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Let p be a prime and for each integer n

_
1 denote by P the Sylow p-

subgroup of the symmetric group of degree pn. Thus P is a group of order
p, where/c 1 - p - - p-1; in particular PI is the cyclic group of order
p. Pn acts as a permutation group on p symbols and if these symbols form
basis of an elementary Abelian p-group A, then Am is ZP-module. The

split extensien of Am by P is P+I"
P+ A P.

In this note the groups H (P, Z) nd H1 (P, A) will be computed. I wish
to express my gratitude to L. Evens for a number of discussions which have
helped me considerably ia this work.

1. Statement of results
For n 1, H (P1, Z) 0 since P is cyclic. For n > 1, Pn is the wreathe

product of P and P_
P P P-.

The calculation of H. (P, Z) will be chieved by computing the Schur multi-
plier of a wreathe product G H, where G and H are arbitrary groups and G
acts as in its regular representation. To state the result let T be the tensor
square of the abelian group H/H’"

T H/H’ (R) H/H’.
Let K be the subgroup of T generated by all elements of the form

h H’ (R) h. H - h. H’ @ hl H’ (h h e H ).

Let G denote set of elements of G hving the property that if x e G and
x 1, then G contains either x or x-1 but not both. Let G be the set of
involutions in G. Let C (G; H) denote the direct sum of GI copies of T and
[GI copies of T/K.
TIEOE 1. H (G H, Z) is the direct sum of H. (G, Z), H (H, Z) and

C(G;H).

Application of this with G P, H P_I shows that H(P, Z) is the
direct sum of H. (P_I, Z) and C (P P._). As is well known, P,,_/P,_ is
elementary Abelian of order p-, so in this case T is elementary Abelian of
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order p(n-1). For p odd, G1 1/2 (p 1) and G[ 0, so C (P1 Pn-) is
elementary Abelian of order pC, where c 1/2 (p 1)(n 1) For p 2
G 0, G. land IlK[ 2(1/’)(n-)(n-1); hence C (P, Pn_l)is elementary

Abelian of order 2 )’(’- ). The following is thus a consequence of Theorem 1.

COROLLAnY. H. (P., Z) is elementary Abelian of order pro, where
m 1/2(p- 1)(1+2+ + (n- 1)) (podd),

-n(n 1) (p 2).

Another fact emerges from the calculation used to prove Theorem 1. This
concerns a certain characteristic subgroup Z (G) defined for any group G as
follows. An element x of G lies in Z (G) if and only if whenever p is an iso-
morphism of G onto T/U with U contained in the center of T, then xp is con-
tained in the center of T. If G is isomorphic to F/R, where F is free, Z (G)
corresponds to the group Y/R, where Y/[R, F] is the center of F/[R, F].
An element z lies in Z (G) if G is generated by the roots of z (cf. [2, page 137] ).

It follows from this fact and the definition of the wreathe product that Z (P)
is the center of P if p is odd.

THEOREM 2. Suppose that G is a finite group and that H is a group for which
H’ n Z (H) 1. Then W a Z (W) 1, where W G H.

COROLLARY. For p odd, Z (P,) is the center of P,.
This corollary is proved by induction on n. It is trivial for n 1 and has

been established for n 2. For n 2, Z (P_) is the center of P_ by the
inductive hypothesis. Since Pn_ is non-Abelian it follows that P_
Z (Pn_) 1. By Theorem 2, P’, n Z(P) 1 Thus Z(P) is a non-
trivial subgroup of the center of P.. Since the center of P. is of order p, the
corollary is proved.

This corollary implies a theorem of L. Evens [1] which states that, for p
odd, if G is a p-group and G/’ (G) is isomorphic to P then , (G) 1.
The proof of Theorem 1 follows the method of Schur for the calculation of

the multiplier. For the one-dimensional homology groups let A be a ZG-
module and let R be the kernel of the ZG-epimorphism of A (R) ZG onto A
which carries a (R) g into ag (a A, g G). Since H1 (G, A (R) ZG) 0 the exact
homology sequence gives the isomorphism

H (G, A) R [A (R) ZG, G]/[R, G].

