STABLE MANIFOLDS OF SEMI-HYPERBOLIC FIXED POINTS

BY

J. W. RosBIiN

In this paper we show that the argument given in [2] (see also [3, p. 234])
proving the existence of the stable and unstable manifolds of a hyperbolic
fixed point of a smooth map can be sharpened so as to (1) work in the infinite-
dimensional case and (2) yield smoothness with respect to parameters. The
former improvement is essential for the application of the stable manifold
theory to hyperbolic invariant sets as in [5]; the latter is essential for applica-
tions of transversality theory as in [1]. The proof goes through for stable
manifolds of semi-hyperbolic fixed points, answering affirmatively a question
raised in [4] (where the unstable manifold of a semi-hyperbolic fixed point is
constructed; I presume that by the time [5] was written Pugh and Hirsch
knew the answer also).

For our proof we must assume not only that the given map is smooth but
also that its derivatives are (locally) uniformly continuous. We obtain the
corresponding smoothness for the stable manifold. This assumption is, of
course, vacuous in the finite-dimensional case.

Throughout, our notation is that of [1]. The main theorems of the paper are
4.1,6.3, and 7.1,

1. Notation and terminology

If f : X; — X, is a map from a metric space X; with metric d; to a metric
space X, with metric dp, then L(f) denotes the minimum Lipschitz constant
for f. In other words, L(f) is the infimum of all real numbers K such that
do(f(x),f(y)) < Kdi(x,y) forallz,y e X1. (Weset L(f) = « ifnosuch K
exists.)

If X is a topological space and f : X — X is a map, a point 2 ¢ X is an at-
tractive fixed point iff f(x0) = xoand forallz e X, " (x) > masn — . If X
is Hausdorff and z, is an attractive fixed point of f, then x, is the only fixed
point of f. The contraction principle guarantees the existence of an attractive
fixed point when X is a complete metric space and L(f) < 1.

If f is a function with values in a Banach space, || f||o denotes the sup norm
of f;1.e. || fllo is the supremum of the real numbers || f(x) || as « ranges over
the domain of definition of f.

If E is a Banach space and r is a positive real number, then B'E denotes the
open ball of radius » about the origin; i.e. B'E is the set of all z ¢ E such that
lell <

Let E and F be Banach spaces. The product space E X F is always given
the product norm; i.e.

I @ 9) || = max ([, |y
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forxeEandy eF. Thus B'(E X F) = BE X BF. L(E, F) denotes the
Banach space of bounded linear maps from E to F and fork = 2,3, - - - Ls (E, F)
denotes the Banach space of all bounded, symmetric k-linear maps from E* to
F. The Banach space J*(E, F) is defined by

J*®E,F) = L(E,F) X LI(E,F) X -+ X L{(E, F).

If U CEisopenand f : U — Fis a € (k > 1) map (see [1]),
then j*f : U — J*(E, F) is defined by

@) = (Df (), D’f (@), -+, Df(x))

forz e U. A map f is uniformly C* iff f is C* and j*f is uniformly continuous.
If U is bounded and convex, f is uniformly C* if f is C* and D*f is uniformly
continuous. This is by the mean value theorem and the fact that a uniformly
continuous function defined on a bounded set is bounded. If U is compact (so
that E is finite dimensional ) and f extends to a C* function defined on U, then
£ is uniformly C*.

Let G be a Banach space, Z & G be an open set, and f : Z — G be a map.
The locnl stable manifold of f is denoted by W’ (f) and is defined to be the set
of all points z € Z such that f*(z) ¢ Z foralln = 0, 1, 2, ---. Note that
FfW° () € W*(f) by definition.

2. Stable manifolds for Lipschitz maps

Throughout §§2 and 3, E and F denote Banach spaces, G denotes the
product space G = E X F, and r is a positive real number. Recall that
B'G = BE X B'F.

2.1. TueorEM. Let f : B'G — G be of the form f = (o, ¥) where

¢ :BG—>E and ¢ :BG—F.
Suppose Y has the form

v(x,y) = By + S(z, y)

for (z,y) eB'E X BF = B Guwhere Be L(F,F)and S : BG—F. AssumeBis
invertible and let e be a real number with 0 < e < 1. Assume further that

(1) ¢(B'G) € BE,

@) [IB* ¢+ 18l <7,

3) | B (eL(p) + L(S)) < ¢,

@) [|B7] (eL(e) + 1+ L(S)) < 1.
Then there is a unique function g : B'E — B'F such that L(g) < e and

f(graph(g)) < graph(g).
Moreover if

(6) L) <1,
then f | graph (¢) has an attractive fixed point.
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Proof. Let G be the metric space of all maps ¢ : B'E — B'F such that
L(g) < e. The metric on §is d(g1, ¢z) = ||g1 — g2]lo. G is not complete
(because B'F is open ) but thisisnotimportant. ForgegdefineI' (g) : BE —F
by

T(g) = B (geeo (1,9) = Seo (1, 9)).
(Here 1 denotes the identity map of E.) By (1), I'(¢) is well defined. Note
that f (graph(g)) < graph(g) if and only if ' (g) = ¢.

