THE SCHUR MULTIPLIER OF A SEMI-DIRECT PRODUCT ${ }^{1}$

BY
Leonard Evens

1. Let G be a p-group which is the semi-direct product of an abelian normal subgroup A and a complementary subgroup K. It will be shown that if p is odd then

$$
H_{2}(G, Z) \cong H_{2}(K, Z) \oplus H_{1}(K, A) \oplus H_{2}(A, Z)_{K} \quad \text { (Theorem 2.1) }
$$

Moreover, a method is described for systematically expressing $H_{2}(G, Z)$ in terms of generators and relations. (The results of the first part grew largely out of conversations which the author has had from time to time with Norman Blackburn, and he is as much responsible for the ideas involved if not the final form presented here as is the author.)

To illustrate the method, the Schur Multipliers of the p-Sylow subgroups of the general linear groups, the symplectic groups, and the even dimensional orthogonal groups over finite fields of characteristic p are computed. (The case $p=2$, and for the symplectic case $p=2,3$ are omitted.) Each of these groups is a unipotent subgroup of a Chevalley group and is readily expressed in terms of generators and relations. Presumably this allows a somewhat more direct method of calculating the Schur Multiplier than is presented here. In view of this and to avoid tedium, I have omitted most of the details of the calculation. However, the step of computing $H_{1}(K, A)$ which is perhaps of independent interest and in which interesting homological phenomena occur (Proposition 5.1) is given a more extended treatment.

Notation. All tensor products are over Z.
If G is a group, A a left G-module, we have the group of n-chains

$$
C_{n}(G, A)=\sum Z\left\langle g_{1}, g_{2}, \cdots, g_{n}\right\rangle \otimes A
$$

We denote by $B_{n}(G, A)$ and $Z_{n}(G, A)$ the groups of boundaries and cycles respectively.

If $g, h \in G$, we write $[g, h]=g h g^{-1} h^{-1}$.
If $g \in G$ and $a \in A$, we write $[g, a]=g(a)-a$.
Finally, we alternate between additive and multiplicative notation freely where convenient.
2. Let K be a group, A a K-module. We are interested in $H_{2}(G, Z)$ for G the semidirect product $K \cdot A$. The spectral sequence argument for the group extension $1 \rightarrow A \rightarrow G \rightarrow K \rightarrow 1$ yields

$$
H_{2}(G, Z) \cong H_{2}(K, Z) \oplus K_{2}(G, Z)
$$

[^0]where $K_{2}(G, Z)=\operatorname{Ker}\left\{H_{2}(G, Z) \rightarrow H_{2}(K, Z)\right\}$, and also a natural exact sequence
\[

$$
\begin{equation*}
H_{2}(K, A) \xrightarrow{d_{21}^{2}} H_{2}(A, Z)_{K} \rightarrow K_{2}(G, Z) \rightarrow H_{1}(K, A) \rightarrow 0 \tag{1}
\end{equation*}
$$

\]

(Z may be replaced by any trivial A-module M if A is replaced in the above sequence by $H_{1}(A, M)$.)

Theorem 2.1. With the notation as above, suppose A is a finitely generated abelian group; then $2 d_{21}^{2}=0$. If A is finite abelian of odd order, then the sequence

$$
\begin{equation*}
0 \rightarrow H_{2}(A, Z)_{K} \rightarrow K_{2}(G, Z) \rightarrow H_{1}(K, A) \rightarrow 0 \tag{2}
\end{equation*}
$$

is exact and splits.
Proof. The first statement has been proved by Charlap and Vasquez; we include it only for completeness, but it is not used in what follows. To prove the second statement we show that if A is finite abelian of odd order, then

$$
H_{2}(A, Z)_{K} \xrightarrow{h} K_{2}(G, Z)
$$

has a left inverse; it follows immediately that the former arrow h is a monomorphism and the sequence (2) splits. In particular, it follows independently that $d_{21}^{2}=0$.

Define $\iota \epsilon H^{2}\left(A, H_{2}(A)\right)$ by the cocycle formula $i(a, b)=a \cap b$, for $a, b \in A$. (By " n " we mean the Pontryagin product in the ring $H *(A, Z)$; also, we have identified A with $H_{1}(A, Z)$.) The universal coefficient theorem yields the natural "evaluation" morphism

$$
\alpha: H^{2}\left(A, H_{2}(A)\right) \rightarrow \operatorname{Hom}\left(H_{2}(A), H_{2}(A)\right)
$$

and one checks easily that $\alpha(\iota)=2$ id. Namely, since A is finite, $H_{2}(A, Z)$ is generated by all $a \cap b$, and $a \cap b$ is represented by the cycle $(\langle a, b\rangle-\langle b, a\rangle) \otimes 1$.

Write $M=H_{2}(A, Z)$ and let the central extension

$$
\begin{equation*}
1 \rightarrow M \rightarrow E \rightarrow A \rightarrow 1 \tag{3}
\end{equation*}
$$

represent c. Then one knows [3, Sections 2, 4] that the cotransgression $\delta: H_{2}(A, Z) \rightarrow M$ is $\alpha(\iota)$, that is, 2 id .

Let K act on A and by the induced action on M. Observe that the cocycle i defined above is K-invariant. Hence, K acts also on E consistently with its actions on A and M. Let G be the semidirect product $K \cdot A$ and U the semidirect product $K \cdot E$. If $\phi: U \rightarrow G$ is defined by $k e \mapsto k a$ where $e \mapsto a$, then we may identify $\operatorname{Ker} \phi$ with M, and we have the commutative diagram with exact rows

$$
\begin{align*}
1 & \rightarrow M \rightarrow E \rightarrow A \rightarrow 1 \\
& =\downarrow \tag{4}\\
1 & \rightarrow M \rightarrow U \rightarrow G \rightarrow 1 .
\end{align*}
$$

Because of the naturality of cotransgression, (4) yields the commutative diagram

where δ^{\prime} is the cotransgression for the lower extension in (4). Since A acts trivially on M, we have $M_{G}=M_{K}$. Thus (5) induces the commutative diagram

Since $H_{2}(A)=M$ is of odd order, and since $\delta=2 \cdot \mathrm{id}$, the desired result follows. (Remember that $H_{2}(A)_{K} \rightarrow K_{2}(G)$ is a factor of $H_{2}(A)_{K} \rightarrow H_{2}(G)$.)
3. Let K be a group, A an abelian group. Put $L=K * A$, the free product of K and A. If K acts on A,

$$
k_{1} a k_{2} \mapsto k_{1}(a) k_{1} k_{2}
$$

defines an epimorphism $K * A \rightarrow K \cdot A=G$. Let S be the kernel of this epimorphism. One checks easily that S is the subgroup of L generated by all $k a k^{-1} k(a)^{-1}$ where $k \epsilon K$ and $a \in A$. (Notice that since $k a$ makes sense in L and in G, there is a possibility of confusion. Generally, the context will make clear what is meant.) To see this, the following identities in $K * A$ are useful: Write $(k, a)=k a k^{-1} k(a)^{-1}$; then

$$
\begin{align*}
& h(k, a) h^{-1}=(h k, a)(h, k(a))^{-1} \text { for } h \in K \\
& b(k, a) b^{-1}=\left(k, k^{-1}(b)\right)^{-1}\left(k, a k^{-1}(b)\right) \text { for } b \in A . \tag{7}
\end{align*}
$$

Remark 1. In fact, one can prove that S is free on the generators (k, a) with $k \neq 1$ and $a \neq 1$.