It is possible to approach this isomorphism from a more group-theoretical
viewpoint which brings out the analogy with the method of Schur. To do
this the following will be proved; in this the restriction that A be Abelian is
dropped. Thus suppose that G, A are groups and that G acts on A; that is,
for each g e G an automorphism a -- a of A is defined and (a) a.
The free product G A of G and A will be considered, and the embeddings of
A, G in G A will be denoted respectively by i, j.
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THEOREM 3. Let S be the kernel of the epimorphism of P G A onto the
split extension of A by G. Then S/[S, P] is generated by the elements

l (g, a) (ai)-i (gj)-i (ai) (gj)[S, P],

where g, a run through G, A respectively. The definining relations of the Abelian
group S/IS, P] are

(g, al)[1 (g, a2) (g, al as), (gl g., a) (g, a) (g., ag ).

When A is Abelian, that is, when A is a ZG-module, A is written additively
and ag is written for a. In this case the theorem states that S/[S, P] is the
group C (G, A )/B (G, A ). Thus there is a homomorphism a of S/[S, P]
into A such that (g, a)a a (1 g) and the kernel of a is H (G, A ). Let t
be the epimorphism of P onto the direct product of G and A, and let D be the
kerlel of t. Since carries S into A, IS, P]

_
D. Hence t induces a on

S/IS, P] and the kernel of a is S n D/[S, P].

COROLLARY 1. HI (G, A - S D/[S, P].

Let H be the subgroup (Ai)S of P. Then H/H’ is a ZG-module and it is
deduced from the universal properties of the free and tensor products that
there is a ZG-isomorphism beeween H/H’ and A (R) ZG in which
(gj)-i (ai). (gj)H’ and a a (R) g correspond (a e A, g e G). In this isomor-
phism S/H corresponds to the kernel R of the ZG-epimorphism of A (R) ZG
into A which carries a (R) g into ag, and [S, P]/H’ corresponds to [R, G].
Theorem 3 thus has the following consequence.

COROLLARY 2. Suppose that A is a ZG-module and that R is the kernel of the
ZG-homomorphism of A (R) ZG into A which carries a (R) g into ag (a e A, g e G).
Then R/[R, G] is generated by the elements

c(a,g) a(R) g ag (R) 1 + [R, G].

The defining relations of the abelian group R/[R, G] are

c(a, g) + c(a, g) c(a + a, g), c(a, g g) c(a, g) + c(agl, g)

Thus an isomorphism exists between R/[R, G] and C (G, A )/B (G, A ),
and considerations similar to those following Theorem 3 show that in this iso.-
morphism

R [A (R) ZG, G]/[R, G]

corresponds to H (G, A ). This last isomorphism is the same as the one ob-
tained from the exact homology sequence, though at first sight it looks a little
different. It should be observed that in view of the second of these relations,
if G is generated by X, R/[R, G] is generated by the c (a, x) with x e X.

Corollary 2 can be used to calculate the first homology group whenever suf-
ficiently simple defining relations of G are known. For example suppose that
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A is a ZH-module for some group H. Then if G is any group A (R) ZG has the
structure of a Z (G H)-module.

THEOaEM 4. H1 (G H, A (R) ZG) is the direct sum ofH1 (H, A and G 1
copies of A/[A, H] (R) H/H’.
The computation of HI(P,, A,,) follows easily. For n 1, A1

Z/pZ (R) ZP, so H(P, A) 0. For n > 1, A may be taken to be
A._I @ ZP, since P P_ acts faithfully on this. Thus Theorem 4 shows
that H (P, A.) is the direct sum of H (P_, A._) and p 1 copies of

A_/[A_, P_] @ P-I/P’
p’However, A_/[A_, P_] is cyclic of order p and P_/
_

is elementary
Abelian of order p-. The following result is therefore obtained.

COROlLaRY. H(P, A) is elementary Abelian of order p*, where
]c n(n- 1)(p- 1).

It thus only remains to prove Theorems 1.

2. voofs of Theorems and 2
We ben by expressing the groups C (G; H) and G H in terms of generators

and relations.

LEMMA 1. C(G; H) is the Abelian group generated by a set of symbols
r (h, ), where h, h run through H and g runs through G 1}, with defining
relations
(1)

(2)

rg (hi h, ha) r (h, h2) + rg (h2, ha),

(3)

r (h, h. ha) r (h, h) -t- r (h, h3)

r (h, h) - rg-’ (h, h) 0

where hl h. ha run through H and g runs through G 1}.

