MATRIX GROUPS OF THE SECOND KIND

BY
J. Malzan

A group, G, of matrices with entries from the field of complex numbers is said to be "of the second kind" if each matrix has real character, but G is not similar to a group of matrices with real entries. The single faithful irreducible representation of the quaternion group provides an example of such a group of matrices.

Two classical results are strengthened by Theorem 1 below: The first of these asserts that every non-trivial irreducible representation of a (finite) group of odd order involves complex characters. (We deal exclusively here with finite groups, and representations over the field of complex numbers.) Theorem 1 extends to the more general case of a group whose elements of odd order form a subgroup. The second classical result asserts that every matrix group of the second kind has even degree. Theorem 1 puts a constraint on this degree, leading to the easy corollary that a group whose order is not divisible by four cannot have an irreducible representation of the second kind.

Theorem 2 complements Theorem 1 by providing a set of circumstances under which we may assert that a group, G, does have a representation of the second kind.

I would like to acknowledge my indebtedness to Dr. G. de B. Robinson who, as my supervisor, brought these problems to my attention, and to the referee, whose suggestions made Theorem 1 possible, by supplying an easy proof of the corollary.

Theorem 1. Let G be a group whose elements of odd order form a subgroup, and suppose that $\rho(G)$ is an irreducible representation, of the second kind, of G. Then the order of G is divisible by twice the degree of $\rho(G)$.

Proof. We may, without loss, assume that $\rho(G)$ is a faithful representation of G.

Let N be the subgroup of G which consists of all the elements of odd order in G. $N \triangleleft G$, and we may invoke Clifford's Theorem in considering $\rho(G) \downarrow N$, which has irreducible components $\sigma_{i}(N)$, with common multiplicity n. All of the $\sigma_{i}(N)$ are in the same family of irreducible representations of N.

Let f be the degree of $\rho(G)$, and suppose that the theorem is false, so that $2 f$ does not divide $|G|$ (f, of course, does). Let P be a Sylow 2 -group of G. It is trivial to show that G is a semi-direct product $N P$. Suppose that $|P|=2^{k}$. Then $f=2^{k} s$, with s odd. Suppose also that each $\sigma_{i}(N)$ has degree t (they are all in the same family of representations of N) and that z different irreducible representations of N appear in $\rho(G) \downarrow N$. Then $t z n=f=2^{k} s$. Further,
N has odd order, and hence the irreducibility of the $\sigma_{i}(N)$ implies that t is odd. It follows that 2^{k}, the order of P, divides $z n$.

Take the matrices for $\rho(G)$ in such a form that the matrices for $\rho(G) \downarrow N$ appear in reduced form, with repeated $\sigma_{i}(N)$ appearing consecutively. According to Clifford's Theorem, each matrix in $\rho(G)$ permutes the $\sigma_{i}(N)$ amongst themselves by conjugation. Let N_{1} be the subgroup of G which "fixes" $\sigma_{1}(N)$ in this sense. That is, g is in N_{1} if, and only if, $\chi^{\sigma_{1}}\left(g h g^{-1}\right)=\chi^{\sigma_{1}}(h)$ for each h in N.

The elements of G permute the $\sigma_{i}(N)$ transitively amongst themselves, by conjugation. Considering G as a permutation group, it follows immediately that the index of N_{1} in G is z. Also, N_{1} contains N, and so takes the form of a semi-direct product $N Q$, where Q is a 2 -group.

It is our present purpose to show that, in $\rho(G)$, every element of P (and hence every 2 -element) has character 0 , except, of course, the identity. To that end, we consider a certain representation of N_{1}.

According to Clifford's Theorem, the matrices for the elements of N_{1} have possibly non-zero elements in the first $t n$ by $t n$ block, and 0 entries in the row and column extensions of this block. Thus this block gives rise to a representation, $\beta\left(N_{1}\right)$, of N_{1}. But also, if g is an element of G not in N_{1}, then the matrix for g in $\rho(G)$ has 0 's in the first $t n$ by $t n$ block. Now it is a theorem in group representations that $\rho(G)$ is irreducible if, and only if, the functions $f_{i j}$ from G to the complexes given by $f_{i j}(g)=a_{i j}$ (the i, j entry in the matrix for g in $\rho(G)$) are linearly independent. Since $\rho(G)$ is irreducible, the set of functions arising from the first $t n$ by $t n$ block are linearly independent. But only the elements of N_{1} make any contribution towards this independence. From this observation we may deduce that $\beta\left(N_{1}\right)$ is irreducible.

Now $\beta\left(N_{1}\right) \downarrow N$ is simply $\sigma_{1}(N)$ repeated n times. By Frobenius' Reciprocity Theorem, $\beta\left(N_{1}\right)$ appears n times in $\sigma_{1}(N) \uparrow N_{1}$, which has degree $|Q| t$. Thus we must have $|Q| t \geq(t n) n=t n^{2}$, or $|Q| \geq n^{2}$.

We already have that $|G|=z\left|N_{1}\right|=z|Q N|=|P N|$ and so $|Q|=|P| / z$ which gives

$$
|P| \geq z n^{2} \geq z n \geq|P|
$$

since $|P|$ divides $z n$.
But this implies that $n=1$, and $|P|=z$, so that the $\sigma_{i}(N)$ are permuted by a group of order z, the number of $\sigma_{i}(N)$. It follows that only the identity of P fixes a $\sigma_{i}(N)$, and thence that in $\rho(G)$, all the non-identity elements of P have character 0 .