The fundamental homology sequence for the sequence

$$
1 \rightarrow S \rightarrow L \rightarrow G \rightarrow 1
$$

yields

$$
\begin{equation*}
H_{2}(L) \rightarrow H_{2}(G) \rightarrow S /[L, S] \rightarrow L / L^{\prime} \rightarrow G / G^{\prime} \rightarrow 0 \tag{8}
\end{equation*}
$$

We know $G / G^{\prime} \cong K / K^{\prime} \oplus A /[K, A]$. Also, by a result of Rinehart and Barr, [1, Section 4], for $i \geq 1$,

$$
H_{i}(K * A, Z) \cong H_{i}(K, Z) \oplus H_{i}(A, Z)
$$

the isomorphism being induced by the inclusions of K and A in $K * A$.
Thus (8) becomes

where the homomorphisms are the obvious ones. In particular, a is induced by the inclusions of K and A in G, and it may be factored through

$$
a^{\prime}: H_{2}(K) \oplus H_{2}(A)_{K} \rightarrow H_{2}(G)
$$

under which the first factor goes isomorphically onto a direct summand and the second factor goes into $K_{2}(G, Z)$.

We wish to compute

$$
\operatorname{Ker}\left\{S /[L, S] \rightarrow L / L^{\prime} \cong K / K^{\prime} \oplus A\right\}
$$

First, we may write $(k, a)=[k, a] a k(a)^{-1}$ where $[k, a]=k a k^{-1} a^{-1}$ is computed in L. $\quad[K, A]$ is a normal subgroup of L, and it is contained in $\operatorname{Ker}\left(L \rightarrow L / L^{\prime}\right)$. The element

$$
x=\left(k_{1}, a_{1}\right)^{e_{1}}\left(k_{2}, a_{2}\right)^{e_{2}} \cdots\left(k_{r}, a_{r}\right)^{e_{r}}, \quad e_{i}= \pm 1
$$

in S is congruent modulo $[K, A]$ to the element

$$
b=\left(a_{1} k_{1}\left(a_{1}\right)^{-1}\right)^{e_{1}} \cdots\left(a_{r} k_{r}\left(a_{r}\right)^{-1}\right)^{e_{r}}
$$

in A. On the other hand, since $(k, a) \mapsto a k(a)^{-1}$, the element x is in $\operatorname{Ker}\left(S \rightarrow L / L^{\prime}\right)$ if and only if $b=1$ in A. Hence $\operatorname{Ker}\left(S \rightarrow L / L^{\prime}\right)=S n[K, A]$.

Putting together this information we obtain the exact sequence

$$
\begin{equation*}
H_{2}(K) \oplus H_{2}(A)_{K} \xrightarrow{a^{\prime}} H_{2}(G) \xrightarrow{b} S \cap[K, A] /[L, S] \longrightarrow 0 . \tag{10}
\end{equation*}
$$

Consider next the group $S \cap[K, A] /[L, S]$. It is evidently functorial in pairs (K, A). Blackburn [1, Section 1] shows that it is naturally isomorphic to $H_{1}(K, A)$. An outline of his proof is as follows: Define an isomorphism $C_{1}(K, A) / B_{1}(K, A) \cong S /[L, S]$ by letting
$\langle k\rangle \otimes a \leftrightarrow(k, a)$.
Then $\sum\left\langle k_{i}\right\rangle \otimes a_{i}$ is a cycle if and only if, in view of the above computation, $\left(k_{1}, a_{1}\right)\left(k_{2}, a_{2}\right) \cdots\left(k_{r}, a_{r}\right)$ is in $[K, A]$.

Remark 2. In view of the discussion above one concludes that modulo the direct summand $H_{2}(K)$ the two sequences (1) (or (2)) and (10) are the same. To prove this one would have to identify $K_{2}(G, Z) \rightarrow H_{1}(G, A)$ as the cotransgression b. We see no transparent way of verifying this, so we content ourselves with the formulation above which is sufficient for what is done here.

The sequence (10) is a useful tool for computing H_{2} particularly if it is to be described in terms of defining relations for the group. Write $K=F_{K} / R_{K}$ and $A=F_{A} / R_{A}$ where F_{K} and F_{A} are free. Let $F=F_{K} * F_{A}$; if we map F onto $G=K \cdot A$ in the obvious way, then we may write $G \cong F / R$ where $R \supseteq R_{K} * R_{A}$. The relationships among the various groups of interest are summarized in the following diagram with exact rows and columns:

The cotransgressions

$$
\begin{gathered}
H_{2}(G) \rightarrow S /[L, S], \quad H_{2}(G) \rightarrow R /[F, R], \\
H_{2}(K) \rightarrow R_{K} /\left[F_{K}, R_{K}\right], \quad H_{2}(A) \rightarrow R_{A} /\left[F_{A}, R_{A}\right]
\end{gathered}
$$

are natural homomorphisms; also, the last three yield isomorphisms $H_{2}(G) \cong R \cap F^{\prime} /[F, R]$, etc. In particular, the isomorphism

$$
H_{2}(A) \cong R_{A} \cap F_{A}^{\prime} /\left[F_{A}, R_{A}\right]=F_{A}^{\prime} /\left[F_{A}, R_{A}\right]
$$

is described as follows. Let x and y in F_{A} represent a and b in A; then $a \cap b \in H_{2}(A)$ corresponds to the coset of $[x, y]$ on the right. Furthermore, this isomorphism is a K-isomorphism provided we let K act on the right as follows. For each k in K, choose an endomorphism of F_{A} covering the automorphism of A produced by letting k act on A. This endomorphism carries F_{A}^{\prime} into itself and induces an automorphism of $F_{A}^{\prime} /\left[F_{A}, R_{A}\right]$ depending only on k. Adding this information to the sequence (10), we obtain the follow-
ing diagram with exact rows:
(12)

Notice $a^{\prime \prime}$ and $b^{\prime \prime}$ are induced by the obvious group homomorphisms.
According to Theorem 2.1, if A is of odd order, then a^{\prime} and $a^{\prime \prime}$ are monomorphisms onto direct summands. Also, $S \cap[K, A] /[L, S]$ is isomorphic to $H_{1}(K, A)$ by means of the explicit isomorphism described above. Hence, if we assume $H_{2}(K)$ has already been computed, the computation of $H_{2}(G)$ reduces to the computation of $H_{1}(K, A)$ and $H_{2}(A)_{K}$ each of which is readily expressed in terms of relations.
4. We wish to illustrate the method discussed above by computing the Schur Multiplier for certain interesting groups which we describe below.

Fix a finite field $k=G F\left(p^{m}\right)$. Denote by $G_{n}=G_{n}\left(p^{m}\right)$ the group of all upper triangular $n \times n$ matrices with entries in k and ones on the diagonal. G_{n} is the p-Sylow subgroup of the general linear group $G l(n, k)$.