Let U be the Abelian group with these generators and relations. For
x e G let V be the Abelian group generated by r (h, h) and r-1 (h, h.)
with defining relations (1), (2), (3), where g runs through Ix, x-}. For
y e G. let W be the Abelian group generated by r (h, h) with defining rela-
tions (1), (2), (3), where g g-i Y. Clearly U is the direct sum of the
groups V and W, as x runs through G and y runs through G2. In view of
the relation (3), V is generated by the r (hi, h.) alone. Elimination of
r-1 (h, h) from the defining relations of V shows that V is generated by the
r(h, h) with defining relations (1), (2), where g x. Thus V is iso-
morphic to T. As for W, the defining relations show that there is an epi-
morphism of T onto W which carries hl H’ (R) h H’ onto r (h, h.); the kernel
is generated by the elements corresponding to the left hand side of (3) and is
therefore K. Thus W is isomorphic to T/K und U is isomorphic to C (G;H).

For arbitrary groups G and H the wreathe product G H is a split extension
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by G of the direct product B of G! copies of H. G acts transitively and regu-
larly on these copies of H; thus if we identify one of them with H, the copies
are precisely the transforms Hg as g rus through G. B is the direct product
of the Hg and each element x of B may be written uniquely in the form

g
X oeq Xo

where x e H and all but a finite mlmber of x are equal to 1. The element xg
will be called the g-component of x. The action of G on B is described by the
statement that the gl-component of x (g e G) is xl-

It follows that G H is generated by G and H. A set of defining relations
of G H is furnished by the multiplication tables of G and H, together with
relations expressing the commutativity of elements in H and Hg2 for distinct
elements gl, g2 of G. To state this more formally let F be a free group with
basis consisting of a set of symbols u(g), v(h), where g runs through G {1}
and h runs through H {1}. Putu(1) v(1) 1. Let

(4) b (g, g) u (g g)-lu (g)u (g.) (g, g e G),

(5)

(6)

c (hi, h.) v (h h2)-lv (h)v (h) h, h e H),

d(h, h) Iv(hi)u(), v(h.)] (h,h.eH, geG- {1}).

Let R be the normal closure in F of the elements b (g, g2), c (h, h.), d (h, h).
Then there is an isomorphism between G H and FIR in which g, h correspond
to u (g)R, v (h)R. The Schur multiplier of G H is R r F’/[R, F].
The group R/[R, F] will be investigated first. Let

g (gl, g2) b (g, g2)[R, F], (hi, h.) c (hi, h2)[R, F],

3 (h, h2) dg (h, h)[R, F].

R/[R, F] is of course generated by g (g, g2), e (h, h2) and (hi, h.).
elements satisfy the following relations.

(7) (g, 1) (1, g) 1,

(8)

(g ga)(g g. ga) (gg ga)(g g) for any elements g g. ga of G.

e(h, 1) e(1, h) 1,

(h. ha)e(h h. ha) e(h h ha)e(h h.) for any elements h, h, ha of H.

These

For g e G 1} and any elements hi, h, ha of H,

(h h, h) 3 (h, h)3 (h, ha),
(9)

3 (hi, h. ha) (h, h.) (h, ha).

For g e G {1} and any elements h, h of H,

(10) g (h,, h)-’ (h., h) 1.
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The relations (7) and (8) are of course simply the usual expression of
sociativity in an extension. The first of the relations (9) is proved as follows.

3 (h h, h) Iv (h h)(), v (h)][R, F]

(v (hl)v (h)c (hi, h.)-l)(), v (ha)]JR, F] by (5)

(v (h)C)v (h)c), v (ha)][R, F],

since c (h, h) e R. Since Iv (h)(), v (ha)] is central modulo JR, F], it follows
that

3 (h h2, ha) [v (h)=("), v (ha)][v (h2)"c), v (ha)][R, F]

h )3
The second relation (9) is proved similarly. As for (10),

3 (h, h)- Iv (h), v (h,)=()][R, F]

[v(h)(")-’, v(h,)]()[R, F].

