part of the theorem,
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Hence by induction
Y g (x) I! >- K’il y0 g (x0) I!.

This says that the distance from y. to g (x) is growing exponentially, con-
tradicting the fact that y., g (x.)e BrF.

If (5) holds, flW (f) has an attractive fixed point by 2.1. But any fixed
point of f is in W (f) by definition. Hence this is the only fixed point of f.

3. Smoothness of the stable manifold

In this section we retain the notation of 2. Our aim is to show that the
local stable manifold is as smooth as the map.

3.1 THEOREM. Let f" BG BrE X BF -- G E X F have the form
f (, b) where q" BG - E and b" BrG -* F. Suppose and b have the
forms

(x, y) Ax + R(x, y), b(x, y) By + S(x, y)

for x e BrI and y e Bry where A e L(I, I), B e L(, ), R" BG -- I, and
S" BG -- F. Let be a positive real number. Assume that f is uniformly
C ( >_ 1), B is invertible, and

(s) B S,
(9) II B- !1 (r -t- [i S [10) < r,
(10) ilB-Ii < 1, [IAIi-< 1,

Then there is a real number o > 0 depending only on B- JJ and II AII (and not
on r) such that if <_ o, then W (f) is the graph of a uniformly C function
g" BE ----> BrF. If, in addition,

(12)
then (if <_ o), f has a unique fixed point and this fixed point is an attractive
fixed point of f W (f).

Proof. We will show that (8)- (11 imply (1)- (4) and (6)- (7) (for suit-
able e), and that (8)-(12) imply (5). Then we show that the g which results
from 2.1 is uniformly C. This (by 2) will complete the proof.

Hence assume (8)- (11). As (1), (2), and (8), (9) are identical, (1)
and (2) hold. Next note that L(R)
by the mean value theorem and (11). Hence

L()

by (10) and (11). But B- < 1 by (11) and hence

for sufficiently small. This proves (6).
Now L (q) <_ 1 - , L (S) <_ ti, and B-1 !1 < 1. Furthermore, (4) clearly

holds when e L (S) 0. Hence we may choose e with 0 <: e <_ 1 so that
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(4) still holds (for sufficiently small ). Because B-1 IlL () < 1, (3) holds
when L (S) 0 and hence as L (S) <_ jS ]]0 < , (3) continues to hold for
small i. Finally (7) holds when L (S) 0 and hence still holds when is
sufficiently small.

If we assume (12) in addition, then by

L@) < A + "
we have (5) if is small.
Now 2.1 and 2.2 assures the existence of a (Lipschitz) map g" BE

satisfying the conclusions of the theorem. All that remains is to show that g
is uniformly C. For this purpose we employ the Fiber contraction principle
[4] which we state without proof.

FIBER CONTRACTION PRINCIPLE. Let be a topological space, a complete
metric space, and X X a map offm

(e, h) (r (e),

for geg and he (where F 9 and A" for each g
be a real number with 0 p < 1. Assume

(13) A (h) is continuous in g for each fixed h e ,
(14) r 9 9 has an attractive fixed point,
(15) L(A) p for each g eg.

Then has an attractive fixed point.

Now let 9 be the metric spa defined in the proof of 2.1 and
the contraction map also defined there. Choo g e such that g is C but
otherwise arbitrary and let F (g); i.e.

B-’(eo (1, g) So (1, e)).

The higher derivatives of evaluated at a point x e BE are "polomials"
of the derivatives of g at x, of g at x’ (x, g (x)), of at (x, g (x)), and of S
at (x, g (x)). (See the composite mapping formula of [1].) In other words,
for x e BE

j(x) (?g (x’), "3 g (z), j (z), jS (z))

where z (x, g (x)) and x’ (z) und

’J(E,F) X J(E,F) X J(G,F) X J(G,F)J(E,F)

is a polynomial and is hence C and maps bonded sets to bounded sets.
When R and S are identically zero, (x) B-*g (Ax) and hence

j (x (B-Dg (Ax )A, B-D"g (Ax @ A, ..., B-Dg (Ax @ A)

where forCeL(E,F) andi 2, ...,k, C @AeL(E, F) is deed by

C @ A(e, e) C(Ae) (Ae)
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for el, e E. Thus when R and S are identically zero

