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The main object of the present paper is the study of the resolutions of the
identity of the sum and the product of two commuting scalar type operators
on an arbitrary Banach space. This is achieved by studying for an arbitrary
Banach space the extension of a spectral measure defined on a field R of sub-
sets of a set to the e-field generated by R. A very special aspect of this
study is the content of a recent paper by Kluvnek and Kovikov [11].
These authors have restricted their attention to the case where the spectral
measure to be extended is the product of two commuting spectral measures
and the Banach space is weakly complete. Again their extension assumes a
topological set up on @. Naturally the results of the present paper subsume
those of [11].
The procedure of closely following the numerical analogue is used in the

present paper; the referee has pointed out that the extension can also be ob-
tained by reducing matters to the case of Hilbert space. In the latter method
the extension rests on known results (Berberian [4]) which are however
established for Hilbert spaces in [4] by a method altogether different from that
adopted in this paper. The aesthetic satisfaction in sticking to the Banach
space alone, as in this paper has justification on two counts: (i) the auxiliary
notion of spectral outer measure introduced here seems to be interesting and
worthwhile in itself, (ii) the fact that results follow from their numerical
analogues is brought out vividly.
The author is thankful to the referee for having pointed out the alternative

procedure and for his helpful comments.

1. Preliminaries
X will denote an arbitrary (complex) Banach space. A B. A. B of projec-

tions on X will be called complete (a-complete) if B satisfies the condition of
Definition 2.1 of Bade [2].
In this section, we recall some definitions and results from [14].
DEFiNiTION 1. By a W* ([l" II )-algebra W on a Banach space X we mean a

pair, consisting of an abelian subalgebra W of B (X), generated by a a-com-
plete B.A. of projections on X in the weak operator topology, and some
equivalent norm II" on X such that every element S in W has a representation
of the form S R - iJ where R and J satisfy the following conditions:

(i) RJ JR withRandJinW;
(ii) RJ (m, n 0, 1, 2,... are hermitian in the norm I1" (hermitian

in the sense of Lumer [12]).
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(1.1) A W* (11" )-algebra W is an abelian B*-algebra in the operator norm
1]" II computed with respect to the Banach spce norm I1" of X nd hence the
Gelfand map is n isometric isomorphism of W onto the space (!fit)of all
complex-valued continuous functions on , where is the maximal ideal
spce of W.

(1.2) The Banch algebra W generated wekly by z-complete B.A. B
of projections on X is W* (11" il )-algebra under a suitable equivalent norm

II" on X. (In fact, the norm II" can be taken as that equivalent norm onX
in which all the members of/’ are hermitian). If X is weakly complete, the
hypothesis that B is bounded would suffice for the result to hold.

DEFINITION 2. An operator T on a Banach space X is called positive in
the equivalent norm I[" on Z (written as T _> 0 in (ll" ]]) if [Tx, x] >_ 0 for
all x in X with x 1, where is a semi-inner-product consistent with
the norm I1" on Z.

(1.3) If T is an operator belonging to a W* (lI" )-algebra then the follow-
ing are equivalent"

(i) (T) is non-negative.
(ii) The Gelfand function T (m) in () is non-negative.
(iii) T is positive in I!"

Thus from (1.3) we have:

(1.4) All the projections belonging to a W* (11" )-algebra are positive in

DEFINITION 3. For two operators T and T’ on a Banach space X, we say
that T is greater than T in the equivalent norm
in ]1"[I) if

(i) T, T’ re hermitin in ll" nd
(ii) T T’ is positive in

(1.5) The set H (W) of all elements in a W* (ll" )-algebra W, which are
hermitian in ]]. II, forms a conditionally complete lattice under the ordering
_> in I1" I] given in Definition 3.

(1.6) Let T be a bounded (in the ordering sense) monotonic net inH (W).
Then for x in X, lim, T x /, T x(/ T x if T is increasing (decreasing),
where the supremum (infimum) is taken in H (W).

Let B be a a-complete B.A. of projections on a Banach space X and W the
W* (i]" )-algebra generated by B. Then/’ H (W). Further, in view of
(1.3), for two projections E and E in W, the relation E >_ E: in If" holds if
and only if EE E. Thus we have"

(1.7) The usual ordering in ’ coincides with the ordering defined in
H(W).
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2. Some lemmas
Throughout this section we shall assume that W is a W* (ll" )-algebra,

generated by a a-complete B. A. B of projections on a Banach space X.