Since u (g)- u (g-) modulo R,
3’ (h, h)- Iv (h)(-), v (h)](’)[R, F] 3’- (h, h),

as asserted.
Theorem 2 will now be proved. Thus suppose that Z (H) n H’ contains

an element z 1. Since G is finite, an element

may defined. The order in the product is arbitrary but fixed. Th

by (4), so
w) ,,a v (z)U() modulo [R, E],

since b (g, g) e R. The product on the right hand side is the same as w except
for the order of the factors. Restorution of the original order involves the
introduction of certuin commutators of the form

But this commutator is conjugate to dg (z, z) modulo JR, F]. Since z e H’,
the relation (9) shows that dg (z, h) e JR, F] for any h e H. Hence

w(g) w modulo JR, F].
Again for h e H,

u(’), v(h)]

v (z)(a) ,,a- v (z)() modulo JR, El,
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as before. If T is the group generated by R and all v (h) (h e H), there is an
epimorphism of T/[R, F] onto H and the kernel R/[R, F] is central. It fol-
lows since z e Z (H) that v (z) lies in the center of T modulo [R, F], so

v (z)V(h) _= v (z) modulo [R, F].
Hence

w(h) w modulo [R, F].

It has therefore been proved that w lies in the center of F modulo [R, F].
Hence the element of W G H corresponding to w, namely

Hg( Zg

lies in Z (W). Since z e H’, e W’, so W’ n Z (W) 1. This completes the
proof of Theorem 2.

Returning to the general case, Theorem 1 rests upon the following lemma.

LEMMA 2. R/[R, F] is the Abelian group generated by b(gl, g), e(hl, h)
and itg (h h.) with defining relations (7)- (10).

To prove Lemma 2, choose a well-ordering

_
of G; this ordering need have

no relation to the group structure of G.
Let A be the additively written Abelian group generated by elements
(g, g), (h, h) and g (h, h) with defining relations.

(g, 1) (1, g) (h, 1) (1, h) 0,

t (g., g3) -t- (gl, g g3) t (g g, g) - (g, g),

(h, h) + (h, h. h) (h h, h) + (h, h.),

(h h, h) (h, h) -t- (h., h),

(h, h h) (h, h) + tt (h, h),

(h, h) -t- - (h, h) 0,

where the h run through H, the g through G and g through G 1}. By (7)-
(10) there is an epimorphism of A onto R/iR, F] such that

t (g, g) (g, g), (h, h) e (h, h.), (h, h) d (h, h).

The assertion of Lemma 2 is that is a monomorphism; this will be proved by
constructing a mapping b of R/[R, F] into A such that is the identity map-
ping on A.

First a factor set of G H in A will be constructed. In doing this elements
of B will be denoted by x, y, z and the g-components of x, y, z are denoted by
x, y, z respectively. Mappings a, of B X B into A are defined by the
formulae

(11) (x, y) z (x, yg),

(12) r(x, y) < ii- (x, y,).
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(A summation sign with inequalities underneath it involving gl, g2, means
that summation is to be carried out over all elements gl, g., of G for which
the inequalities hold). From the defining relations of A the following rela-
tions are easily deduced.

(13) z(y, z) + z(x, yz) z(xy, z) + a(x, y),

(14) a(xg, yg) a(x, y),

(15) (xy, z) (x, z) + (y, z),

(16) (x, yz) r(x, y) + (x, z).

Next for each g e G, mapping r of B into A is defined by the formula

;(x(17) (x) ,<,,> x
(Note that r is the zero mapping.) The relation

(18) r(xy) r(x) r(y) (x, y) (x, y)

holds for all x e B, y e B. For the defining relations of A applied to the left-
hand side field

,<,>o{(xo, yo) + g1;1 (y,, x)}.

Upon application of the lust of the defining relations of A und (12) to the sec-
ond term this becomes

’(x y)

Interchanging g and g in the last term,

(zy) .() .(y) -(x, y) + 1>,"(,,, yo)

-(x, y) + (z, y)
which is (18). Also if g e G and g’ e G,

(9) .,(x) ..(x)

To prove this the summands in the definition of r, (x) re to be split into two
hlves defined by g < g and g > g in the ltter half interchange g and g
and apply the last of the defining relations of A. Subtraction of r, (x) from
the resulting expression readily yields (19).
The desired factor set may now be constructed. For w e W G H,

write w g x with g e G, x e B. A mapping a of W X W into A is defined
by the formula

(w, w) (x) + (x[, x) + (x[, x) + (g, g).
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It follows immediately from (13)-(16) nd (18)-(19) that

(, v) (, ) / (, o m) (o, w) 0.