Let V_{n} be the ambient vector space for G_{n} realized as the space of column vectors with n entries in k. $\quad V_{n}$ may also be realized as the normal subgroup of G_{n+1} consisting of all matrices of the form

$$
\left[\begin{array}{ll}
1_{n} & v \tag{13}\\
0 & 1
\end{array}\right], \quad v \text { in } V_{n}
$$

Moreover, we may imbed G_{n} in G_{n+1} as all matrices of the form

$$
\left[\begin{array}{ll}
g & 0 \tag{14}\\
0 & 1
\end{array}\right], \quad g \text { in } G_{n}
$$

Let $g \epsilon G_{n}$ and $v \in V_{n}$; then $g v g^{-1}$ computed in G_{n+1} corresponds to $g v$ in V_{n}. Clearly, G_{n} intersects V_{n} trivially in G_{n+1} so that G_{n+1} is the semi-direct product $G_{n} \cdot V_{n}$.

Suppose now p is odd. Let A_{n} be the additive group of all skew-symmetric $n \times n$ matrices with entries in k. We identify A_{n} with the exterior power $\wedge_{k}^{2} V_{n}$ when convenient. Imbed A_{n} in $G_{2 n}$ as the normal subgroup of all matrices of the form

$$
\left[\begin{array}{ll}
1_{n} & a \tag{15}\\
0 & 1_{n}
\end{array}\right], \quad a \text { in } A_{n}
$$

Let $g^{*}=\left(g^{-1}\right)^{T}$. Imbed G_{n} in $G_{2 n}$ as the subgroup of all matrices of the
form

$$
\left[\begin{array}{ll}
g & 0 \tag{16}\\
0 & g^{*}
\end{array}\right]
$$

Then, for g in G_{n}, a in A_{n}, the automorphism $a \mapsto g a g^{-1}$ computed in $G_{2 n}$ coincides with $a \mapsto g a g^{T}$ in A_{n}, that is, with $v \wedge w \mapsto g v \wedge g w$. Clearly, G_{n} intersects A_{n} trivially in $G_{2 n}$ so that we may form the semi-direct product $H_{n}=G_{n} \cdot A_{n} . \quad H_{n}$ is the p-Sylow subgroup of the even dimensional orthogonal group $O(2 n, k)$.

Let S_{n} be the additive group of all $n \times n$ symmetric matrices with entries in k. When convenient we identify S_{n} with the symmetric power $s_{k}^{2} V_{n}$. As above in (15) we imbed S_{n} in $G_{2 n}$, and we consider the semi-direct product $J_{n}=G_{n} \cdot S_{n}$. (Notice the symmetric product $v w$ should replace the wedge product $v \wedge w$ in the formula above.) Then J_{n} is the p-Sylow subgroup of the Symplectic group $S p(2 n, k)$.
5. In view of the constructions outlined in the previous section, we shall be interested in computing $H_{1}(G \cdot V, A)$ where $G=G_{n}, V=V_{n}$, and (I) $A=V_{n+1}$, (II) $A=S_{n+1}$, or (III) $A=A_{n+1}$. I claim that in each case the sequence

$$
\begin{equation*}
0 \rightarrow[V, A] \rightarrow A \rightarrow A_{\nabla} \rightarrow 0 \tag{17}
\end{equation*}
$$

splits as a G-sequence (but not as a V-sequence.) It follows from this by the usual edge homomorphism argument that

$$
\begin{equation*}
H_{1}(G \cdot V, A) \cong H_{1}\left(G, A_{\nabla}\right) \oplus H_{1}(V, A)_{G} \tag{18}
\end{equation*}
$$

To demonstrate the splitting of (17), we exhibit a split sequence,

$$
0 \longrightarrow[V, A] \longrightarrow A \underset{j}{\stackrel{h}{\rightleftarrows}} B \longrightarrow 0
$$

in each case. $\quad\left(B \cong A_{V}.\right)$
(I) Put $A=V_{n+1}, B=k$; define

$$
h\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n+1}
\end{array}\right]=x_{n+1} \quad \text { and } \quad j(t)=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
t
\end{array}\right]
$$

Notice $\operatorname{Ker} h=[V, A] \cong V_{n}$.
Remark. A certain amount of confusion can arise since V_{n} appears both as a subgroup of G_{n+1} and a submodule of V_{n+1}. This will be particularly annoying when we are dealing with explicit cycles. Rather than complicate the notation even more, we choose to try to keep our wits about us.
(II) Put $A=\mathrm{s}_{k}^{2}\left(V_{n+1}\right), B=K$. Let $e_{1}, e_{2}, \cdots, e_{n+1}$ constitute the standard basis for V_{n+1}. Since $h=h_{\mathrm{I}}$ has already been defined, it makes sense to define $h=h_{\text {II }}$ by $h(a b)=h(a) h(b)$, for a, b in V_{n+1}. Define $j=j_{\text {II }}$ by $j(t)=t\left(e_{n+1}\right)^{2}$. Put $T_{n}=\operatorname{Ker} h=[V, A]$.

As an auxilliary device, we consider also the following.
(IIa) Put $A=T_{n}, B=V_{n}$. Define h^{\prime} by

$$
h^{\prime}(a b)=h(a) b+h(b) a
$$

Notice that T_{n} is spanned by products $a b$ with a or b in V_{n}, and for such products $h^{\prime}(a b)$ is in V_{n}. Of course, the above formula also defines a $G_{n+1^{-}}$ homomorphism $h^{\prime}: S_{n+1} \rightarrow V_{n+1}$. Define j by $j(a)=a e_{n+1}$ for a in V_{n}. Notice

$$
\operatorname{Ker} h^{\prime}=\left[V, T_{n}\right]=\left[V,\left[V, S_{n+1}\right]\right]=S_{n}
$$

(III) Put $A=\bigwedge_{k}^{2}\left(V_{n+1}\right), B=V_{n}$. Define $h=h_{\text {III }}$ by

$$
h(a \wedge b)=h(a) b-h(b) a
$$

for a, b in V_{n+1}. (The image does in fact lie in $V_{n}!$) Define j by

$$
j(a)=e_{n+1} \wedge a
$$

for a in V_{n}. Notice Ker $h=[V, A]=A_{n}$.
One checks easily in all cases that $h\left(h^{\prime}\right)$ is a G_{n+1} homomorphism, but j is only a G_{n}-homomorphism.