, (p, q, j (z), jkS (z) (B-lpl A, B-IB (R)2 A, B-lp (R) A)

for

J(E F) L(E,F) L(E, F) X X L(E,F)q, p (p, p., p) e

For fixed g and x,
3 (p, q) (p, q, j (z), jS (z))

is linear in (p, q) when R and S are identically zero and is hence its own deriva-
tive. This derivative has norm

_
B-1 < 1. Hence if p is a real number

with B-1 < P <: 1 we have that

(*) 118(P,q) ;(p’,q’)ll -- pmx(l!P-- P’I!, IIq--

Jk (E, F) and as 8 (0, 0) 0 we have also thatfor p, p’, q, q’

;(P, q) II --< P max (It P II, q II).

Now by (11) (since (p, q) varies continuously with (z) and S(z) and
D (p, q) varies continuously with j (z) and jS (z)), we may assume (.)
and (**) continue to hold even when R and S are not identically zero (pro-
vided that is sufficiently small).

Let be the space of all uniformly continuous maps h ]r] -- j (E, F)
such that I] h [[0 _< 1. is a complete metric space (in the sup norm). For
g e 9 and h e C define Ag (h) BIi -- J (t, F) by

Ag (h (x (h (x’ ), h (x ), j, (z ), jS (z

for x e BE (where z (x, g(x)) and x’ (z)). By (**) above
3 S, and g re all uniformly continuous, and

as is uniformly continuous on bounded sets, if follows that A (h) is uniformly
contimmus. Thus A (h) e . Thus

Fix h C. As h, j, jS, and are uniformly continuous and as is uni-
formly continuous on bounded sets, it follows that z (h) is continuous in g.
This verifies (13). (14) was verified in the proof of 2.1 and (15) follows im-
mediately from (.). Thus by the fiber contraction principle the map
:9 X --9 X Cdefinedby(g,h) (F(g),
has an attractive fixed point. Let (g, h) denote this fixed point. As F (g) g,
g is the function of the conclusion of our theorem.
Now let go B’I!: --* BF be identically zero. Then go e , and if h0 j*go,

thenh0e3C. Let (g,h) ’(g0, h0) forn 0, 1, 2, .... Theng--.g
and h -, h uniformly as n --* . Clearly each g is uniformly C* and by the
definition of A and induction of n we have that j*g, h,. Thus g and its
derivatives up to order k converge uniformly; hence g is Ck and j*g h.
Hence g is uniformly C as was to be shown.



602 . w. BOBBIN

4. Dependence on a parameter
In this section we show that if f depends smoothly on a parameter, then the

dependence of the stable manifold W (f) on that parameter is just as smooth.
To make this precise we make the following definitions.

DEFINITION. Let a, U, and V be open sets in (possibly different) Banach-
able spaces and let C (U, V) denote the set of all C maps from U to V. A
function p: ( --, C (U, V) is called a C representation (resp. a uniformly C
representation) iff the evaluation map ev a X U --+ V defined by

ev (a, x) p(a) (x)

for a e a and x e U is C (resp. uniformly C).
DENTON. Let G be a Banachable space. A linear operator C e L (G, G)

is semi-hyperbolic iff the spectrum of C contains no complex number of modulus
one. LetZ_ Gbeopenandf:Z--*GbeaCmap. ApointzeZisa
semi-hyperbolic fixed point of f iff f (z) z and Df(z) e L (G, G) is semi-hyper-
bolic.

4.1 PARAMETERIZED LOCAL STABLE IANIFOLD THEOREM. Le, Z be, a
open neighborhood of 0 in a Banachable space G, and let p a ----> C (Z, G) be a
uniformly C representation (] >_ 1). Let ao e a be such that 0 is a semi-
hyperbolic fixed point of p (ao) Z . Then there is a closed splitting

G=EFEXF

of G, neighborhoods d, U, and V of a0,0, and 0 in (, E, and F respectively, and a
uniformly C representation r C (U, V) such that U X V Z and
for b 5,

graph( (b)) W (p (b) U X V).

Furthermore, for each b e , p (b U X V has a unique fixed point and this fixed
point is an attractive fixed point of p (b graph ( (B)).