As|geee (1,9)llo < [lglloand |[Se (1,9)llo < || Slloit follows that

#) IT@) o < UBTH Ulgllo+ 11810
forgeG. But || gllo < 7, hence by (2), |[T(g)llo < r. Hence
T'(g) : BE — B'F.
By (3),
L(T(g9)) < LB (LG)L)LQA, g) + L)L, g))
< B (eLe) + L(S))
<e
for g e . We have shown that I' : ¢ — G.
For g1,g:¢G
lgrope (1, 01) — gzeoeo (1, 02) llo
<lgrepe (Lg) —gioee Lg)llo+ llgreee (1, 0) —geee (1,0) o
< L{g)Lp) g1 — g2 llo + g2 — g21lo
< (eL(p) + 1) g1 — g2 1lo

and

1Se (1, 01) — 8o (1, 0)llo £ L) [[g1 — g2llo-
Hence

IT @) — () llo < | B (eLle) + 1+ L(S)) g1 — gallo.

Thus by (4), T : ¢ — G is a contraction map. Note that I'(§) & G’ where G’
is the set of all g ¢ G with || gllo < || B™*|| * + || Sllo) < r (by (%) above).
As @ is a complete metric space, it follows from the contraction principle that
T has a unique attractive fixed point g. Clearly f (graph(g)) < graph(g) by
the definition of T'.

Now assume (5). Then f | graph (¢) is a contraction map in the metric d on
graph(g) defined by

d, z) = |z — x|

forzy = (1,9@1)),2 = (x2,9(x2)) e graph(g). This metric determines the
topology on graph(g) which it inherits as a subset of B'G. This completes the
proof.
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2.2 CoroLLARY. Suppose f is as in 2.1 and satisfies (1)—(4) and also
®) [|B7| L) <1.
Let g be as in the conclusion of 2.1 and define a real number K by

_ BT IL(S)L(e) _

K= e~ 2
Then
Kly—g@| L llv@y) — gl )l
Hence if
@) K>1;

then graph (g) = W*(f). If (5) holds, f has a unique fixed point which is an
attractive fized point of f | W* (f).

Proof. (6) insures that K is well defined. Note that (5), together with
(4), implies (6) but we will need 2.2 under the weaker hypothesis of (6).
AsT(g) = g,

By(z) = gle(x g(x))) — S, g())
for x ¢ BE. Now for (z,y) ¢ BE X BF
l¥@ y) — gl y))|
=By —g@) +9@)) + 8@ y) — gl y)) |
=By —g@)) + g0 g9@®) — 8@ g@) +8xy) —gee@y)l
=[Bly—g@)) —lgeely) —goe(@,g@))] =[S, g@)) — Syl
2By —g@)|l —L@)L@ly —g@) | — LE) |y —g@) |
> (B = L)L) — L(S)) lly — g() .

Asg = B (g°0° (1,9) — S8°(,¢)) and as L(1, ¢) < 1, it follows that
L(g) < | B | (L(g)L(p) + L(8)) or
B L(S)
L(g) < .
D =T ELe

Combining these two inequalities gives

l¢@, t) —gle@y))ll = Klly — g)|.

Now suppose K > 1. Let z = (x, %)eB'G = BE X BF. If
z e graph(g), then f" (2) e graph(g) forn = 0, 1, 2, --- (as f(graph(g)) <
graph(g)). Assume z ¢ graph(g); that is, yo # g (@). We must show that
2 ¢ W’ (f);i.e. it is not the case that f* (z) e B'G for allm. Suppose the contrary.
Then " (2) is defined for all n and we may define (., y.) = f"(2). In view
of the first part of the theorem,

| 9ni1 — g@as) | 2 Kl gn — g(@a) |l
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Hence by induction
[yn — g@a) | = K"[lyo — g(@) |-

This says that the distance from ¥, to ¢g(x,) is growing exponentially, con-
tradicting the fact that y., g (x,) e B'F.