We now turn our attention to the computation of $H_{1}(G \cdot V, A)$. Proceeding by induction, we reduce the computation to findings $H_{1}(V, A)_{G}$. The short exact V-sequence (17^{\prime}) yields the long exact sequence

$$
\begin{equation*}
H_{2}(V, B) \xrightarrow{\delta_{2}} H_{1}\left(V, A^{\prime}\right) \longrightarrow H_{1}(V, A) \longrightarrow \tag{19}
\end{equation*}
$$

$$
H_{1}(V, B) \xrightarrow{\delta_{1}} H_{0}\left(V, A^{\prime}\right)
$$

where we abbreviate $[V, A]=A^{\prime}$.
Consider first δ_{2}. Denote the prime field by F_{p}. Since V acts trivially on B, the universal coefficient theorem (over the ring F_{p}) tells us that

$$
H_{2}(V, B) \cong H_{2}\left(V, F_{p}\right) \otimes B
$$

(Initially the tensor product is taken over F_{p}, but of course this is the same as the tensor product over Z.) On the other hand, $H_{2}\left(V, F_{p}\right)$ is spanned as a vector space over F_{p} by the Pontryagin products $v \cap w, v, w \in H_{1}\left(V, F_{p}\right)=V$ and by elements $(v, p, 1), v \in H_{1}(V, Z)=V$ where ($v, p, 1$) is represented by the cycle $\sum_{i=0}^{p-1}\langle v, i v\rangle \otimes 1$ in $Z_{2}\left(V, F_{p}\right)$. (If V is written F_{V} / R_{V} with F_{V} free, then, expressing $H_{2}\left(V, F_{p}\right)$ in terms of relations as in section 3, we see that $v \cap w$ corresponds to $[x, y]$ and ($v, p, 1$) corresponds to x^{p}. Here, as in Section 3, v and w are represented respectively by x and y.)

A routine computation shows
(20) $\quad \delta_{2}(v \cap w \otimes b)$ is represented by

$$
\langle v\rangle \otimes[w, j(b)]-\langle w\rangle \otimes[v, j(b)]
$$

for v, w in V, b in B.
Also,
(21) $\quad \delta_{2}((v, p, 1) \otimes b)$ is represented by
$\langle v\rangle \otimes\binom{p}{2}[v, j(b)] \quad$ in cases I, IIa, and III,
and by
(21b)

$$
\left.\langle v\rangle \otimes\left\{\binom{p}{2}\right\}[v, j(b)]+\binom{p}{3}[v,[v, j(b)]]\right\} \quad \text { in case II }
$$

Thus, $\delta_{2}((v, p, 1) \otimes b)$ is zero in cases I, IIa, and III provided $p \neq 2$, and it is zero in case II provided $p \neq 2,3$.

Consider next δ_{1}. We have $H_{1}(V, B) \cong V \otimes B$, and a routine calculation shows
(22) $\quad \delta_{1}(v \otimes b)$ is represented by $-\langle\cdot\rangle \otimes[v, j(b)]$.

Proposition 5.1. For $p \neq 2$, and in case II, $p \neq 2,3$,

$$
\begin{equation*}
0 \rightarrow \text { Coker } \delta_{2} \rightarrow H_{1}(V, A) \rightarrow \operatorname{Ker} \delta_{1} \rightarrow 0 \tag{23}
\end{equation*}
$$

is a split exact G_{n}-sequence. It follows that

$$
\begin{equation*}
H_{1}(V, A)_{G} \cong\left(\text { Coker } \delta_{2}\right)_{G} \oplus\left(\operatorname{Ker} \delta_{1}\right)_{G} \tag{24}
\end{equation*}
$$

Proof. First consider cases I, IIa, and III. In these cases we have

$$
[V,[V, A]]=0 \quad \text { and } \quad H_{0}\left(V, A^{\prime}\right)=A^{\prime}
$$

For $v \otimes b \in V \otimes B$, define $\beta(v \otimes b) \in C_{1}(V, A)$ by

$$
\begin{equation*}
\beta(V \otimes b)=\langle v\rangle \otimes j(b)+(p-1 / 2)\langle v\rangle \otimes[v, j(b)] . \tag{25}
\end{equation*}
$$

β so defined is additive in b, and a routine but laborious calculation shows that $\beta\left(v_{1} \otimes b\right)+\beta\left(v_{2} \otimes b\right) \sim \beta\left(\left(v_{1}+v_{2}\right) \otimes b\right)$. Hence β defines a homomorphism $\beta: V \otimes B \rightarrow C_{1}(V, A) / B_{1}(V, A)$. Since

$$
d_{1}(\beta(v \otimes b))=-\langle\cdot\rangle \otimes[v, j(b)]
$$

it follows that $\sum v_{i} \otimes b_{i}$ is in the kernel of $\delta_{1}: V \otimes B \rightarrow A^{\prime}$ if and only if $\sum \beta\left(v_{i} \otimes b_{i}\right)$ is a cycle. Thus, β defines a homomorphism

$$
\beta: \operatorname{Ker} \delta_{1} \rightarrow H_{1}(V, A)
$$

which splits the homomorphism $H_{1}(V, A) \rightarrow \operatorname{Ker} \delta_{1} \subseteq H_{1}(V, B)$.
The argument in case II is very much the same except that we must make stronger use of the explicit nature of $A=S_{n+1}$. We have $[V,[V,[V, A]]]=0$
and $B=k$. Define as above

$$
\begin{align*}
\beta(v \otimes b)=[v] \otimes j(b)+((p-1) / 2)\langle v\rangle \otimes & {[v, j(b)] } \\
& +(p-1)(p-2) / 6\langle v\rangle \otimes[v,[v, j(b)]]
\end{align*}
$$

Also,

$$
\delta_{1}: V_{n} \otimes k \rightarrow A^{\prime} /\left[V, A^{\prime}\right] \cong T_{n} / S_{n} \cong V_{n}
$$

is given by $\delta_{1}(v \otimes b)=-b v$. Suppose $\sum v_{i} \otimes b_{i}$ is in Ker δ_{1}. Then

$$
\begin{aligned}
d_{1}\left(\sum \beta\left(v_{i} \otimes b_{i}\right)\right) & \left.=-\sum\left\{\left[v_{i}, b_{i} e_{n+1}^{2}\right]+((p-1) / 2)\left[v_{i}, b_{i} e_{n+1}^{2}\right]\right]\right\} \\
& =-\sum\left\{\left(2 b_{i} v_{i} e_{n+1}+b_{i} v_{i}^{2}\right)+((p-1) / 2)\left(2 b_{i} v_{i}^{2}\right)\right\} \\
& =-2\left(\sum b_{i} v_{i}\right) e_{n+1} \\
& =0
\end{aligned}
$$

Remark. In the explicit computations which follow the formulas (25) and $\left(25^{\prime}\right)$ which give the $\left(25^{\prime}\right)$ which give the splitting will be important.
6. The groups $G_{n}, n \geq 2, p \neq 2$. We have

$$
H_{2}\left(G_{n+2}, Z\right)=H_{2}\left(G_{n+1}, Z\right) \oplus H_{1}\left(G_{n+1}, V_{n+1}\right) \oplus H_{2}\left(V_{n+1}, Z\right)_{\epsilon_{n+1}}
$$

Let T be an ordered F_{p}-basis for k which contains 1. For s in k, let $x_{i}(s)$, $i=1,2, \cdots, n$, be the square matrix of degree $n+1$ with 1 on the diagonal, s in the $i^{\text {th }}$ row and $(i+1)^{\text {th }}$ column, and 0 elsewhere. Let $e_{i}(s), i=1,2$, $\cdots, n+1$, be the column vector of degree $n+1$ with s in the $i^{\text {th }}$ position. The $x_{i}(t), t$ in T, constitute a set of generators of G_{n+1}, and the $e_{i}(t), t$ in T, constitute a set of generators of V_{n+1}.