Proof. Let f p (a0) Z -- G. By the hypothesis that 0 is a semi-hyper-
bolic fixed point off, the unit circle separates the spectrum of Df(0) L (G, G).
Hence by the spectral theorem we may assume that G E X 1 and
Dr(O) (A, B) where A e L(E, E) has spectrum inside the unit circle and
B e L (F, Y) has spectrum outside the unit circle. Thus B is invertible and by
[7] we may choose norms on E and F so that AII <: 1 and B- II < 1. We
suppose without loss of generality that a0 is the origin of the ambient space of
a. We choose a norm for the ambient space of a and then choose a positive
real number q such that BqE X BqF Z and Bqa a (Bqa denotes the
open ball of radius q centered at the origin in the ambient space of a). We give
G E X F the product norm so that BqG BqE X BqF.

For a e Bqa let f" BqG --* G be defined by f p (a) BqG. By Taylor’s
formula, fa (, a where BqG -- E and BqG -- F have the forms
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,a(x, y) Ax -t" Ra(x, y), a(x, y) By + Sa(x, y)

where Ra" BqG --* E and Sa" BqG -- Y for each a e Bqa and where Ra (x, y),
Sa (x y), DRa (x, y), and DSa (x, y) all vanish when a 0 and (x, y) (0, 0).
Define

R Ba BG --, E and S" Ba BG --* F

by R (a, x, y) Ra (x, y) and S (a, x, y) Sa (x, y) for (a, x, y) e Bqa BqG.
Let r and be real numbers with 0 < _< 1 and r <_ t-lq. Define

Rt: Ba Br E
by

Rt (a, x, y) t-lR (ta, tx, ty

for (a, x, y)e Bra X BE X BF.

Rat: BG --* E
by

Ra(x, y) R(a, x, y)

and St" B a B’G---, F

and St (a, x, y) t-iS (ta, tx, ty

For a e Bra we define

and Sat" BG-- F

and Sa(x,y) St(a,x,y)

and define fa" BG ---* G by settingL (, bat) where

a" BG--* E and " BrG --, F
are defined by

(x, y) Ax + R (x, y ), (x, y) By + S (x, y)

for (x, y) e BG.
Let E be the product of the ambient space of a with E so that

BE Ba X BE

and define ?" B X BF X F by ] (., )where
(a, x, y) (a, x) + (a, x, y), (a, x, y) By W S(a, x, y)

for (a, x, y) e B ( X F). Here e L (, ) is defined by (a, x) (a, Ax)
and " B ( F) is defined by (a, x, y) (0, R (a, x, y)). Note
that ] 1 (provided the ambient space of a is not the zero-dimensional
Banach space).
We will show that and r may be so chosen that f satisfies hypotheses

(8)-(12) of 3.1 for each aeB@ and ] satisfies (8)-(11) of 3.1. To do this
choose 0 depending on , A and B as in 3.1 (sufficiently small for the applica-
tion of the first half of 3.1 to maps such as ] whose linear part is (, B) and
also sufficiently small for the application of all of 3.1 to maps such as f with
"linear part" (A, B)). To verify the hypotheses of 3.1 it suffices to show

(16) ]]R]]0 < r(1 ]JAIl),
(17) S]]o rdwhere d < (1 lIB-)]]B--,
19 " "S



((16)-(19) must hold for some and r and all a e Ba.) To see this note
that (16) implies that I1A IIr -t- Ra I[0 < r. As

at Iio - A B’E tlo -t- Rat llo - A 11r "b Rat IIo,
(16) implies i)at < r which in turn implies that

at (BrG)

__
BrE and t(B B’F) __C B

verifying (8). Condition (17) implies that B (r + ll0) < r which is
(9) for the map ft and as St I]o is the supremum of Sat 11o as a varies over
Bra, this implies (9) for the map ], as well. (18) and (19) clearly imply
(11). (10) and (12) have already been verified.
First we verify (19). We note that for integers l, m, and n with
+m +n <_ k,

(,) D n.’D;Rt (a, x, y) tD D2mDR (ta, tx, ty

for a Ba and (x, y) BG and where h 21 -t- m + n 1. We first choose
r so that j*R is bounded on Ba BG, then choose (0, 1] so small that
tl]J*R I1o <- o. Then by (,)above,

