SOME HOMOLOGY GROUPS OF WREATHE PRODUCTS ${ }^{1}$

BY
Norman Blackburn

Let p be a prime and for each integer $n \geq 1$ denote by P_{n} the Sylow p subgroup of the symmetric group of degree p^{n}. Thus P_{n} is a group of order p^{k}, where $k=1+p+\cdots+p^{n-1}$; in particular P_{1} is the cyclic group of order p. $\quad P_{n}$ acts as a permutation group on p^{n} symbols and if these symbols form a basis of an elementary Abelian p-group A_{n}, then A_{n} is a $Z P_{n}$-module. The split extension of A_{n} by P_{n} is P_{n+1} :

$$
P_{n+1}=A_{n} P_{n}
$$

In this note the groups $H_{2}\left(P_{n}, \mathrm{Z}\right)$ and $H_{1}\left(P_{n}, A_{n}\right)$ will be computed. I wish to express my gratitude to L. Evens for a number of discussions which have helped me considerably in this work.

1. Statement of results

For $n=1, H_{2}\left(P_{1}, \mathbf{Z}\right)=0$ since P_{1} is cyclic. For $n>1, P_{n}$ is the wreathe product of P_{1} and P_{n-1} :

$$
P_{n}=P_{1} \ell P_{n-1}
$$

The calculation of $H_{2}\left(P_{n}, Z\right)$ will be achieved by computing the Schur multiplier of a wreathe product $G \ H$, where G and H are arbitrary groups and G acts as in its regular representation. To state the result let T be the tensor square of the abelian group H / H^{\prime} :

$$
T=H / H^{\prime} \otimes H / H^{\prime}
$$

Let K be the subgroup of T generated by all elements of the form

$$
h_{1} H^{\prime} \otimes h_{2} H^{\prime}+h_{2} H^{\prime} \otimes h_{1} H^{\prime} \quad\left(h_{1}, h_{2} \in H\right)
$$

Let G_{1} denote a set of elements of G having the property that if $x \in G$ and $x^{2} \neq 1$, then G_{1} contains either x or x^{-1} but not both. Let G_{2} be the set of involutions in G. Let $C(G ; H)$ denote the direct sum of $\left|G_{1}\right|$ copies of T and $\left|G_{2}\right|$ copies of T / K.

Theorem 1. $H_{2}(G \backslash H, Z)$ is the direct sum of $H_{2}(G, Z), H_{2}(H, Z)$ and $C(G ; H)$.

Application of this with $G=P_{1}, H=P_{n-1}$ shows that $H_{2}\left(P_{n}, Z\right)$ is the direct sum of $H_{2}\left(P_{n-1}, \mathrm{Z}\right)$ and $C\left(P_{1} ; P_{n-1}\right)$. As is well known, $P_{n-1} / P_{n-1}^{\prime}$ is elementary Abelian of order p^{n-1}, so in this case T is elementary Abelian of

[^0]order $p^{(n-1)^{2}}$. For p odd, $\left|G_{1}\right|=\frac{1}{2}(p-1)$ and $\left|G_{2}\right|=0$, so $C\left(P_{1} ; P_{n-1}\right)$ is elementary Abelian of order p^{c}, where $c=\frac{1}{2}(p-1)(n-1)^{2}$ For $p=2$ $\left|G_{1}\right|=0,\left|G_{2}\right|=1$ and $|K|=2^{(1 / 2)(n-2)(n-1)}$; hence $C\left(P_{1} ; P_{n-1}\right)$ is elementary Abelian of order $2^{(1 / 2) n(n-1)}$. The following is thus a consequence of Theorem 1.

Corollary. $\quad H_{2}\left(P_{n}, Z\right)$ is elementary Abelian of order p^{m}, where

$$
\begin{aligned}
m & =\frac{1}{2}(p-1)\left(1^{2}+2^{2}+\cdots+(n-1)^{2}\right) & & (p \text { odd }) \\
& =\frac{1}{6} n\left(n^{2}-1\right) & & (p=2)
\end{aligned}
$$

Another fact emerges from the calculation used to prove Theorem 1. This concerns a certain characteristic subgroup $Z(G)$ defined for any group G as follows. An element x of G lies in $Z(G)$ if and only if whenever ρ is an isomorphism of G onto T / U with U contained in the center of T, then $x \rho$ is contained in the center of T. If G is isomorphic to F / R, where F is free, $Z(G)$ corresponds to the group Y / R, where $Y /[R, F]$ is the center of $F /[R, F]$.

An element z lies in $Z(G)$ if G is generated by the roots of z (cf. [2, page 137]). It follows from this fact and the definition of the wreathe product that $Z\left(P_{2}\right)$ is the center of P_{2} if p is odd.

Theorem 2. Suppose that G is a finite group and that H is a group for which $H^{\prime} \cap Z(H) \neq 1$. Then $W^{\prime} \cap Z(W) \neq 1$, where $\left.W=G\right\rangle H$.

Corollary. For p odd, $Z\left(P_{n}\right)$ is the center of P_{n}.
This corollary is proved by induction on n. It is trivial for $n=1$ and has been established for $n=2$. For $n>2, Z\left(P_{n-1}\right)$ is the center of P_{n-1} by the inductive hypothesis. Since P_{n-1} is non-Abelian it follows that $P_{n-1}^{\prime} \cap$ $Z\left(P_{n-1}\right) \neq 1$. By Theorem $2, P_{n}^{\prime} \cap Z\left(P_{n}\right) \neq 1$. Thus $Z\left(P_{n}\right)$ is a nontrivial subgroup of the center of P_{n}. Since the center of P_{n} is of order p, the corollary is proved.