Let F be the central extension of A by W with this fctor set. Thus there is
epimorphism of 1 onto W nd mpping o of W into 1 such that A is the

kernel of , is the identity mpping nd

()() ( o)(, )

for ull w nd w. in W. In prticulr for g, g in G nd h, h in H, it follows
from (11), (12)nd (17)that
(o) ()() (g g) (g, g.)

(21) (h) (h) (h h), (h, h)

Also if g e G 1},

0 (h[) (h) 0 (h h.) (hi, h), (h.) (h) o (hi h) (h., h),

whence
[ (hi), (h)] (hi, h) (h, hi).

It follows that

(22) [ (h)(), (h)] (h, h.).

From (20)-(22) it is seen that A is contained in the group generated by all
(g), (h) as g, h run through G, H respectively. Hence I’ is generated by

these elements. Therefore since F is free, there is an epimorphism x of F onto
F such that u (g)x (g), v (h)x o (h). By comparing (4)- (6) with (20)-
(22) it is seen that

b (g, g)x B (g, g), c (h, h)x ’ (h, h), d (h, h.)x $ (h, h.).

Since A lies in the center of 1, x carries R onto A, and [R, F] is contained in
the kernel of x. Hence x induces an epimorphism of R/[R, F] onto A, and
h is given by

(g, g.) (g, g.), e (h, h) (h, h.), 3 (h, h) i (h, h).

Hence b is the identity mapping, and Lemma 2 is proved.
Lemma 2 shows that R/[R, F] is the direct sum of three groups/, ( and

/). / is generated by the elements (gl, g) and has defining relations (7);
thus/ is isomorphic to C.(G, Z)/B(G, Z) and the boundary operator cor-
responds to the homomorphism 1 of/ into F/F’ which carries (g, g.) into
u(g.)u (g -g.) u (g)Fr. Similarly C is generated by the elements e(h, h)
and has defining relations (8); thus ( is isomorphic to C(H, Z)/B(H, Z)
and the boundary operator corresponds to the homomorphism of ( into
F/F’ which carries (h, h) into v (h)v (hl h.)-lv (h)F’. Finally/) is generated
by the elements g (h, h.) and has defining relations (9) and (10); thus by
Lemma 1,/ is isomorphic to C (G; H).
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To complete the proof of Theorem 1 let be the natural homomorphism of
F onto F/F’. Of course induces a homomorphism of R/[R, F] into F/F’,
and the kernel of is the desired group R n F’/[R, F]. By (4), (5) and (6),
the restriction of to/ is 1, the restriction of to is 2, and the restriction
of to D is zero. Since the images of 1 and 2 intersect in 1, the kernel of
is the direct sum of the kernel of 91, the kernel of 92 and/). So R n F’/[R, F]
is isomorphic to the direct sum of H (G, 2], H (H, Z) and C (G; H).
Theorem 1 is therefore proved.

3. Proof of Theorem 3
The proof of Theorem 3 is Mong the same lines as that of Lemma 2. It will

be recalled that the group G acts on the group A, that P is the free product
G A of G and A and that S is the kernel of the epimorphism of P onto the
split extention of A by G. Denote by i, j respectively the embeddings of
A, G in P and for g G, a e A define

d (g, a) (agi)-I (gj)-i (ai) (gj).

Then d (g, a) e S. It is easy to check the following relations:

d(g, a’)’ d(g, a’ag-1)d(g, a)-,
d(g’, a) d(g, a’)-(d(g’g, a).

It follows from these three relations that every element of P is of the form
(gj) (ai) d, where d is a product of the d (g, a) and their inverses. Hence S is
generated by the d (g, a). If

3(g, a) d(g, a)[S, P],

the above relations become

3(g, a a2) 3(g, a)3(g, a),

(g g2, a) (g2, a1)3 (gl, a).

Let C be the Abelian group generated by a set of symbols t (g, a) (g e G,
a e A ) with defining relations

t (g, a a.) i (g, al) (g, a),

agl)i (gl, a)(g g., a) t (g.,

Then there is an epimorphism q of C onto S/[S, P] such that

(g, a) 3(g, a).