Notation. If {E,},, is a set of projections in/’, then its suprema with
respect to/ and H (W) will be denoted by V. E, and VH(w) E, respectively.
Similarly the corresponding infima are denoted.

LEMMA 1. For projections {E,} /’,
Va.E, VH(w) E, and Aa. E, AHw) Ea

Proof. Since we may replace lea} by the net of its finite unions, we may
suppose that it is an increasing net. If x e X, then by Lemma 2.3 of Bade [2],
lim.Eax V,Eax. But, by (1.7), {Ea} is also an increasing net inH(W).
Hence, by (1.6), limaEax V.r) Eax, for x in X. Thus Va, Ea
V-(w) Ea. Similsrly, the result concerning the infimum is proved.

LEMMA 2. Let {E} be a sequence of projections in W. If -1Ei converges
strongly, then E is an operator in W and is positive in I1" [l. Further,

Proof. Since W is also strongly closed, the strong limit _’-E belongs to
W. Further, since each E, >__ 0 in II" [I, for x in X with x 1, we have

(1) [-Ex, x] -[E x, x] _> 0

where , is s semi-inner-product on X, consistent with the norm il" II.
Hence=E >_ 0 in II" ]]. The last statement of the lemma follows from (1).

Convention. If {E} is a sequence of projections in W, then whenever we
write ":1E, it is tacitly assumed that the series is strongly convergent
and it denotes the positive operator in W, to which it converges strongly.

3. Spectral outer measures

In this section, we define a projection valued set function having properties
similar to those of a numerical outer measure.

DEFINITION 4. Let E* (.) be a projection-valued set function defined on
the a-field B () of all subsets of , with its range contained in a W* (If" il )-
algebra W on a Banach space X. Then E* (.) is called a spectral outer
measure on X if it has the following properties"

(i) E*() 0.
() E* () .
(ii) E* () >_ E* () in []. for , 2 in B () with

_
2.

(iv) E*([Jr,)

_
,%iE*(r) in I]’1] for aeB(), i 1, 2, .-..

By our convention given in Section 2, condition (iv) has to hold only when
-’]E* (a) converges strongly. We note that E* (a) then belongs
to W and is positive in II" [[, because of Lemma 2 of Section 2.
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We shall prove below that a (strongly countably additive) spectral measure
E (.), defined on a field R of subsets of a set can be extended to a spectral
outer measure E* (.) on the a-field B (). To this end, we need the following
lemmas.

LEMMA 3. Let E (.) be a spectral measure defined on a field R of subsets of a
set with its range contained in a W* (1[" )-algebra W on Z. Then E* (.)
defined by

E* () A, {7-E()" UT-,
_
, R}

for , is a projection-valued set function on B( with its range contained
inW.

Proof. For any subset a of as a

_
u 0 u and E() I, the set of

operators defining E* () is non-empty. Further, since =1E(a) converges
to an operator which is positive in ]. in H (W), the definition of E* (a) makes
sense. Clearly, by definition, E*(a) belongs to H (W). The lamina will be
proved, if we show that E*(a) is s projection. If we set

E() (){lE(),U , eR and n , i j},

then clearly

(2) E () E* () i II" [[.
But, for any covering {a} of sets from R we can extract covering {} of
pair-wise disjoint sets of R such that = U-and cai. Thus
E () E () and hence from Lemma 2 of Section 2 we have

IE(a) (w) E() in [[. ]].
But since

E()E(#) E(n#) 0 forij,

x/.(w) E () E () and hence

(3) E () E* () i. . .
From (2) and (3) it follows that E () E* (a). Since each E ()
is a projection, by Lemma 1 of Section 2 it follows that E (a) is a projection.
Hence E*(a) is a projection.

COROARY. The set function E* () defined in the above lamina is also
given by

E*(a) (w){E(a) , aeR anda O for i j.

LEMMA 4. Let E* (.) be the set function defined in Lemma 3. Then,
for a , E*(a)x lim, E x for x in X, where {E} is some decreasing
net of projections in W. Further, each E, can be taken as the projection
Z E(,), where ., , e R and for i j.
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Proof. By the corollary to Lemma 3,

(4) E*(z)= A,(/){-=lE(z)" LJ--lz
_

z, z e R

andznzj= Oforij}.