Let F_{G} be the free group on generators $X_{i}(t)$, and let F_{V} be the free group on generators $E_{i}(t)$. Define the obvious epimorphisms of these groups onto G_{n+1} and V_{n+1} respectively. Let $F=F_{G^{*}} F_{V}$, and define R_{G}, R_{V}, and R as in Section 3. Notice that the elements $x_{i}(t), i=1,2, \cdots, n, t$ in $T, e_{n+1}(t)$, t in T, constitute a minimal generating set for G_{n+2}. Let F_{0} be the subgroup of F generated by the elements $X_{i}(t), i=1,2, \cdots, n$, and $E_{n+1}(t)=X_{n+1}(t)$, t in T. We shall find a basis for $R \cap F^{\prime} /[F, R]$ represented by elements of $R_{0}=R \cap F_{0}$. Since F_{0} / R_{0} is a minimal presentation of G_{n+2}, we will get a more convenient description of H_{2} than that obtained by a direct application of the method of Section 3.
(a) Let $n \geq 1$. An F_{p}-basis for $H_{2}\left(V_{n+1}, Z\right)_{G_{n+1}}$ is given modulo [G_{n+1}, H_{2}] by the elements

$$
\begin{aligned}
e_{n+1}(t) \cap e_{n+1}\left(t^{\prime}\right), \quad t<t^{\prime} \text { in } T, \\
e_{n}(t) \cap e_{n+1}(1), \quad t \text { in } T .
\end{aligned}
$$

In terms of relations, these elements correspond to the elements of R,

$$
\left[E_{n+1}(t), E_{n+1}\left(t^{\prime}\right)\right] \quad \text { and } \quad\left[E_{n}(t), E_{n+1}(1)\right]
$$

Since $e_{n}(t)=\left[x_{n}(1), e_{n+1}(t)\right]$, we have

$$
E_{n}(t) \equiv\left[X_{n}(1), E_{n+1}(t)\right] \bmod R
$$

so that

$$
\left[E_{n}(t), X_{n+1}(1)\right] \equiv\left[\left[X_{n}(1), X_{n+1}(t)\right], X_{n+1}(1)\right] \bmod [F, R]
$$

This the contribution to an F_{p}-basis for $H_{2}\left(G_{n+2}, Z\right)$ from $H_{2}\left(V_{n+1}, Z\right)_{\theta_{n+1}}$ is given in terms of relations by the elements

$$
\begin{align*}
{\left[X_{n+1}(t), X_{n+1}\left(t^{\prime}\right)\right], } & t<t^{\prime} \text { in } T, \tag{26}\\
{\left[X_{n+1}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right], } & t \text { in } T .
\end{align*}
$$

(b) We have

$$
H_{1}\left(G_{n+1}, V_{n+1}\right) \cong H_{1}\left(G_{n}, k\right) \oplus H_{1}\left(V_{n}, V_{n+1}\right)_{G n}
$$

Also, $H_{1}\left(G_{n}, k\right) \cong G_{n} / G_{n}^{\prime} \otimes k$, and an F_{p}-basis for this group is given by the representative k-cycles $\left\langle x_{i}(t)\right\rangle \otimes t^{\prime}, i=1,2, \cdots, n-1, t, t^{\prime}$ in T, which lift to the V_{n+1}-cycles $\left\langle x_{i}(t)\right\rangle \otimes e_{n+1}\left(t^{\prime}\right)$. Let $[a, b]^{\prime}$ denote the commutator computed in $G_{n+1} * V_{n+1}$. Then the latter cycles correspond as in Section 3 to the elements

$$
\left[x_{i}(t), e_{n+1}\left(t^{\prime}\right)\right]^{\prime}\left[x_{i}(t), e_{n+1}\left(t^{\prime}\right)\right]^{-1}=\left[x_{i}(t), e_{n+1}\left(t^{\prime}\right)\right]^{\prime}
$$

In R, these correspond to the elements

$$
\begin{equation*}
\left[X_{i}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n-1, t, t^{\prime} \text { in } T \tag{27}
\end{equation*}
$$

(c) $H_{1}\left(V_{n}, V_{n+1}\right)=\operatorname{Coker} \delta_{2} \oplus \operatorname{Ker} \delta_{1}$ (a G_{n}-direct sum.) $H_{1}\left(V_{n}, V_{n}\right)$ $=V_{n} \otimes V_{n}$, and formula (20) tells us $\operatorname{Im} \delta_{2}$ is generated by all $v \otimes s w-w \otimes s v, v, w$, in V_{n}, s in k. Hence,

$$
\text { Coker } \delta_{2} \cong s_{k}^{2}\left(V_{n}\right), \quad \text { and } \quad\left(\text { Coker } \delta_{2}\right)_{G_{n}} \cong k
$$

with F_{p}-basis represented by the elements $e_{n}(1) \otimes e_{n}(t), t$ in T. In terms of cycles, we are led to the elements $\left\langle x_{n}(1)\right\rangle \otimes e_{n}(t)$, or, in terms of relations, the elements $\left[X_{n}(1), E_{n}(t)\right.$]. As in (a), modulo $[F, R]$ the latter elements are congruent to the relations

$$
\begin{equation*}
\left[X_{n}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right], \quad t \text { in } T \tag{28}
\end{equation*}
$$

(d) $\quad \delta_{1}: V_{n} \otimes k \rightarrow V_{n}$ is defined by $v \otimes s \mapsto-s v$, and one sees easily that
$\left(\operatorname{Ker} \delta_{1}\right)_{G_{n}} \cong \operatorname{Ker}\left\{\left(\delta_{1}\right)_{G_{n}}: k \otimes k \rightarrow k\right\}$.
An $\boldsymbol{F}_{\boldsymbol{p}}$-basis is given by the elements represented by the cycles

$$
\left\langle x_{n}(t)\right\rangle \otimes t^{\prime}-\left\langle x_{n}(1)\right\rangle \otimes t t^{\prime}, \quad t, t^{\prime} \text { in } T, t \neq 1
$$

The splitting map defined by formula (25) yields the V_{n+1}-cycles

$$
\begin{aligned}
\left\langle x_{n}(t)\right\rangle \otimes e_{n+1}\left(t^{\prime}\right)- & \left\langle x_{n}(1)\right\rangle \otimes e_{n+1}\left(t t^{\prime}\right) \\
& +((p-1) / 2)\left(\left\langle x_{n}(t)\right\rangle \otimes e_{n}\left(t t^{\prime}\right)-\left\langle x_{n}(1)\right\rangle \otimes e_{n}\left(t t^{\prime}\right)\right) .
\end{aligned}
$$

However, the expression in parentheses represents an element of Coker δ_{2} and, after an appropriate change of basis, we are left with the first part of the expression. In $\mathrm{G}_{\mathrm{n}+1} * \mathrm{~V}_{\mathrm{n}+1}$, this expression corresponds to

$$
\begin{aligned}
{\left[x_{n}(t), e_{n+1}\left(t^{\prime}\right)\right]^{\prime}\left[x_{n}(t), e_{n+1}\left(t^{\prime}\right)\right]^{-1}\left[x_{n}(1)\right.} & \left., e_{n+1}(\mathrm{tt})\right]\left(\left[x_{n}(1), e_{n+1}\left(t t^{\prime}\right)\right]^{\prime}\right)^{-1} \\
& =\left[x_{n}(t), e_{n+1}\left(t^{\prime}\right)\right]^{\prime}\left(\left[x_{n}(1), e_{n+1}\left(t t^{\prime}\right)\right]^{\prime}\right)^{-1}
\end{aligned}
$$