The assertion of Theorem 3 is that is a monomorphism; this will be proved
by constructing a mapping of S/[S, P] into C such that is the identity
mapping on C.
The split extension of A by G will be denoted by K and the element/ of K
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will be written g a with g G, a e A. A mapping a of K K into C is de-
fined by the formulu

a (/Ca, k.) i (g2, al).
Then

(, )( , )-- (, )(, )-
(g, a2) (g a[a)- (g ga, al) (g, a)-

1.

Hence a is a factor set nd there exists a corresponding central extension F of
C by K. Thus there is an epimorphism of I’ onto K and a mapping co of K
into F such that C is the kernel of , t is the identity mapping and

for all k and k in K. In particular

so that

o (g )co (ag) o (gag )a (g, ag) co (ag )8 (1, 1 co (ag

co (ag )-co (g )-co (a )co (g it (g, a)

Also co (gl)co (g2) co (gl g.) and co (a)co (a) co (a a2). Hence there is a
homomorphism x of P into 1’ such that (ai)x c0(a) and (gJ)x co(g) for
aeA, geG. Thus

d (g, a)x co (ag)-co (g)-co (a)co (g) t (g, a).

Hence x carries S onto C, and since C is contained in the center of F, [S, P]
is contained in the kernel of x. Hence x induces an epimorphism of S/[S, P]
onto C, and is given by

(g, a)b ti(g, a).

Hence is the identity mapping and Theorem 3 is proved.

4. Proof of Theorem 4
Suppose that G, H are groups and that A is a ZH-module. Then the split

extension AH of A byH and the wreathe product K G AH may be formed.
K may then be regarded as the split extension of B A (R) ZG by W G H,
the action of W on B being given by

(a (R) 1)h ah (R) 1, (a (R) gl)g a (R) g g,

where a A, h H, g G, g2 G; further if g G 1},

(a (R) g)h a(R) g.

Thus B is ZW-module. Let R be the kernel of the ZW-homomorphism of
B (R) ZW onto B which carries b (R) w into bw. By a remark following Theorem

w (a )co (g co (ag )a (a, g) co (ag )8 (g, a ),
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3, Corollary 2, R/[R, W] is generated by the elements

bg,(a,g) bg,(a,g) + [R,W] and eg(a,h) cg(a,h)- [R,W],

where
b,(a,g) (a (R) g’) (R) g- (a (R) g’)g (R) 1,

c(a,h) (a (R) g) (R) h- (a (R) g)h (R) 1;

hereaeA, geG, g’eG, heH. Letb(a,g) bl(a,g),/(a,g) /l(a,g).
Then it is easy to verify that

b, (a, g) b (a, g’g) b (a, g’)g.
Hence

,(a, g) (a, g’g) (a, g’),

so R/[R, W] is generated by the/ (a, g) and the 5 (a, h). The following rela-
tions hold.

(1) is linear in a.
(2) For all g e G, is linear in a.
(3) g(a, 1) 0.
(4) For a e A and h H, (a, h + (ah h. (a, h h2 ).
(5) For g C 1}, e is homomorphic in h.
(6) For g e G {1}, c(a, h) 0 if a e [A, HI.

Of these (1), (2), (3) are obvious and (4), (5) follow easily from the definition
of e,. To prove (6) it is necessary to show that

(a(1 h) (R) g) (R) (1 h’)e[R,W]

for anyaeA, heH, h’eHandgeG- {1}. Ifb a (R) g, bh ah (R) g, so
it must be shown that

b(1 hg) (R) (1 h’)e[R,W].

But the left side is easily seen to be equal to

(b (R) h bh @ 1)(1 h’) (b (R) h’ bh’ (R) 1)(1 h),

since hh’ h’h and bh’ b.

LEMMA 3. The relations (1)-(6) constitute a system of defining relations of
R/[R, W].

To prove this let C be an additively written Abelian group generated by
symbols t (a, g) and (a, h), where a, g, h run through A, G, H respectively
with defining relations

(al + a., g) t (a, g) +/ (a, g),

,g(a -t- a, h) ,(a, h) + (a, h),

t(a, 1) 0,
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7 (a, h h,) "n (a, h,) + 7 (ah, h),

.), (a, h, h ) ,), (a, h + , (a, h (g 1 ),

7g(a, h 0 (a e [A, H], g 1).