But the family F of projections =E (z) defining E* (z) in (4) is clearly
closed for the formation of finite products. Hence we can suppose that the
family F has been replaced by the net {E} of its finite intersections. Now
the lemma follows from Lemma 2.3 of Bade [2].

THEOREM 1. Let E (.) be a spectral measure defined on a field of subsets of a
set , with its range contained in a z-complete B. A. B of projections in X.
If W is a W* (ll" )-algebra generated by B in the wealc operator topology, then
the set function E* (.), defined by

E*(z) /(w){E(z),
is a spectral outer measure on the z-field B( ). Further, E* (.) is an extenon
of E(.).

Proof. First we shM1 prove that E* (.) is n extension of E (.). If z e R,
uu sothtE*

by pMrwise disjoint sets of R, then

E() E(n

Thus by the corollary under Lemma 3, E () N E* (e) in II" I1, Hence
E*(a) E(a) for

Since e R, E* () E () 0 and similarly, E* () E() I. For
two subsets, a of with , any covering of a is necessarily a coveting
of a and hence E* () E* () in I[" II.
To prove the property (iv) of the spectral outer measure for E* (-), let

{a} be a sequence of subsets of . Then

*() A =E() U= . R

and z n z, for j # j’}

by the corollary under Lemma 3. Hence if we denote this family of projec-
tions over which infimum is taken by F, then by Lemma 4 we can assume F
to be a decreasing net of projections so that, for x in X,

E* (z)x limeP x.

Thus, for x in X with x 1, we have

[E* (z)x, x] lim, [Px, x]

where is semi-inner-product on X consistent with the norm .
Since E* (z,:) P in ]. l, we have

[E* ()z, ] S [P z, x].
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Hence for such a fixed x and an e > 0,

Thus
[E* (as)x, x] -b e/2 _> [P% x, x] for some

[::IE* ()z, ] + e -1 ([E* (,)z, x] +
> [P% x, x]

> [E*(
the last inequality following from the definition of E* (.).
it follows that

[7._- E* (,)z, x] > [E* (t,_, )x, ].

Now as x is arbitrary but for x 1, it follows that-E*() _> E* ((Ja) in [[.
This completes the proof of the theorem.

Since is arbitrary,

zt. :xtension of specCr] mecsures

As in the case of the numerical measure, we use the Caretheodory’s in-
equality to define E* (.)-measurable sets and obtain the extension of a spectral
measure.

DEFINITION 5. Let E* (.) be a spectral outer measure on the a-field B ()
of all subsets of , with its range contained in a W* ([[. )-algebra W on X.
Then a subset a of is said to be E* (.)-measurable if

E* () > E* (a ) -4- E* (a’ t it) in [I" ]1
for all sets e B ().

Remark. In view of the subadditivity of E* (.), for E*(. )-measurable
sets a of B () we have

E*() E*( ) + *(’. );
where e B ().

THEOREM 2. If E* (.) is a spectral outer measure on B( and if S is the
class of all E* (.)-measurable sets then is a a-field o subsets of . Further,
every set a for which E* (a) 0 belongs to 3. Also, the set function (.),
defined for a 3 by (a) E*(a), is a complete spectral measure on 3 (i.e. if
a e and (a) O, then all subsets of a belong to ).

Proof. By arguing as in the proof of Theorem A of Section 11 of Halmos
[9] it can be shown that is a ring of sets. Since

E*() E*( n ) + E*( n ’)

for all subsets a of , e and hence is a field of sets. That is a a-field
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of sets,/ (.) is strongly countably additive and/ (.) is complete on can be
proved by giving arguments similar to those of Theorems B and C of Section 11
of Halmos [9]. We shall complete the proof of the theorem, by proving that
/ (.) is multiplicative on . Let , ti . Then

( ) () + (’ ) () + Z(’ )
since (.) is additive on . Since ( u ) etc. are commuting projections

(5) ( u

since, for disjoint sets a, a e we hve

()
so that (a) (a) 0. But, again by the additivity of (.) on we have

(6)

Thus from (5) and (6) we have (a a) (a) (a). This completes the
proof of the theorem.

Thus from Theorem 2 we see that
spectral measure (.). Also by Theorem 1, a spectral measure (.) induces
a spectral outer measure E* (.). The relation between E* (.) and (.) is
given in the following theorem.