If $s=\sum_{r \epsilon T} a_{r} r, a_{r} \in F_{p}$, write

$$
X_{n+1}(s)=\prod_{r} X_{n+1}(r)^{a_{r}} .
$$

Then we are finally led to the relations

$$
\begin{equation*}
\left[X_{n}(t), X_{n+1}\left(t^{\prime}\right)\right]\left[X_{n}(1), X_{n+1}\left(t t^{\prime}\right)\right]^{-1}, \quad t . t^{\prime} \text { in } T, t \neq 1 . \tag{29}
\end{equation*}
$$

Induction now yields
Proposition 6. Let $n \geq 1, p \neq 2$. An F_{p}-basis for $H_{2}\left(G_{n+1}, Z\right)$ is given in terms of the generators $X_{i}(t), i=1,2, \cdots, n$, by the relations

$$
\begin{equation*}
\left[X_{i}(t), X_{i}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n, t, t^{\prime} \text { in } T \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& {\left[X_{i}(t), X_{i+1}\left(t^{\prime}\right)\right]\left[X_{i}(1), X_{i+1}\left(t t^{\prime}\right)\right]^{-1}} \tag{iv}\\
& \quad i=1,2, \cdots, n-1, t, t^{\prime} \text { in } T, t \neq 1 .
\end{align*}
$$

(Convention. $\quad X_{i}(s)=\Pi X_{i}(t)^{a_{t}}$ where $\left.s=\sum a_{t} t.\right)$
7. The groups $J_{n}, n \geq 2, p \neq 2,3$.

$$
H_{2}\left(J_{n+1}, Z\right)=H_{2}\left(G_{n+1}, Z\right) \oplus H_{1}\left(G_{n+1}, S_{n+1}\right) \oplus H_{2}\left(S_{n+1}, Z\right)_{a_{n+1}}
$$

Let F_{G} be as in section 6. The elements $e_{i}(1) e_{j}(t), 1 \leq i \leq j \leq n+1, t$ in T, generate S_{n+1}. Let F_{s} be the free group on generators $E_{i j}(t), 1 \leq i \leq j \leq n+1$, t in T, and map it onto S_{n+1} in the obvious way. Otherwise, proceed as in Section 6. Notice that the elements $X_{i}(t), i=1,2, \cdots, n, t$ in $T, X_{n+1}(t)=$ $E_{n+1, n+1}(t), t$ in T, form a minimal generating set for J_{n+1}.
(a) An F_{p}-basis for $H_{2}\left(S_{n+1}, Z\right)_{\theta n+1}$ consists of the elements represented by

$$
\begin{gathered}
e_{n+1}(1) e_{n+1}(t) \cap e_{n+1}(1) e_{n+1}\left(t^{\prime}\right), \quad t<t^{\prime} \text { in } T, \\
e_{n}(1) e_{n+1}(t) \cap e_{n+1}(1)^{2}, \quad t \text { in } T .
\end{gathered}
$$

Arguing as in Section 6a, we obtain (modulo $[F, R]$) the relations

$$
\begin{equation*}
\left[X_{n+1}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad t<t^{\prime} \text { in } T \tag{30}
\end{equation*}
$$

and

$$
\begin{aligned}
{\left[E_{n, n+1}(t), X_{n+1}(1)\right] } & \equiv \frac{1}{2}\left(\left[\left[X_{n}(1), X_{n+1}(t)\right], X_{n+1}(1)\right]-\left[E_{n, n}(t), X_{n+1}(1)\right]\right) \\
& \equiv-\frac{1}{2}\left[X_{n+1}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right]
\end{aligned}
$$

Thus, we may take for the contribution to a basis from the latter terms the relations

$$
\begin{equation*}
\left[X_{n+1}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right], \quad t \text { in } T \tag{31}
\end{equation*}
$$

(b) $\quad H_{1}\left(G_{n+1}, S_{n+1}\right)=H_{1}\left(G_{n}, k\right) \oplus H_{1}\left(V_{n}, S_{n+1}\right)_{a_{n}}$, and, as in Section 6, $H_{1}\left(G_{n}, k\right)$ contributes to an F_{p}-basis the relations

$$
\begin{equation*}
\left[X_{i}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n-1, t, t^{\prime} \text { in } T \tag{32}
\end{equation*}
$$

(c) To compute $H_{1}\left(V_{n}, S_{n+1}\right)$ we first take a small detour. Consider the commutative, exact diagram of G_{n+1}-modules

$$
\begin{align*}
& 0 \quad 0 \\
& \uparrow \quad \uparrow \\
& 0 \rightarrow V_{n} \rightarrow V_{n+1} \xrightarrow{h} k \rightarrow 0 \\
& \oint_{h^{\prime}} \quad \hat{h^{\prime}} \quad \uparrow 1 \\
& 0 \rightarrow T_{n} \rightarrow S_{n+1} \xrightarrow{h} k \rightarrow 0 \tag{33}\\
& \uparrow \quad \uparrow \\
& S_{n}=S_{n} \\
& \uparrow \quad \uparrow \\
& 0 \quad 0 .
\end{align*}
$$

On the level of homology, (33) induces the following diagram

$$
\begin{align*}
& H_{2}(V, k) \xrightarrow{\delta_{2}} V_{n} \otimes V_{n} \rightarrow H_{1}\left(V, V_{n+1}\right) \\
& \uparrow 2, \uparrow \\
& H_{2}(V, k) \xrightarrow{\delta_{2}^{\prime}} H_{1}\left(V, T_{n}\right) \rightarrow H_{1}\left(V, S_{n+1}\right) \rightarrow V_{n} \otimes k \xrightarrow{\delta_{1}} V_{n} \\
& \uparrow i \quad \uparrow \tag{34}\\
& V_{n} \otimes S_{n}=V_{n} \otimes S_{n} \\
& \uparrow \uparrow \\
& H_{2}\left(V, V_{n}\right) \rightarrow H_{2}\left(V, V_{n+1}\right) \rightarrow H_{2}(V, k) \xrightarrow{\delta_{2}} V_{n} \otimes V_{n} \\
& \uparrow \uparrow \uparrow \\
& H_{2}\left(V, S_{n+1}\right) \rightarrow H_{2}(V, k) \xrightarrow{\delta_{2}^{\prime}} H_{1}\left(V, T_{n}\right) .
\end{align*}
$$

Diagram chasing shows that

$$
\begin{equation*}
H_{1}\left(V, T_{n}\right)=\operatorname{Im} \delta_{2}^{\prime}+\operatorname{Im} i \tag{35}
\end{equation*}
$$