Let 1 be the direct sum of the abelian groups B and C; the elements of r will
be written as ordered pairs (b, c). Mappings and 7 of B X G and B X H into
C respectively, both linear in B, may be defined satisfying

(a (R) g, g’) (a, gg’) (a, g), 7(a (R) g, h) "),(a, h),

on account of the first two defining relations of C. Hence for g e G and h e H
endomorphisms , ] of F may be defined as follows"

(b, c) (bg, c + (b, g) ), (b, c)f (bh, c +, (b, h ).

It is easily deduced from the definition and linearity of that

(b, gl g2) (b, gl) + (bg, g2),

and hence 1 2 g g; also ig is the identity mapping. Again the fourth and
fifth defining relations of C imply that

7 (b, h h) 7 (b, h) + 7 (bhl, h2),

whence ]1 ]2 h h ;also iH is the identity mapping. The relations

(bh, g) (b, g) (bhh’-’, g) (bh’-’, g),

b -1 (bh, h’ h’ (bh’g-, h)7( g ,h) + 7 7(5, +7
also hold for g 1, but this verification is slightly more tedious. In proving
both it may be assumed that b a (R) g’ in view of the linearity of and 7.

Ig tgThe first relation is clear, since if g’ 1, bh b and bhh bh, whereas
--1if g’ - 1, bh b. Similarly the second relation reduces to 7(bg h)

q(bh’g-, h) if g’ 1, or to 7(bh, h’) 7(b, h’) if g’ 1; the second is trivial
unless g’ g, so both reduce to 7 (ah @ g, h’) 7 (a (R) g, h’), which follows
from the last of the defining relations of C. Thus the relations are proved, and
from them it is easy to see that for g 1, h- and ] commute. Hence P is a
ZW-module, and

(b, c )g (bg, c -t- (b, g) ), (b, c )h (bh, c -t- q (b, h) ).

In particular the projection of F onto B is a ZW-homomorphism, and since
/(a, 1) O.

(a(R) 1,0)g-- (a(R) g, 0) (0,(a,g)).
Also

(a (R) g, O)h ((a (R) g)h, O) (0, .),g(a, h)).

There is un Abelian group homomorphism x of B (R) ZW into F such that
(b (R) w)x (b, 0)w for all b e B, w e W. This is clearly a ZW-homomorphism.
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The kernel of the composite of x with the projection of 1 onto B is R, so the
first component of any element of Rx is 0. Since (0, c)w (0, c), [R, W]
is contained in the kernel of x. Hence x induces a homomorphism of
R/[R, F] into C, given by

(a, g)b (a, g), (a, h)b " (a, h).

But on account of (1)- (6), there is an epimorphism of C onto R/[R, W] such
that is the identity mapping on C. Hence is an isomorphism and Lemma
3 is proved.
Lemma 3 shows that R/[R, W] is the direct sum of the group/ generated

by all (a, g) and the groups ( (g G) generated by the e(a, h). The
Abelian group/ has defining relations (1) and (3). For g 1, ( has defin-
ing relations (2), (5) and (6) and is therefore isomorphic to A/[A, HI (R) H/H’.
Finally , having defining relations (2) and (4), is isomorphic to
C (H, A )/B (H, A ).

Let be the additive epimorphism of B (R) ZW onto B which carries b (R) w
into b; thus [B (R) ZW, W] is the kernel of . The homomorphism of R/[R, W]
into B induced by is given by

(a, g) a (R) (1 g), (a, h) a(1 h) (R) 1,

e(a,h) 0 (g 1).

If is the additive endomorphism of A (R) ZG onto A which carries a (R) g into
a, is zero on/ but is faithful on ( . Hence/ n 0. Thus the
kernel R n [B (R) ZW, W]/[R, W] of is the direct sum of the kernel S of the
restriction of to/ and the groups ( (g 1). S is of course isomorphic to
H (H, A ), and it is clear that S 0. Hence R n [B @ ZW, W]/[R, W] is the
direct sum ofH (H, A and G 1 copies of A/[A, HI (R) H/H’. Since the
former group is isomorphic to H (W, B), Theorem 4 is proved.

REFERENCES

1. L. EVENS, Terminal p-groups, Illinois J. Math., vol. 12 (1968), pp. 682-699.
2. P. I-I, The classification of prime-power groups, J. Reine Angew. Math., vol. 182

(1940), pp. 130-141.

UNIVF.,RSITY OF ILLINOIS A.T CHICA.GO CIRCLE
CHICAGO ILLINOIS