From this last remark we obtain immediately that the identity representation, $I(P)$, of P occurs $f /|P|$ times in the induced representation $\rho(G) \downarrow P$. But then $\rho(G)$ appears $f /|P|$ times in the real representation $I(P) \uparrow G$. Since $f /|P|$ is odd, $\rho(G)$ could not possibly be of the second kind [1], and the theorem follows.

Corollary. Let G be a group of order $2 n, n$ odd. Then G has no irreducible representations of the second kind.

Proof. Observe first that the elements of odd order in G form a normal subgroup, and so we may apply Theorem 1 to assert that any irreducible representation of G of the second kind has odd degree. But [Feit] any matrix group of the second kind has even degree, proving the corollary.

Theorem 2. Let G be a finite group containing exactly one involution. Then G possesses a representation of the second kind if, and only if, G does not have a non-trivial direct factor which is a cyclic group of order a power of two.

Proof. Suppose first that G has a non-trivial direct factor of order $2^{s}, s>0$. Then G can be written as $G=C \times N$, where C has order 2^{s}, and N has odd order. (Since G has only one involution.) Every irreducible representation of G is the tensor product of irreducible representations of C and N. But this leads, in all cases, to representations of odd degree (since C is abelian, and N has odd order) precluding the possibility of a representation of the second kind [Feit].

Suppose, then, that G does not possess such a direct factor. Let $\rho(G)$ be an irreducible representation of G, and let χ^{ρ} be the associated character. It is proved in [Feit] that

$$
\begin{equation*}
\sum_{G} \chi^{\rho}\left(g^{2}\right)=c(\rho)|G| \tag{1}
\end{equation*}
$$

where $c(\rho)=1,0$, or -1 according as $\rho(G)$ is of the first kind (real matrices), third kind (complex character), or second kind (real character, complex matrices), respectively. If t is the number of involutions in G then

$$
t+1=\sum_{\rho} c(\rho) \chi^{\rho}(1)
$$

where the sum is over the inequivalent irreducible representations of G. Here, $t=1$, and so we have

$$
\begin{equation*}
2=\sum_{\rho} c(\rho) \chi^{\rho}(1) \tag{2}
\end{equation*}
$$

If Theorem 2 fails for G, then every term on the right-hand side of (2) is non-negative. We proceed by induction, assuming Theorem 2 for groups having the stated properties of G, but smaller order.

Let z be the single involution of G, and consider the factor group $\bar{G}=G /\langle z\rangle$. If \bar{G} is odd, then $|G|=2 n, n$ odd, and G decomposes as a semi-direct product $N C$, with $|N|=n$, and $|C|=2$. But since z is in the centre of $G, C=\langle z\rangle$, and this semi-direct product is a direct product, with a factor a cyclic group of order a power of two, contrary to assumption. Thus \bar{G} is even. The remainder of the proof will be divided into two cases.

Case I. Suppose that \bar{G} has exactly one involution. We would conclude by induction that \bar{G} (and hence G) has a representation of the desired kind unless \bar{G} has a direct factor which is cyclic, of order a power of 2. Assume, then, that \bar{G} can be decomposed as $\bar{G}=\bar{A} \times \bar{B}$, where \bar{A} has order a power of 2 .

Choose \bar{A} to be as small as possible consistent with this decomposition taking place with \bar{A} non-trivial.

If, now, $\bar{B}=\overline{1}$, then \bar{G} is cyclic and so G is generated by a single element together with the element z, which lies in its centre. Thus G is abelian, which is impossible, for then it surely contains a cyclic direct factor of order a power of 2 . Hence we may assume that $\bar{B} \neq \overline{1}$.

Let \bar{g} be a generator of \bar{A}, and let $\bar{A}=2^{b}$, so that $\bar{g}^{2 s}=\overline{1}$. Let g be an inverse image of \bar{g} in G. Since G has only one involution, we must have $g^{28}=z$.

Let B be the inverse image of \bar{B} in G. Since \bar{G} has only one involution, \bar{B} is odd, and $B=2 m, m$ odd. But since z is in the centre of B, B decomposes as a direct product $B_{0} \times\langle z\rangle$, where B_{0} has odd order. Case I will be disposed of when we have demonstrated the contradition that G is the direct product of the subgroups $\langle g\rangle$ and B_{0}. Indeed, since

$$
G=\langle g, B\rangle=\left\langle g, B_{0}\right\rangle \quad \text { and } \quad\langle g\rangle \cap B_{0}=1
$$

it will suffice to show that g and B_{0} commute. Let h be any element of B_{0}. If $h^{g} \neq h$ then, because the elements of \bar{A} and \bar{B} commute, $h^{g}=h z$. But $|h|$ is odd, and h^{g}, which is conjugate to h, has order $2|h|$, a contradiction. Thus G is a direct product with a cyclic factor of order a power of 2 , contrary to assumption. This disposes of Case I.

Case II. Suppose now that \bar{G} contains at least 2 involutions.
Let $\beta(\bar{G})$ be an irreducible representation of \bar{G} (and, consequently, of G). Using the expression preceding (2), and noting that t is now greater than 1 , it follows that

$$
3 \leq \sum_{\beta} c(\beta) \chi^{\beta}(\overline{\mathrm{I}})
$$

However, by assumption, the G-sum

$$
\sum_{\rho} c(\rho) \chi^{\rho}(1)
$$

which is composed of non-negative terms, and contains the sum

$$
\sum_{\beta} c(\beta) \chi^{\beta}(\overline{1})
$$

is equal to 2.
This is impossible, and Theorem 2 is proved.

[^0]
[^0]: Reference
 W. Feit, Characters of finite groups, W. A. Benjamin, New York, pp. 20, 61, 68.

 University of Waterloo
 Waterloo, Ontario