If (5) holds, f | W?(f) has an attractive fixed point by 2.1. But any fixed
point of f is in W* (f) by definition. Hence this is the only fixed point of f.

3. Smoothness of the stable manifold

In this section we retain the notation of §2. Our aim is to show that the
local stable manifold is as smooth as the map.

3.1 TaeoreM. Let f:B'G = BE X BF — G = E X F have the form
f = (o, ¥) where ¢ : BG — E and ¢ : BG — F. Suppose ¢ and ¢ have the
Sforms

e(x,y) = Az + R(x,y), v¢(@,y)=By+ Svy)

for x¢B'E and y e B'F where Ae¢L(E, E), BeL(F, F), R:B'G — E,and
S:B'G — F. Let 6 be a posttive real number. Assume that f is uniformly
C* (k > 1), B is invertible, and

) ¢@BG) S BE,

@ 1B76+ (18] <,

) B <14l <1,

A1) R, 18, 17" R llo, 158 flo < 8.
Then there is a real number 8, > 0 depending only on || B™ || and || A || (and not
on 1) such that if 8 < &, then W*(f) is the graph of a uniformly C* function
g:BE — BF. If, in addition,

(12) [4l <y,
then (3f 8 < &), f has a unique fixed point and this fized point is an atiractive
fized point offl we(f).

Proof. We will show that (8)-(11) imply (1)-(4) and (6)—(7) (for suit-
able ¢), and that (8)—(12) imply (5). Then we show that the g which results
from 2.1 is uniformly C*. This (by §2) will complete the proof.

Hence assume (8)-(11). As (1), (2), and (8), (9) are identical, (1)
and (2) hold. Next note that L(R) < ||*R|| < 6 and L(S) < || /8 ]lo < &
by the mean value theorem and (11). Hence

L) <LA)+LR)<||A||+s<Z1+3
by (10) and (11). But || B || < 1 by (11) and hence
B |ILe) < | B (1 48) <1

for & sufficiently small. This proves (6).
Now L(p) <146, L(S) <4,and || B'| < 1. Furthermore, (4) clearly
holds when e = L(S) = 0. Hence we may choose ¢ with 0 < ¢ < 1 so that
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(4) still holds (for sufficiently small §). Because || B~ ||L(p) < 1, (3) holds
when L(S) = 0 and hence as L(S) < ||7°S|lo < 8, (3) continues to hold for
small §. Finally (7) holds when L(S) = 0 and hence still holds when & is
sufficiently small.

If we assume (12) in addition, then by

L) < AT+ /R < 1Al + 8

we have (5) if 8 is small.
Now 2.1 and 2.2 assures the existence of a (Lipschitz) map g : BE — B'F
satisfying the conclusions of the theorem. All that remains is to show that ¢

is uniformly C*. For this purpose we employ the Fiber contraction principle
[4] which we state without proof.

FiBer ConTrACTION PRINCIPLE. Let G be a topological space, 3¢ a complete
metric space, and ® : G X 3 — G X 3¢ a map of form

®(g, h) = (T'(9), Ag(R))

for geG and he3C (where T : G — G and A, : 3¢ — 3C for each geQ). Let p
be a real number with 0 < p < 1. Assume

(13) A, (h) is continuous in g for each fixed h e 3¢,

(14) T :g — G has an atiractive fixed point,

(15) L(a,) < pfor each g €SG.
Then ® has an attractive fixed point.

Now let G be the metric space defined in the proof of 2.1 and I': § — G
the contraction map also defined there. Choose ¢ € G such that ¢ is C* but
otherwise arbitrary and let § = T'(g); i.e.

j=B"(@gopo,g)—8(1,9).

The higher derivatives of § evaluated at a point z ¢ B'E are “polynomials”
of the derivatives of g at z, of g at ' = ¢ (z, g(x)), of ¢ at (z, g(z)), and of S

at (z, g(x)). (See the composite mapping formula of [1].) In other words,
for x ¢ B'E

G @) = (g (@), fg (@), e (2), 1S (2))
where 2 = (z, g(z)) and 2’ = ¢(2) and
&:J°E, F) X J*(E, F) X J*(G, F) X J*(G, F) — J*(E, F)

is a “polynomial” and is hence C* and maps bounded sets to bounded sets.
When R and S are identically zero, §(x) = B 'g(4z) and hence