THEOREM 3. Let E (.) be a spectral measure on a field R of subsets of
with its range contained in a a-complete B. A. B of projections on X. Let W be
the W* ([ )-algebra generated by B in the weak operator topology. Then every
set in the a-field S (R of subsets generated by R is E* (.)-mearable, where E* (.)
is the spectral outer meagre induced by E (.) on B().

Proof. Let a e R, e B () and e > 0. Then by Lemma 4 of Section 3, for
a ed x in X with x 1 there exists a sequence {a} of paiise disjoint
sets in R such that a Oa and

[E* ()x, x] + ,, [E ()x, x]

[E*(. a)x, x] + [* (’. a)x, x

where is a semi-inner-product consistent with the norm . on X.
Since e is arbitrary the above inequality implies

[* ()x, x] (E* ( ) + E* (’ a))x, x].

Since x is arbitrary but for ][ x 1, it follows that

E*

and hence
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The following theorem deals with the extension of spectral measures.

THEOREM 4. Let E (.) be a spectral measure on a field R of subsets of
with its range contained in a a-complete Boolean algebra B of projections on a
Banach space X. Then there is a unique spectral measure E (.) on the a-field
S (R) of subsets generated by R such that, for a in R, E ((r) E (). Further,
the range of (.) is contained in

Proof. The existence of E (.) has been proved in Theorems 2 and 3. To
prove uniqueness, let El(. and E2 (.) be two spectral measures on S (R)
such that E1 () E. () for all a e R. Let M be the class of all sets e S (R)
for which E1 (a) E (a). If {an} is a monotone sequence from M, then

lim,= E (an)x E (lim, an)x, i 1, 2,

for x e X. Thus limn an e M. Thus M is a monotone class and since M R,
it follows from Theorem B of Section 6 of Halmos [9] that M contains S (R).
From Lemma 4 of Section 3 it follows that for B (), E*(a) belongs to

B’, being the strong limit of projections belonging to/. Hence ’ (a) e

for a e S (R).

In the following theorem we show that the spectral outer measure induced
by/ (-) on S (R) and that induced by/ (.) on are the same.

THEOREM 5. If a B (), then

E*

Proof. The proof is similar to that of Theorem B of Section 12 of Halmos
[9] and hence omitted.

DEFINITION 6. If i e B () and a e S (R), then we shall call a a measurable
cover of i if t is contained in a and if for every r in S (R) for which r

_
a ,

we have/! (r) 0.

THEOREM 6. IfE (.) is a spectral measure on afield R of subsets of with its
range contained in a a-complete B. A. of projections B in X and if E (.) is the
extended spectral measure ofE (.) on S (R ), then for every B() there exists a
set a in S (R such that E* ( , (a and such that a is a measurable cover of .

Proof. Let W be the W* (11" 1] )-algebra generated by B. Take a fixed
x e X with x 1. Then by Lemma 4 of Section 3, there exists a sequence
a} of pairwise disjoint sets belonging to R such that

+ >_ [Y’.

where is a s.i.p, on x, consistent with the norm
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Let .. Then clearly t z e S (R). Further,

[E* (t)x, x]

_
[/ (a)x, x]

_
[/ (.)x, x]

_
[E* ()x, x] + 1In.

Since n is arbitrary,
[E* ()x, x] [/ ()x, x]

for x 1. Hence by Theorem 5 of Lumer [12] we have E* () / ().
Further, if r e S(R) and r

_ , then

_
r. Hence

E* (i) _/ () -/ () in II. But E* () =/ (). Thus/ (r) 0.
This completes the proof of the theorem.

Since the above result on measurable covers holds for spectral measures,
the following results can be proved here, as in the numerical case. For brevity
we state these results without proof.

THEOREM 7. Let E (.) be a spectral measure on a field R of subsets of with
its range contained in a a-complete B. A. of projections on X. Let E* (’) be the
spectral outer measure induced by E (.) on B( and E (.) the extended spectral
measure on S (R ). Then we have the following"

(i) If e B( and r a measurable cover of then E*(a) fi (r). If
both r and r. are measurable covers of , then fi (r /k r) O.

(ii) /f/ (.) is completed, then the measure E (.) obtained is defined exactly
on the class of all E* (.)-measurable sets and E (.) agrees with E* (.) there.

Note. The definition of a spectral inner measure can be correspondingly
given and properties, similar to the numerical case, can be studied.