Also, our explicit knowledge of δ_{2} and δ_{2}^{\prime} shows us that $\operatorname{Ker} \delta_{2}$ is the k-subspace of $H_{2}(V, k)$ spanned by all $(v, p, 1), v$ in V; hence $\operatorname{Ker} \delta_{2} \subseteq \operatorname{Ker} \delta_{2}^{\prime}$. That fact and some more diagram chasing shows that $\operatorname{Im} \delta_{2}^{\prime} \cap \operatorname{Im} i=(0)$. It follows that the sum in (35) is direct and hence the sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Im} i \rightarrow H_{1}\left(V, S_{n+1}\right) \rightarrow \operatorname{Ker} \delta_{1} \rightarrow 0 \tag{36}
\end{equation*}
$$

is exact. However, by Proposition 5.1, we already know that it splits. Thus

$$
\begin{equation*}
H_{1}\left(V, S_{n+1}\right)_{\theta_{n}}=(\operatorname{Im} i)_{\theta_{n}} \oplus\left(\operatorname{Ker} \delta_{1}\right)_{\theta_{n}} \tag{37}
\end{equation*}
$$

Returning now to the computation, we note that

$$
\operatorname{Im} i=\operatorname{Coker}\left(H_{2}\left(V_{n}, V_{n}\right) \rightarrow V_{n} \otimes S_{n}\right)
$$

which by formula (20) is isomorphic to $S_{k}^{3}\left(V_{n}\right)$. Also, $\left(S_{k}^{8}\left(V_{n}\right)\right)_{\boldsymbol{a}_{n}} \cong k$, and, in terms of cycles in S_{n}, an F_{p}-basis is given by the elements

$$
\left\langle x_{n}(1)\right\rangle \otimes e_{n}(1) e_{n}(t), \quad t \text { in } T
$$

Arguing as in Section 6c, we are led (modulo $[F, R]$, and except for a factor of 2 ,) to the relations

$$
\begin{equation*}
\left[X_{n}(1),\left[X_{n}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right]\right], \quad t \text { in } T \tag{38}
\end{equation*}
$$

(d) One argues as in section 6 d . The splitting map β defined by formula (25^{\prime}) is somewhat more complicated, and the calculation in $G_{n+1} * S_{n+1}$ is considerably more complicated. Eventually, after an appropriate change of basis, one obtains as the contribution to an F_{p}-basis from ($\left.\operatorname{Ker} \delta_{1}\right)_{\sigma_{n}}$ the relations

$$
\begin{align*}
{\left[X_{n}(t), X_{n+1}\left(t^{\prime}\right)\right]\left[X_{n}(1), X_{n+1}\left(t t^{\prime}\right)\right]^{-1}\left[X_{n}(t),\left[X_{n}(1),\right.\right.} & \left.\left.X_{n+1}\left(t t^{\prime} / 2\right)\right]\right]^{-1} \\
\cdot\left[X_{n}(1),\left[X_{n}(1), X_{n+1}\left(t t^{\prime} / 2\right)\right]\right], & \mathrm{t}, \mathrm{t}^{\prime} \text { in } T, t \neq 1 . \tag{39}
\end{align*}
$$

If we combine Proposition 6 with what has been done in this section, we obtain
Proposition 7. Let $n \geq 1, p \neq 2,3$. An F_{p}-basis for $H_{2}\left(J_{n+1}, Z\right)$ is given in terms of the generators $X_{i}(t), i=1,2, \cdots, n+1, t$ in T, by the relations

$$
\begin{equation*}
\left[X_{i}(t), X_{i}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n+1, t<t^{\prime} \text { in } T \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{i}(t), X_{j}\left(t^{\prime}\right)\right], \quad 1 \leq i<j \leq n+1, j \neq i+1, t, t^{\prime} \text { in } T \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{i}(1),\left[X_{i}(1), X_{i+1}(t)\right]\right], \quad i=1,2, \cdots, n-1, t \text { in } T \tag{iii}
\end{equation*}
$$

and

$$
\begin{array}{cc}
{\left[X_{i+1}(1),\left[X_{i}(1), X_{i+1}(t)\right]\right],} & i=1,2, \cdots, n, \\
{\left[X_{n}(1),\left[X_{n}(1),\left[X_{n}(1), X_{n+1}(t)\right]\right]\right],} & t \text { in } T, \tag{iiia}
\end{array}
$$

$$
\left[X_{i}(t), X_{i+1}\left(t^{\prime}\right)\right]\left[X_{i}(1), X_{i+1}\left(t t^{\prime}\right)\right]^{-1}
$$

$$
i=1,2, \cdots, n-1, t, t^{\prime} \text { in } T, t \neq 1
$$

(iva)

$$
\left[X_{n}(t), X_{n+1}\left(t^{\prime}\right)\right]\left[X_{n}(1), X_{n+1}\left(t t^{\prime}\right)\right]^{-1}\left[X_{n}(t),\left[X_{n}(1), X_{n+1}\left(t t^{\prime} / 2\right]\right]^{-1}\right.
$$

$$
\cdot\left[X_{n}(1),\left[X_{n}(1), X_{n+1}\left(t t^{\prime} / 2\right)\right]\right], \quad t, t^{\prime} \text { in } T, t \neq 1
$$

8. The groups $H_{n}, n \geq 2, p \neq 2$.

$$
H_{2}\left(H_{n+1}, Z\right)=H_{2}\left(G_{n+1}, Z\right) \oplus H_{1}\left(G_{n+1}, A_{n+1}\right) \oplus H_{2}\left(A_{n+1}, Z\right)_{a_{n+1}}
$$

Let F_{G} be as before. The elements $e_{i}(1) \wedge e_{j}(t), 1 \leq i<j \leq n+1, t$ in T, generate A_{n+1}. Let $E_{i j}^{\prime}(t), 1 \leq i<j \leq n+1, t$ in T, be free generators of a group F_{A}, and map it onto A_{n+1} in the obvious way. Then $X_{i}(t)$, $i=1,2, \cdots, n, t$ in $T, X_{n+1}(t)=E_{n, n+1}^{\prime}(t), t$ in T, represent a minimal generating set for H_{n+1}.
(a) The elements of an F_{p}-basis for $H_{2}\left(A_{n+1}, Z\right)_{\theta_{n+1}}$ are represented by

$$
\begin{aligned}
e_{n}(1) \wedge e_{n+1}(t) \cap e_{n}(1) \wedge e_{n+1}\left(t^{\prime}\right), & t<t^{\prime} \text { in } T \\
e_{n-1}(1) \wedge e_{n+1}(t) \cap e_{n}(1) \wedge e_{n+1}(1), & t \text { in } T
\end{aligned}
$$

which yield, modulo $[F, R]$, in terms of relations

$$
\begin{gather*}
\quad\left[X_{n+1}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad t<t^{\prime} \text { in } T \\
{\left[\left[X_{n-1}(1), X_{n+1}(t)\right], X_{n+1}(1)\right], \quad t \text { in } T .} \tag{40}
\end{gather*}
$$