(@) = (B™'Dg(4z)A, B"'Dy(4z) ®" A, ---, B D'y(dz) ®" 4)
where for Ce Li(E,F)and ¢ = 2, -+, k, C ®° A eLi(E, F) is defined by
C®‘A(el, ,ei) = C(A(h) (Ae,-)
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fore;, -+, e;e E. Thus when R and S are identically zero
&, ¢ J'e(2), 'S@)) = (B'p A, B'p ® 4, ---, B'pr ®" 4)
for
6P = (p1,p2, ) eJ (B,F) = L(E,F) X L;(E,F) X - -+ X L (E, F)
For fixed ¢ and =,

&, q) = &, ¢, 1% (2), /" (2))

is linear in (p, ¢) when R and S are identically zero and is hence its own deriva-
tive. This derivative has norm < || B™|| < 1. Hence if p is a real number
with | B || < p < 1 we have that

(*) e, q) — 8@, ¢)| < pmax (p —p' |, ¢ =)
for p, p’, q, ¢’ e J*(E, F) and as §(0, 0) = 0 we have also that

(%%) le@ )| < pmax (pl,[lql)

Now by (11) (since &(p, q) varies continuously with ¢(2) and S(2) and
D& (p, q) varies continuously with /% (z) and /S (z)), we may assume (x)
and (**) continue to hold even when R and S are not identically zero (pro-
vided that § is sufficiently small).

Tet 3¢ be the space of all uniformly continuous maps % : BE — J*(E, F)
such that || 4 |lp < 1. 3Cis a complete metric space (in the sup norm). For
g ¢G and h e 3 define A, (k) : BE — J*(E, F) by

A (k) (@) = &), h(x), e (@), /'S (2))

for x e BE (where z = (z, g(x)) and 2’ = ¢(2)). By (**) above
lAg®) o < p < 1. Ash,j%, S, ¢ and ¢ are all uniformly continuous, and
as & is uniformly continuous on bounded sets, if follows that A, (%) is uniformly
continwous. Thus A, (k) e3¢. Thus A, : 3¢ — 3C.

Fix hede. As h, i, /S, and ¢ are uniformly continuous and as & is uni-
formly continuous on bounded sets, it follows that A, (k) is continuous in g.
This verifies (13). (14) was verified in the proof of 2.1 and (15) follows im-
mediately from (*). Thus by the fiber contraction principle the map
®:G X 5 — g X 3¢ defined by ®(g, ») = (I'(g), A;(h)) for geG and he3C
has an attractive fixed point. Let (g, ) denote this fixed point. AsT (g) = g,
¢ is the funection of the conclusion of our theorem.

Now let go : BE — B'F be identically zero. Then go G, and if ko = j%g0,
then hge3C. Let (gn, hn) = ®"(go, ho) forn =0,1,2, ---. Theng, — g
and A, — h uniformly as n — «. Clearly each g, is uniformly C* and by the
definition of A and induction of n we have that j°¢, = h,. Thus g, and its
derivatives up to order k converge uniformly; hence ¢ is C* and /%9 = h.
Hence ¢ is uniformly C* as was to be shown.
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4, Dependence on a parameter

In this section we show that if f depends smoothly on a parameter, then the
dependence of the stable manifold W* (f) on that parameter is just as smooth.
To make this precise we make the following definitions.

DrerinitioN. Let @, U, and V be open sets in (possibly different) Banach-
able spaces and let C* (U, V') denote the set of all C* maps from U to V. A
function p : @ — C*(U, V) is called a C* representation (resp. a uniformly C*
representation) iff the evaluation map ev, : @ X U — V defined by

ev, (a, z) = p(a)(x)
for a e @ and z e U is C* (resp. uniformly C*).

DeriniTioN. Let G be a Banachable space. A linear operator C ¢ L (G, G)
is semi-hyperbolic iff the spectrum of C containsg no complex number of modulus
one. Let Z C Gbeopenand f:Z — G bea C' map. A pointzeZisa
semi-hyperbolic fixed point of f iff f(2) = 2z and Df(2) ¢ L(G, @) is semi-hyper-
bolic.

4.1 PARAMETERIZED LocAL STaABLE MANIFOoLD THEOREM. Let Z be an
open neighborkood of 0 in a Banachable space G, and let p : @ — C*(Z, G) be a
uniformly C* representation (k > 1). Let aoe @ be such that 0 is a semi-
hyperbolic fixed point of p(as) : Z — G. Then there is a closed splitting

G=E®F=EXF

of G, neighborhoods &, U, and V of ay, 0, and 0 in @, E, and F respectively, and a
uniformly C* representation = : ® — C*(U, V) such that U X V € Z and
for b e®,

graph(r (b)) = W' (o(0)| U X V).

Furthermore, for each b e ®, p(b) [ U X V has a unique fixed point and this fixed
point is an attractive fized point of p(b) | graph (x (B)).