The reduction of matters to the Hilbert space mentioned at the outset can
now be explained as follows. Standard facts from [2] show that a W* (11 )-
algebra I is the uniformly closed algebra generated by the set B of all the
idempotent members and these idempotents form a complete B. A. of projec-
tions. By regarding B as a strongly countably additive spectral measure on
the Borel sets of its stone space one obtains from Theorem 3 of [7] that there
is .-isomorphism of .I onto a yon Neuman algebra of operators on some
Hilbert space, with strongly and weakly bicontinuous on bounded sets.
Further, q is norm-preserving if I is given the operator norm corresponding to
the equivalent norm on X since q is a .-isomorphism. The outcome of
the foregoing remarks is that the extension theorem (Theorem 4) can be ob-
tained as a direct consequence of Theorems 6 and 7 on pages 14, 15 of Berberian
[4] after reducing to the Hilbert space setting.

5. Some characterisations of extendable spectral measures
In this section we give two chmcteristions for spectral mesure E (.)

on u field R of subsets of to be extendable to unique spectral measure on the
z-field S (R) generated by R.

THEOREM 8. The necessary and sucient condition for a spectral measure
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(.) on afield R of subsets of to be extendable to a unique spectral measure on
the z-field S (R generated by R is that the range ofE (.) be contained in a a-corn-
plete B. A. of projections on the Banach space X

Proof. The sufficient part of the theorem follows from Theorem 4 of Sec-
tion 4. The condition is also necessary. For, if E (.) is an extended spectral
measure of E (.) on S (R) then as E (.) is strongly countably additive on the
a-field S (R) its range B is a-complete B. A. of projections on X. Since
E () E (a) for a e R, the range of E (.) on R is contained in B. Hence the
theorem.

We give below another characterisation theorem which generalizes Theorem
8 of Kluv,4nek and Kovikov [11]. To this end we need the following
lemma.

LEMM 5. Let B be a B. A. of projections on a Banach space X. Then B is
embedded in a a-complete B. A. of projections iffor each x in X,

N (x) IEx E eB}

is relatively weakly compact in X.

Proof. Since N (x) is relatively weakly compact for .every x e X, N (x) is
bounded and hence by the principle of uniform boundedness B is (uniformly)
bounded. Therefore by remarks in Section III of Lumer [13], there exists an
equivalent norm I1" on X in which all the members of B are hermitian.
Hence by Theorem 1.3 of [14] the uniformly closed algebra A (B) generated
by B is a B*-algebra in the operator norm II, computed with respect to the
norm on X so that A (B) is isometrically isomorphic to (!9) the space
of all complex-valued continuous functions on the maximal ideal space of
A (B). Then each projection E e B corresponds to the characteristic function
of a unique clopen set
By Theorem 18 of Dunford [5], there exists an X-spectral measure F(. on

the family 2: of Borel sets of !9 such thut for x X, x’ X

x’Tx T (m)xF (dm )x’, T A (B ).

Hence, in prticular, for E e B we have

f f (’) xF (dm )x’ xF (, (E) )x’x’Ex E (m )xF (dm )x’

where x,() denotes the characteristic function of , (E). Thus

(7) E’ F(,(E))

where E’ denotes the adjoint of E.
Let M be the class of all sets r e 2 such that F () is the adjoint of some pro-

jection G(r) e B(X) and such that G(r)x N(x) for every x in X where the
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closure is taken in the weak topology. Then clearly M contains the field
of all clopen sets of , since by (7) we have E G(.(E)) for E e B.
We claim that M is monotone. This is proved by giving an argument simi-

lar to that of [9]. If r} is a monotone sequence of sets fromM and r lim
then for x X, x X’

(8) lim xF (r)x’ xF (r)x’

since F (.) is an X-spectral measure on 2. But, as r e M, xF (-,,)x’ x’G(r,,)x,
so that G (r)x} is weakly fundamental for fixed x. Since G (r.)x} belongs
to the weakly compact set N--, by the Eberlein-mulian theorem [6, . 6.1],
{G (r,)x} is weakly convergent to a unique element G (r)x in N(X. Clearly
G (r) B (X). But x’G (r)x lim, x’G (r)x lim xF (’,)x’ xF (r)x’
from (8). Hence G (r)’ F (r). Thus r e M.