(b) $\quad H_{1}\left(G_{n+1}, A_{n+1}\right)=H_{1}\left(G_{n}, V_{n}\right) \oplus H_{1}\left(V_{n}, A_{n+1}\right) G_{n} . \quad H_{1}\left(G_{n}, V_{n}\right)$ has been computed in Sections 6b, 6c, and 6d. Cycles in V_{n} representing and \boldsymbol{F}_{p}-basis are

$$
\begin{gathered}
\left\langle x_{i}(t)\right\rangle \otimes e_{n}\left(t^{\prime}\right), \quad i=1,2, \cdots, n-2, t, t^{\prime} \text { in } T, \\
\left\langle x_{n-1}(1)\right\rangle \otimes e_{n-1}(t), \quad t \text { in } T, \\
\left\langle x_{n-1}(t)\right\rangle \otimes e_{n}\left(t^{\prime}\right)-\left\langle x_{n-1}(1)\right\rangle \otimes e_{n}\left(t t^{\prime}\right), \quad t, t^{\prime} \text { in } T, t \neq 1 .
\end{gathered}
$$

Lifting to cycles in A_{n+1} yields the elements

$$
\begin{gathered}
\left\langle x_{i}(t)\right\rangle \otimes e_{n+1}(1) \wedge e_{n}\left(t^{\prime}\right), \\
\left\langle x_{n-1}(1)\right\rangle \otimes e_{n-1}(1) \wedge e_{n-1}(t),
\end{gathered}
$$

$$
\left\langle x_{n-1}(t)\right\rangle \otimes e_{n+1}(1) \wedge e_{n}\left(t^{\prime}\right)-\left\langle x_{n-1}(1)\right\rangle \otimes e_{n+1}(1) \wedge e_{n}\left(t t^{\prime}\right)
$$

which modulo $[F, R]$ yields as previously the relations

$$
\begin{gather*}
{\left[X_{i}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n-2, t, t^{\prime} \text { in } T,} \\
{\left[X_{n-1}(1),\left[X_{n-1}(1), X_{n+1}(t)\right]\right], \quad t \text { in } T,} \tag{41}\\
{\left[X_{n-1}(t), X_{n+1}\left(t^{\prime}\right)\right]\left[X_{n-1}(1), X_{n-1}\left(t t^{\prime}\right)\right]^{-1}, \quad t, t^{\prime} \text { in } T, t \neq 1 .}
\end{gather*}
$$

(c) $\operatorname{Im}\left\{\delta_{2}: H_{2}\left(V_{n}, V_{n}\right) \rightarrow V_{n} \otimes A_{n}\right\}$ is the subgroup of $V_{n} \otimes A_{n}$ generated by all $u \otimes v \wedge w-v \otimes u \wedge w, u, v, w$ in V_{n}. (Formula (20).) But,
modulo this subgroup,
$u \otimes v \wedge w \equiv v \otimes u \wedge w=-v \otimes w \wedge u \equiv-w \otimes v \wedge u$

$$
=w \otimes u \wedge v \equiv u \otimes w \wedge v=-u \otimes v \wedge w
$$

Hence $2 u \otimes v \wedge w \equiv 0$, and since $p \neq 2$, Coker $\delta_{2}=(0)$.
Notice that in this case we can dispense with Proposition 5.1.
(d) According to (c),

$$
H_{1}\left(V_{m}, A_{n+1}\right) \cong \operatorname{Ker}\left\{\delta_{1}: V_{n} \otimes V_{n} \rightarrow \bigwedge_{k}^{2} V_{n}\right\}
$$

where $\delta_{1}(u \otimes v)=-u \wedge v$. An F_{p}-basis for this kernel consists of the elements

$$
\begin{gathered}
e_{i}(t) \otimes e_{j}\left(t^{\prime}\right)+e_{j}(t) \otimes e_{i}\left(t^{\prime}\right), \quad 1 \leq i<j \leq n, t, t^{\prime} \text { in } T \\
e_{i}(t) \otimes e_{i}\left(t^{\prime}\right), \quad i=1,2, \cdots, n, t, t^{\prime} \text { in } T \\
e_{i}(t) \otimes e_{j}\left(t^{\prime}\right)+e_{j}(1) \otimes e_{i}\left(t t^{\prime}\right), \quad 1 \leq i<j \leq n, t, t^{\prime} \text { in } T, t \neq 1
\end{gathered}
$$

$\operatorname{An} F_{p}$-basis for $\left(\operatorname{Ker} \delta_{1}\right)_{g_{n}}$ consists of the elements represented by $e_{n}(t) \otimes e_{n}\left(t^{\prime}\right)$, t, t^{\prime} in T, which yield in terms of cycles the elements, $\left\langle x_{n}(t)\right\rangle \otimes e_{n+1}(1) \wedge e_{n}\left(t^{\prime}\right)$, or, in terms of relations

$$
\begin{equation*}
\left[X_{n}(t), X_{n+1}\left(t^{\prime}\right)\right], \quad t, t^{\prime} \text { in } T \tag{42}
\end{equation*}
$$

The results of this section, together with Proposition 6, yield
Proposition 8. Let $n \geq 2, p \neq 2$. An F_{p}-basis for $H_{2}\left(H_{n+1}, Z\right)$ is given in terms of the generators $X_{i}(t), i=1,2, \cdots, n+1, t$ in T, by the relations

$$
\begin{equation*}
\left[X_{i}(t), X_{i}\left(t^{\prime}\right)\right], \quad i=1,2, \cdots, n+1, \quad t<t^{\prime} \text { in } T \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{i}(t), X_{j}\left(t^{\prime}\right)\right], \quad 1 \leq i<j \leq n, j \neq i+1, t, t,^{\prime} \text { in } T \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
i=1,2, \cdots, n-2, i=n, t, t^{\prime} \text { in } T \tag{iia}
\end{equation*}
$$

$$
\left[X_{i}(1),\left[X_{i}(1), X_{i+1}(t)\right]\right] \text { and }\left[X_{i+1}(1),\left[X_{i}(1), X_{i+1}(t)\right]\right]
$$

$$
\begin{equation*}
i=1,2, \cdots, n, t \text { in } T \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{n-1}(1),\left[X_{n-1}(1), X_{n+1}(t)\right]\right] \text { and }\left[X_{n+1}(1),\left[X_{n-1}(1), X_{n+1}(t)\right]\right] \tag{iiia}
\end{equation*}
$$

t in T.

$$
\left[X_{i}(t), X_{i+1}\left(t^{\prime}\right)\right]\left[X_{i}(1), X_{i+1}\left(t t^{\prime}\right)\right]^{-1}
$$

$$
\begin{equation*}
i=1,2, \cdots, n, t, t^{\prime} \text { in } T, t \neq 1 \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{n-1}(t), X_{n+1}\left(t^{\prime}\right)\right]\left[X_{n-1}(1), X_{n+1}\left(t t^{\prime}\right)\right]^{-1} \tag{iva}
\end{equation*}
$$

$$
t, t^{\prime} \text { in } T, t \neq 1
$$

References

1. M. Barr and G. S. Rinehart, Cohomology as the derived functor of derivations, Trans. Amer. Math. Soc., vol. 122 (1966), pp. 416-426.
2. N. Blackburn, Some homology groups of wreathe products, Illinois J. Math., vol. 16 (1972), pp. 116-129 (this issue).
3. L. Evens, Terminal p-groups, Illinois J. Math., vol. 12 (1968), pp. 682-699.

[^0]: ${ }^{1}$ The author was partially supported by a National Science Foundation grant.
 Received August 7, 1969.