Proof. Letf = p(a):Z — G. By the hypothesis that 0 is a semi-hyper-
bolic fixed point of f, the unit circle separates the spectrum of Df(0) ¢ L (G, G).
Hence by the spectral theorem we may assume that G = E X F and
Df(0) = (A4, B) where 4 ¢ L(E, E) has spectrum inside the unit circle and
B ¢ L(F, F) has spectrum outside the unit circle. Thus B is invertible and by
[7] we may choose norms on E and F so that | A || < land || B™|| < 1. We
suppose without loss of generality that ao is the origin of the ambient space of
@. We choose a norm for the ambient space of @ and then choose a positive
real number ¢ such that B’E X BF C Z and B%G@ & & (B’G denotes the
open ball of radius g centered at the origin in the ambient space of @). We give
G = E X F the product norm so that B°G = BE X BF.

For a ¢ B'G let f, : B’G — G be defined by f, = p(a) | B‘G. By Taylor’s
formula, f; = (¢a, ¥u) Where ¢, : B'G — E and ¢, : B‘G — F have the forms
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ea(r, y) = Az + Ra(z, y), Ya(2, y) = By + Sa(z, y)

where B, : B‘G — E and S, : B‘G — F for each a ¢ B’G and where R, (%, y),

Ss(x y), DR, (x,y), and DS, (z, y) all vanish when a = 0 and (z,y) = (0,0).
Define

R:B@ X B'G—E and S:B% G X B'G—F

by R(a, z,y) = Ra(z,y) and S(a, z, y) = S.(z, y) for (a, z,y) e B'G X B'G.
Let r and ¢ be real numbers with 0 < ¢ < 1and » < {'q. Define

R.:B@XBG—E and S;:B'@XBG—F
by

Ri(a, z, y) = 'R ({0, tz, ty) and S.(a, z, y) = 'S, tx, ty)
for (a, z, y) eB'G@ X B'E X BF. For a ¢B'G we define
R,,:BG—E and S,,:BG—F
by
Ru(z, y) = Rt(ay z,y) and Sa: (z, y) = S, (a, 2, y)

and define f,; : B'G — G by setting fo: = (¢as , Yot ) Where

¢t :BG—E and ¢,,:BG—F
are defined by

eat (@, y) = Az + Rt (2, y),  VYa:(,y) = By + Sat(z, y)

for (z,y) e B'G.
Let E be the product of the ambient space of @ with E so that

BE = Ba X BE
and define f, : BE X BF — E X Fby /. = (&,¥ ) where
‘;51(0', x, y) = Z(a) x) + Rt(a: Z, ,7/), ';t(a, z, y) = By + St(a’ z, ?/)

for (a,z,y) eB"(E X F). Here 4 ¢ L(E, E) is defined by 4 (e, ) = (o, Az)
and B, : B'(E X F) — E is defined by R.(a, 2, y) = (0, Ri(a, z, y)). Note
that || A || = 1 (provided the ambient space of @ is not the zero-dimensional
Banach space).

We will show that ¢ and » may be so chosen that f,: satisfies hypotheses
(8)-(12) of 3.1 for each a ¢ B'@ and f; satisfies (8)-(11) of 3.1. To do this
choose & depending on A, 4 and B as in 3.1 (sufficiently small for the applica-
tion of the first half of 3.1 to maps such as f; whose linear part is (4, B) and
also sufficiently small for the application of all of 3.1 to maps such as f,; with
“linear part” (4, B)). To verify the hypotheses of 3.1 it suffices to show

(16) || Raello <71 — [[ A1),

(17) || 8atllo < rd whered < (1 — [ B™ DI B |7,

(18) || Ratllo, [l Satllo < &0,

19) |5 Rello, 115°8ello < 5.
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((16)-(19) must hold for some ¢ and r and all a e B'G.) To see this note
that (16) implies that || A ||r + || Raclle < r. As

I eatllo < | A[BE o+ | Racllo < | A llr + || Racllo,
(16) implies || ¢at |lo < 7 which in turn implies that
¢«(B'G) CBE and & BE X BF)CBE

verifying (8). Condition (17) implies that || B™ || (r + || Sat |lo) < r which is
(9) for the map f,; and as || S¢||o is the supremum of || S,; ||o as a varies over
B'G, this implies (9) for the map f; as well. (18) and (19) clearly imply
(11). (10) and (12) have already been verified.