D{ D’nDRt llo

_
ill > 0orm > lorn > 1. AsD2Rt(0,0,0) 0andD.Rt(0,0,0) 0
(**)canbemadetoholdwhenl=m 0andn lorl=n =0andre= 1
by making r smaller. Thus jRt [10

__
0; a similar argument shows that

kS 11o - /t0 (for suitable r and t).
Now for a Bra and (x, y) B*G we have

Rat (x, y) - Rat (x, y) Rat (0, 0) - Rat (0, O)

Sat (x, y) t..at (X, y) t..at (0, O) II + Sat (0, O) II
so that by the mean value theorem and (19)

Rat lio

_
rll DRa, Iio - R,u (0, 0) 11,

Sat Iio rll DSt I1o -t- Sa, (0, 0) ll.
Now as above we may make r smaller so that

DR..t llo < (1 A II). DS.. I[o < d. rll DRt ]1o. rl] DS.t Iio <
By replacing the norm on the ambient space of ( by a scalar multiple of itself
we make Ba smaller without disturbing the inequalities already proved. As
Ba gets smaller, so do Rat (0, 0) II and Sat (0, 0) (for Rot (0, 0)
Sot (0, 0) II 0). Thus for Ba small enough, the inequalities (***) imply

(16), (17), and (18).
Thus we may apply 3.1 and conclude that there are uniformly C functions

t and gt (for each a e Br() with

graph(t) W’(],) and graph(ga,)= W’(ft).
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W WAs z e (fat) if and only if (a, z) e (ft) it follows that Ot (a, x) gat (X)
for a Bra and x BrE. In other words the map Ba C* (BE, Br which
sends a to gat is a uniformly CA representation.
Now o (ta) and fat are related by the change of co-ordinates (x, y) -- (tx, ty ).

To complete the proof we take (g Ba (where p t-r), U BsE, V BSF
(where s t-lr) and for b e (g we define r (b) U -- V by

gat(tx)

for x e U (where a tb). As
uniformly CA representation. Clearly graph (r (b)) W (p (b) U X V).
The proof is complete.
Taking ( to be a point we obtain the "unprametrized" local stable manifold

theorem as a corollary to 4.2.

4.2 LOCAL STABLE MANIFOLD THEOREM. Let Z be an open neighborhood
of the origin in a Banachable space G and f" Z ---> G be a uniformly CA map
(k >_ 1) having the origin as a hyperbolic fixed point. Then there exists a closed
splitting G l @ F --- E X F of G, open neighborhoods U and V of the origin
in E and Y respectively, and a uniformly CA map g U -- V such that

graph(g) W" (f V Y ).

Furthermore, 0 is the only fixed point of f in U X V and it is an attractive fixed
point of f graph(g).

If G is finite dimensional, we may weaken the hypothesis of 4.2" we need
only assume that f is CA (for then its restriction to a smaller neighborhood of 0
is uniformly
We remark that if the map f of 4.2 is C*, then so is g. Indeed by 4.2 it is

true that for each integer p 1, 2, ..., g is C at points sufficiently near 0.
But fl graph(g) is a contraction and graph(g) is invariant under f; hence g si
everywhere C. As p is arbitrary, g is C*.

5. Examples and application
Let k be a non-negative integer, a be rel number with 0 < < 1, Z be

an open set in a Banach space, and G be a Banach space. Then B* (Z, G)
denotes the Banach space of all C
and B (Z, G) denotes the closed subspace of B* (Z, G) consisting of those
maps which are uniformly CA (the norm on B* (Z, G) is f Iio " 11Jf I1o).

B*B*+" (Z, G) is the Banach space of all f e (Z, G) such that D*f satisfies a
Hhlder condition of order a;the norm onB*+" (Z, G) is f llo J*f H, (D*f)
where H, (D*f) is the minimum Hhlder constant of order a of D*f. If 2 is
compact with smooth boundary, then CA (2, G) and C*+" (2, G) are Banach
spaces (with the appropriate norms).

5.1. If a
representation (see [1]) but unfortunately even if a

_
B (Z, G) is open and
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bounded and even when 2 is compact, the inclusion a --. Ck (Z, G) is not a
uniformly C representation.