Since M is monotone and contains the field G of all clopen sets, it also con-
tains the a-field S (G) generated by by Theorem B of Section 6 of Halmos
[9]. Thus over the a-field S (() we have the projection-valued set function
G(. with its range in B (X). Since F (.) is X-countably additive on
G (.) is X’-countably additive on S (). Hence by a theorem of Pettis this
implies that G (.) is strongly countably additive on the a-field S (() and hence
its range B1 is a a-complete B. A. of projections on X. Since B is contained in
B1 the lemma follows.

THEOE 9. Let E (.) be a spectral measure on a field R of subsets of a set
with its range in B (X). Then E (.) can be extended to a unique spectral

measure E (.) on the a-field S (R generated by R if and only iffor x e X,

is relatively weakly compact in the Banach space X.

Proof. Suppose E (.) is extendable to a unique spectral measure E (.) on
the a-field S (R). Then for each x e X,/ (x) is a vector measure on the a-field
S (R) and hence by Theorem 2.9 of [3], N (x) {/ (r)x r e S (R)}, is rela-
tively weakly compact in X. Thus N(x) being the closed subset of the com-
pact set N(x) is itself weakly compact. In other words N (x) is relatively
weakly compact in X.

Conversely, if for x e X, N (x) is relatively weakly compact, then by Lemma
5, there exists a a-complete B. A. B of projections on X such that B B.
That is, B is embedded in the a-complete B. A. B1. Now the conclusion fol-
lows from the sufficient part of Theorem 8.

This completes the proof of the theorem.

6. An application to spectral operators

For weakly complete Banach spaces Foguel proved in [8] that the sum $1
and the product $1 S. of two (bounded) commuting scalar type operators is
again scalar type if and only if the B. A. determined by the resolutions of the
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identity of S and S is bounded. Further he obtained the resolutions of the
identity of S - S and S S in terms of those of S and S, under some restric-
tions on the boundary of the Borel sets. Later, in [10] Kantorovitz improved
this result removing the additional conditions imposed on the boundary of the
Borel sets. Recently in [11] Kluvnek and Kov,4ikov proved the improved
result of Kantorovitz, for weakly complete Banach spaces applying the theory
of extension of the product of two spectral measures. Motivated by the
method of proof in [11] we have the following generalization of this result,
even for arbitrary Banach spaces.

THEOREM 10. Let S and S. be two commuting (not necessarily bounded)
spectral operators of scalar type of class X’ [1], [5] ,ith E (.) and E (.) as their
respective resolutions of the identity and further suppose that the B. A. B deter-
mined by E (.) and E. (.) can be embedded in a a-complete B. A. of projections
on X. Then S "4- S and S S are scalar type of class X. Also, their respective
resolutions of the identity G (.) and G (.) are given by

and

G1 ( )x f E( h) dE (), )x

( )x J E. (/X dE (X )x

for each x X and for each Borel set of the complex plane.

Proof. Since the a-field 2 of Borel sets of p X p, where p denotes the com-
plex plane, is generated by the field

R U’.. a X i as, i Borel sets of p and a X are mutually disjoint},

2 S (R). The B (X)-valued set function Go on R given by

G0(r)

_
E(a)E2()

where r [J,-I a X where a, are Borel sets of p and a X are mutually
disjoint is clearly well defined and is a spectral measure on R.

Since by hypothesis, the range of Go (.) is contained in a a-complete B. A.
of projections, by Theorem 4 of Section 4, Go (.) can be extended to a unique
spectral measure G (.) on S (R) 2. Thus if f (h, g) is any Borel measur-
able function on p X p then (by Lemma 6 of Dunford [5] if f is bounded or by
Theorem 4 of Panchapagesan [14] if f is G(. )-essentially unbounded), the
operator f(S, S) given by

f(S, S)x f f(, dG (h, )x
Xp

for x e D (f(S, S.) ) is a scalar type operator and its resolution of the identity
is given by

Gs(a) G{ (X, ,) f(X, )e al
where a is a Borel set of p.
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Now the theorem follows by applying the above result to the particular case
of the Borel measurable functions h -t- tt and ht.

Note. In weakly complete Banach spaces, the boundedness of a B. A. B of
projections implies/]’ is complete and/" is hence a-complete. This follows
from Corollary 2.10 of Bade [2]. Hence in view of this result, it suffices to
assume in all the theorems above that the B. A. in question is bounded, if the
Banach space X is weakly complete.
The author wishes to express his heart-felt thanks to Professor V. K. Bala-

chandran for his kind encouragement.
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