First we verify (19). We note that for integers I, m, and n with
l4+m+n<k
(%) DiDyDiR. (e, z, y) = {"Di DyD3R (fa, tx, ty)

fora eB'@ and (z,y) e B'G and where & = 2l 4+ m + n — 1. We first choose
r so that /*R is bounded on B'@ X B'G, then choose ¢ ¢ (0, 1] so small that
1] 7R lo < 8. Then by (x) above,

(%) I DiDyD;R, lo < &

ifl>0o0orm > 1lorn > 1. AsDyR,(0,0,0) = 0 and D;R;(0,0,0) =0
(#*) can be made to hold when! = m = Qandn = lorl=n=0andm =1
by making r smaller. Thus ||7*R: |0 < 8 ; a similar argument shows that
Il 7S¢ llo < 8o (for suitable » and t).

Now for a e B'®@ and (z, y) ¢ B'G we have

| Bat(@, ) | £ || Rate(, y) — Rat(0,0) || + || Rax(0, 0) [,
| See(@, y) | < [ Sae(®@, ) — Sae(0, 0) || + [/ 8a:(0, 0) ||
so that by the mean value theorem and (19)
| Rat lio < 7{| DRat [lo + || Ba: (0, 0) ||,
| Sat llo < 7[l DSt llo + || Sa: (0, 0) |I.
Now as above we may make r smaller so that
IDRa:lle < (1 — [[AN), [IDSaclle < d, 7||DRacllo, || DSaillo < 8.

By replacing the norm on the ambient space of @ by a scalar multiple of itself
we make B'@ smaller without disturbing the inequalities already proved. As
B'G gets smaller, so do || Ra: (0, 0) || and || Sz (0, 0) || (for || Ro: (0, 0) | =
I S0:(0, 0) || = 0). Thus for B'G small enough, the inequalities (***) imply
(16), (17), and (18).

Thus we may apply 3.1 and conclude that there are uniformly C* functions
§: and g,; (for each a ¢ B'®@) with

graph(g;) = W°(f.) and graph(ga:) = W' (fu).

(#%x)
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As ze W’ (f,.) if and only if (a, 2) e W*(f,) it follows that §;(a, ) = ga:(x)
forae B'@ and 2 ¢ B'E. In other words the map B'@ — C* (B'E, B'F) which
sends @ t0 gq¢ is a uniformly C* representation.

Now p (f’a) and f,. are related by the change of co-ordinates (x, y) — (tz, ty).
To complete the proof we take ® = B’Q (wherep = ), U = B’E, V = B'F
(where s = t7'r) and for b e ® we define # () : U — V by

7(0) (@) = ¢ ga(tz)

for x ¢ U (where a = £b). As ev, (b, ) = ¢ '§. (&b, tz) it follows that = is a
uniformly C* representation. Clearly graph(r(®)) = W’ (o (b) | U X V).
The proof is complete.

Taking @ to be a point we obtain the ‘“unparametrized” local stable manifold
theorem as a corollary to 4.2.

4.2 LocaL STABLE MaNIFoLDp THEOREM. Let Z be an open meighborhood
of the origin in a Banachable space G and f: Z — G be a uniformly C* map
(k > 1) having the origin as a hyperbolic fixed point. Then there exists a closed
splitting G = E @ F ~ E X F of G, open neighborhoods U and V of the origin
in E and F respectively, and a uniformly C* map g : U — V such that

graph(g) = W*(f| U X V).

Furthermore, 0 is the only fixed point of fin U X V and it s an attractive fized
point of f| graph(g).

If G is finite dimensional, we may weaken the hypothesis of 4.2: we need
only assume that fis C* (for then its restriction to a smaller neighborhood of 0
is uniformly C*).

We remark that if the map f of 4.2 is C*, then so is g. Indeed by 4.2 it is
true that for each integer p = 1, 2, ---, g is C” at points sufficiently near 0.
But f ] graph(g) is a contraction and graph(g) is invariant under f; hence ¢ si
everywhere C”. As p is arbitrary, g is C*.

5 . Examples and application

Let k be a non-negative integer, a be a real number with 0 < a < 1, Z be
an open set in a Banach space, and G be a Banach space. Then B*(Z, G)
denotes the Banach space of all C* maps f : Z — G such that || f {|o, || /*f o <
and B%(Z, G) denotes the closed subspace of B*(Z, G) consisting of those
maps which are uniformly C* (the norm on B*(Z, G) is |[fllo + [ 7% llo)-
B*™™(Z, G) is the Banach space of all f e B*(Z, G) such that D*f satisfies a
Holder condition of order a; the norm on B***(Z, G )is || f llo + || /*f || + Ha (D*f)
where H, (D*f) is the minimum Hoélder constant of order « of D*. If Z is
compact with smooth boundary, then C*(Z, G) and C***(Z, G) are Banach
spaces (with the appropriate norms).