5.2. If a Bk+"(Z, G) is open and bounded, then the inclusion
a --, C (Z, G) is a uniformly C representation. In fact it is a C+" representa-
tion (where this concept is defined in the obvious way). Hence 4.1 applies
and we obtain a result which may be expressed by saying that near a semi-
hyperbolic fixed point of a B+" map f’Z .--> G the stable manifold is
function of f. Inspection of the proof of 4.1 shows that each stable manifold
is in fact the graph of a Bk+" function and the representation
representation.

5.3. We emphasize 4.1 does not imply thatthe map r" 5 - C (U, V)
is C; however (at least when G is finite dimensional) it is continuous (pro-
vided that " is compact and ?

_
Z).

5.4. Even though the representation of 5.1 is not uniformly C we may still
conclude a rather strong theorem in this direction. Namely, suppose/ >_ 2
and a B (Z, G) is open and p’a --+ C-1 (Z, G) is the inclusion. Then
(in the context of 4.1) we may assume (by making a smaller so that it is
bounded) that p is a uniformly C-1 representation. Hence by 4.1, r is a
uniformly C-1 representation. By 4.2, if G is finite dimensional, each map
r (b)" U -- V is Ck (and not just C-).

5.5. More generally, if p’a ---+ C (Z, G) is any C representation (not
necessarily uniformly C but otherwise as in 4.1) and if/c >_ 2 and if each
p (a) Z --. G (for a e a) is uniformly C, then r is a C-1 representation and
each r (b) (for b e 6) is a Ck map.

5.6. Let 2 be compact with smooth boundary. If a C (2, G) is open
and bounded, the inclusion a C (Z, G) is not a uniformly C representa-
tion, but the remarks of 5.5 apply. If a C+" (,,, G) is open and bounded,
then the inclusion a -- C (Z, G) is a uniformly C representation (in fact, it is
a Ck+" representation) and the remarks of 5.2 apply.

6. Unstable manifolds

In [4] the stable manifold of a map f with a hyperbolic fixed point is obtained
as the unstable manifold of f-1. We reverse the process here obtaining an
analog of 4.1 for unstable manifolds. We first make the pertinent definitions.
Throughout this section Z is an open subset of a Banach space G.

DEFINITION. Let f’Z --* G. The unstable manifold of f is denoted by
W (f) and defined by

W (f) n:_f (Z).

The following lemma follows immediately from the definition.

6.1 LEMMA. If f" Z ----) f(Z)

_
G is a bijection, then W (f) W (f-).
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DEFINITION.

_
linear operator C e L (G, G) is hyperbolic iff it is invertible

and semi-hyperbolic. A point z e Z is a hyperbolic fixed point of a C map
f" Z -- G iff f(z) z and Df(z) e L (G, G is hyperbolic.

The following lemma is the key step in deriving 6.3 below from 4.1.

6.2 :LEMMA. Let p" ( ----> CA (Z, G) be a uniformly Ck representation with
>_ 1. Let ao e a, Zo e Z, f p (ao)" Z G and suppose that Df(zo) is a linear

isomorphism. Then there is a uniformly CA representation " ---. C (W, G)
where 5 is a neighborhood of ao in a and W is a neighborhood off(Zo) in G such
that for each b e 5 (b)" W G is a diffeomorphism onto (b) (W) and
(b)-I p (b) (b) (W).

Proof. Defineg’aXZ(XGbyg(a,z) (a,p(a)(z))foraeaand
z e Z. Dg (ao, Zo) is invertible and so by the uniformly C inverse function
theorem there exists neighborhoods of a0 and W of f(z0) and a uniformly C

--1map g 5 W --* a Z which is right and left inverse to g] g-1 ( X W).
g has the form (b, w) (b, h (b, w) for b e 5 and w e W and we may define,
for b e d, (b) W --. G by i (b) (w) h (b, w) for w e W. clearly has the
desired properties.