5.1. If @  B*(Z, G) is open, then the inclusion @ — C*(Z, G) is a C*
representation (see [1]) but unfortunately even if @ & B (Z, G) is open and



606 J. W. ROBBIN

bounded and even when Z is compact, the inclusion @ — C*(Z, G) is not a
uniformly C* representation.

52. If @ C B*"™(Z, G) is open and bounded, then the inclusion
@ — C*(Z, G) is a uniformly C” representation. In fact it isa C*"* representa-
tion (where this concept is defined in the obvious way). Hence 4.1 applies
and we obtain a result which may be expressed by saying that near a semi-
hyperbolic fixed point of a B***map f:Z — G the stable manifold is a C*
function of f. Inspection of the proof of 4.1 shows that each stable manifold

is in fact the graph of a B*'* function and the representation = is a C*™*
representation.

5.3. We emphasize 4.1 does not imply that the map =: ® — C*(U, V)
is C%; however (at least when G is finite dimensional) it is continuous (pro-
vided that U X V is compact and U X V < Z).

5.4. Even though the representation of 5.1 is not uniformly C* we may still
conclude a rather strong theorem in this direction. Namely, suppose k > 2
and @ € B*(Z, G) is open and p : @ — C**(Z, G) is the inclusion. Then
(in the context of 4.1) we may assume (by making @ smaller so that it is
bounded) that p is a uniformly C*™ representation. Hence by 4.1, = is a
uniformly C*™ representation. By 4.2, if G is finite dimensional, each map
w(®): U— Vis C* (and not just C*7).

5.5. More generally, if p: @ — C*(Z, G) is any C* representation (not
necessarily uniformly C* but otherwise as in 4.1) and if ¥ > 2 and if each
p(a):Z — G (for a e @) is uniformly C*, then = is a C*™* representation and
each 7 (b) (for be®) is a C* map.

5.6. Let Z be compact with smooth boundary. If @ € C*(Z, G) is open
and bounded, the inclusion @ — C*(Z, G) is not a uniformly C* representa-
tion, but the remarks of 5.5 apply. If @ € C***(Z, G) is open and bounded,
then the inclusion @ — C*(Z, G) is a uniformly C* representation (in fact, it is
a C*™ representation) and the remarks of 5.2 apply.

6. Unstable manifolds

In [4] the stable manifold of a map f with a hyperbolic fixed point is obtained
as the unstable manifold of f™. We reverse the process here obtaining an
analog of 4.1 for unstable manifolds. We first make the pertinent definitions.
Throughout this section Z is an open subset of a Banach space G.

DeriNiTiON. Let f: Z — G. The unstable manifold of f is denoted by
W*(f) and defined by
W (f) = NGaf"(Z).

The following lemma follows immediately from the definition.

6.1 Lemma. Iff:Z — f(Z) S G is a bijection, then W*(f) = W*(f ).
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DEeriniTioN. A linear operator C ¢ L (G, G) is hyperbolic iff it is invertible
and semi-hyperbolic. A point zeZ is a hyperbolic fixed point of a C' map
fi1Z—> Giff f(z) = zand Df(2) ¢ L(G, G) is hyperbolic.

The following lemma is the key step in deriving 6.3 below from 4.1.

6.2 LEMMA. Let p: @ — C*(Z, G) be a uniformly C* representation with
E>1 LetaweQ,20eZ,f = plaw): Z — G and suppose that Df (29) is a linear
isomorphism. Then there is a uniformly C* representation p: ® — C* (W, G)
where G 1s a neighborhood of ay in @ and W is a neighborhood of f(z) in G such
that for each be® p(): W — G 1is a diffeomorphism onto () (W) and
pO)" = p®)[p®)W).

Proof. Defineg:@ X Z—>@& X Gbyg(a,z) = (a,p(a)(2)) for a e @ and
zeZ. Dg(ao, 2) is invertible and so by the uniformly C* inverse function
theorem there exists neighborhoods ® of ag and W of f(2) and a uniformly C*
map g ' : ® X W — @ X Z which is right and left inverse to g ] g H® X W).
¢ " has the form g™ (b, w) = (b, h (b, w)) forb ¢ ® and w ¢ W and we may define,

forbe®, p(b) : W —>G by p0d)(w) = h(b, w) for we W. p clearly has the
desired properties.

6.3 PARAMETRIZED LocAL UNSTABLE MaNIFoLD THEOREM. Let
p:@— C Z,G)

be a uniformly C* representation (k > 1) such that 0 € Z is a hyperbolic fized
point of p(ao)f or some aoe @. Then thereis a closed splittingG = E ® F~E X F
of G, neighborhoods ®, U, and V of ag, 0, and 0 in @, E, and F respectively and o
uniformly C* representation = : & — C" (U, V) such that U X V C Z andfor
be®,

graph (v (b)) = W*(e(®) | U X V).

Furthermore for be®, p(b) | U X V s a diffeomorphism and has a unique
fized point which is an attractive fized point of p(b)™ | graph(z (b)).

6.3 follows immediately from 4.1, 6.1, and 6.3. There is an obvious corollary
of 6.3 analogous to 4.2 the statement of which we leave to the reader.

7. Globalization

The unparametrized, finite-dimensional version of theorem 7.1 below is due
to Smale [6]. The proof of 7.1 is a straightforward generalization of Smale’s
proof and is therefore omitted.

The notions of uniformly C* Banach manifold and uniformly C* map are
defined in the obvious way. If @, X, and Y are uniformly C* manifolds, a
map p : @ = C*(X, Y) is a uniformly C* representation iff the evaluation map
e, : @ X X — Y is uniformly C*. Note that C**' Banach manifolds, maps,
and representations are uniformly C* (mean value theorem).

Let X be a C" manifold, f : X — X a C" diffeomorphism, and x ¢ X a fixed
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point of f. The stable manifold of f through x is denoted by W*(f,z) and defined
to be the set of all points y ¢ X such that " (y) — x as n — «. The unstable
manifold of f through z is denoted by W*(f, =) and defined by W*(f, ) =
W (™, x). zis a hyperbolic fixed point iff T, f : T, X — T, X is a hyperbolic
linear operator. An admissible parametrization of W°(f, x) is an injective
immersion p : E — X where E is a Banach space such that p (E) = W*({f, =)
and p 'ofop:E — E is a diffeomorphism and a contraction map. (The
fixed point of p™ o f o p is necessarily p " (z).) An admissible parametrization
of W*(f, z) is an admissible parametrization of W*(f ™, ). The importance
of admissible parametrizations is explained below.

Recall that a Banach space is uniformly C* smooth iff it admits a uniformly
C*, real valued function of bounded support which is not identically zero.

7.1 PARAMETRIZED GLOBAL STABLE-UNSTABLE MANIFOLD THEOREM. Let
p: @ — C*(X, X) be a uniformly C* representation (k > 1) such that for each
ae@,p(a): X — X is a diffeomorphism. Let ao e @ and xo ¢ X and suppose o
18 a hyperbolic fixed point of p(as). Suppose further that X s modelled on a
uniformly C* smooth Banach space G. Then there exists a neighborhood ® of ao
in @, a closed splitting G = E ® F = E X F of G, and uniformly C* representa-
tions

m:®— C*(E,X) and = :®— C*F, X)

such that for each be®, w(b) [resp. = (b)] 7s an admissible parametrization of
Ws (f’ fl?o) [7‘68[). Wu (f’ .’L’o)].

Admissible parametrizations are important because of the following lemma,
the proof of which we leave for the reader.

LemMA. Let xo e X be a hyperbolic fized point of a uniformly C* diffeomor-
phism f: X — X and let p1 and p. be admissible parametrizations of W* (f, o)
[or W*(f, %)]. Let W < X be a C* submanifold. Then p is transversal to W
if and only if p21s.  Hence if yo is also a hyperbolic fixed point of f (not necessarily
distinct from x) and qu and g are admissible parametrizations of W*(f, yo),
then p1 and g are transversal if and only if p. and g. are.

This lemma enables us to define transversal intersection properties for
stable-unstable manifolds which are independent of the choice of admissible
parametrizations. The need for this lemma can be seen by considering a
“figure eight” in the plane which crosses itself transversally. Such a figure
eight can occur as the stable manifold of a hyperbolic fixed point of a dif-
feomorphism of the plane. Let W be one of the tangent lines at the crossing.
Then there are two injective immersions from the real line onto the figure
eight, one of which is transversal to W while the other is not.

Added in proof. After this paper was written, M. C. Irwin published a
very elegant proof of 4.2. in On the stable manifold theorem, Bull. Amer. Math.
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Soe. (2), vol. 76 (1970), pp. 196-198. Presumably Irwin’s technique also
yields the parametrized version of the stable manifold theorem (4.1).
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