6.3 PARAMETRIZED LOCAL UNSTABLE VIANIFOLD THEOREM. Let

6)

be a uniformly CA representation (It >_ 1) such that 0 e Z is a hyperbolic fixed
point of p(ao)f or some ao e (. Then there is a closed splitting G F,

__
F, X F

of G, neighborhoods d, U, and V of ao O, and 0 in a, E, and F respectively and a
uniformly C representation " (B ---. C (U, V) such that U X V Z andfor
be,

graph (r (b)) W (p (b) V V).

Furthermore for b e 5, p(b) U X V is a diffeomorphism and has a unique
fixed point which is an attractive fixed point of p (b )-I graph (r (b)).

6.3 follows immediately from 4.1, 6.1, and 6.3. There is an obvious corollary
of 6.3 analogous to 4.2 the statement of which we leave to the reader.

7. Globalization
The unparametrized, finite-dimensional version of theorem 7.1 below is due

to Smale [6]. The proof of 7.1 is a straightforward generalization of Smale’s
proof and is therefore omitted.
The notions of uniformly C Banach manifold and uniformly C map are

defined in the obvious way. If a, X, and Y are uniformly C manifolds, a
map p a --+ C (X, Y) is a uniformly CA representation iff the evaluation map
ev a X Y is uniformly C. Note that C+1 Banach manifolds, maps,
and representations are uniformly C (mean value theorem).

Let X be a C manifold, f: X --, X a C diffeomorphism, and x e X a fixed
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point of f. The stable manifold off through x is denoted by W’(f, x) and defined
to be the set of all points y e X such that ff (y) --. x as n --. oo. The unstable
manifold of f through x is denoted by W(f, x) and defined by W’(f, x)
W (f-l, x). x is a hyperbolic fixed point iff Tf TX --. TX is a hyperbolic
linear operator. An admissible parametrization of W’(f, x) is an injective
immersion p t --. X where ti is a Banach space such that p (t) W’(f, x)
and p-lo f o p:ti -- t is a diffeomorphism and a contraction map. (The
fixed point of p-1 o f o P is necessarily p-1 (x).) An admissible parametrization
of WU(f, x) is an admissible parametrization of W (ff-, x). The importance
of admissible parametrizations is explained below.

Recall that a Banach space is uniformly C smooth iff it admits a uniformly
Ck, real valued function of bounded support which is not identically zero.

7.1 PARAMETRIZED GLOBAL STABLE-UNSTABLE MANIFOLD TIEOI,M. Let
p ( ----> C (X, X) be a uniformly C representation (k 1) such that for each
a e a, p (a) X X is a diffeomorphism. Let ao e a and Xo X and suppose Xo
is a hyperbolic fixed point of p (ao). Suppose further that X is modelled a
uniformly C smooth Banach space G. Then there exists a neighborhood of ao
in a, a closed splitting G E F E X F of G, and uniformly C representa-
tis

C(E, X and ’:C(F,X)
such that for each b 5, " (b [resp. .’ (b )] is an admissible parametrization of
W (f, Xo) [resp. W*’ (f, Xo)].

Admissible parametrizations are important because of the following lemma,
the proof of which we leave for the reader.

LEMMA. Let Xo X be a hyperbolic fixed point of a uniformly C diffeomor-
phism f X X and let pl and p be admissible parametrizations of W’(f, Xo)
[or W’(f, Xo)]. Let W X be a C submanifold. Then pl is transversal to W
ifand only ifp is. Hence if yo is also a hyperbolicfixed point off (not necessarily
distinct from Xo) and q and q are admissible parametrizations of W*’(f, yo),
then px and q are transversal if and only if p and q are.

This lemma enables us to define transversal intersection properties for
stable-unstable manifolds which are independent of the choice of admissible
parametrizations. The need for this lemma can be seen by considering a
"figure eight" in the plane which crosses itself transversally. Such a figure
eight can occur as the stable manifold of a hyperbolic fixed point of a dif-
feomorphism of the plane. Let W be one of the tangent lines at the crossing.
Then there are two injective immersions from the real line onto the figure
eight, one of which is transversal to W while the other is not.

Added in proof. After this paper was written, M. C. Irwin published a
very elegant proof of 4.2. in On the stable manifold theorem, Bull. Amer. Math.
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Soc. (2), vol. 76 (1970), pp. 196-198. Presumably Irwin’s technique also
yields the parametrized version of the stable manifold theorem (4.1).
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