This corollary implies a theorem of L. Evens [1] which states that, for p odd, if G is a p-group and $G / \gamma_{k}(G)$ is isomorphic to P_{n} then $\gamma_{k}(G)=1$.

The proof of Theorem 1 follows the method of Schur for the calculation of the multiplier. For the one-dimensional homology groups let A be a $Z G$ module and let R be the kernel of the $Z G$-epimorphism of $A \otimes Z G$ onto A which carries $a \otimes g$ into $a g(a \in A, g \in G)$. Since $H_{1}(G, A \otimes Z G)=0$ the exact homology sequence gives the isomorphism

$$
H_{1}(G, A)=R \cap[A \otimes Z G, G] /[R, G] .
$$

It is possible to approach this isomorphism from a more group-theoretical viewpoint which brings out the analogy with the method of Schur. To do this the following will be proved; in this the restriction that A be Abelian is dropped. Thus suppose that G, A are groups and that G acts on A; that is, for each $g \in G$ an automorphism $a \rightarrow a^{g}$ of A is defined and $\left(a^{g_{1}}\right)^{g_{2}}=a^{g_{1} g_{2}}$. The free product $G * A$ of G and A will be considered, and the embeddings of A, G in $G * A$ will be denoted respectively by i, j.

Theorem 3. Let S be the kernel of the epimorphism of $P=G * A$ onto the split extension of A by G. Then $S /[S, P]$ is generated by the elements

$$
\bar{d}(g, a)=\left(a^{\sigma} i\right)^{-1}(g j)^{-1}(a i)(g j)[S, P],
$$

where g, a run through G, A respectively. The definining relations of the Abelian group $S /[S, P]$ are

$$
\bar{d}\left(g, a_{1}\right) \bar{d}\left(g, a_{2}\right)=\bar{d}\left(g, a_{1} a_{2}\right), \quad \bar{d}\left(g_{1} g_{2}, a\right)=\bar{d}\left(g_{1}, a\right) \bar{d}\left(g_{2}, a^{g_{1}}\right)
$$

When A is Abelian, that is, when A is a $\mathbf{Z} G$-module, A is written additively and $a g$ is written for a^{g}. In this case the theorem states that $S /[S, P]$ is the group $C_{1}(G, A) / B_{1}(G, A)$. Thus there is a homomorphism α of $S /[S, P]$ into A such that $\bar{d}(g, a) \alpha=a(1-g)$ and the kernel of α is $H_{1}(G, A)$. Let β be the epimorphism of P onto the direct product of G and A, and let D be the kernel of β. Since β carries S into $A,[S, P] \leq D$. Hence β induces α on $S /[S, P]$ and the kernel of α is $S \cap D /[S, P]$.

Corollary 1. $H_{1}(G, A) \cong S \cap D /[S, P]$.
Let H be the subgroup ($A i$)S of P. Then H / H^{\prime} is a $Z G$-module and it is deduced from the universal properties of the free and tensor products that there is a $Z G$-isomorphism beeween H / H^{\prime} and $A \otimes Z G$ in which $(g j)^{-1}(a i) \cdot(g j) H^{\prime}$ and a $a \otimes g$ correspond $(a \in A, g \in G)$. In this isomorphism S / H^{\prime} corresponds to the kernel R of the $Z G$-epimorphism of $A \otimes Z G$ into A which carries $a \otimes g$ into $a g$, and $[S, P] / H^{\prime}$ corresponds to $[R, G]$. Theorem 3 thus has the following consequence.

Corollary 2. Suppose that A is a ZG-module and that R is the kernel of the $\mathbf{Z} G$-homomorphism of $A \otimes \mathbf{Z} G$ into A which carries $a \otimes g$ into ag ($a \in A, g \in G$). Then $R /[R, G]$ is generated by the elements

$$
c(a, g)=a \otimes g-a g \otimes 1+[R, G] .
$$

The defining relations of the abelian group $R /[R, G]$ are

$$
c\left(a_{1}, g\right)+c\left(a_{2}, g\right)=c\left(a_{1}+a_{2}, g\right), \quad c\left(a, g_{1} g_{2}\right)=c\left(a, g_{1}\right)+c\left(a g_{1}, g_{2}\right)
$$

Thus an isomorphism exists between $R /[R, G]$ and $C_{1}(G, A) / B_{1}(G, A)$, and considerations similar to those following Theorem 3 show that in this isomorphism

$$
R \cap[A \otimes Z G, G] /[R, G]
$$

corresponds to $H_{1}(G, A)$. This last isomorphism is the same as the one obtained from the exact homology sequence, though at first sight it looks a little different. It should be observed that in view of the second of these relations, if G is generated by $X, R /[R, G]$ is generated by the $c(a, x)$ with $x \in X$.

Corollary 2 can be used to calculate the first homology group whenever sufficiently simple defining relations of G are known. For example suppose that
A is a $\mathbf{Z H}$-module for some group H. Then if G is any group $A \otimes Z G$ has the structure of a $\mathbf{Z}(G\rangle H)$-module.

Theorem 4. $\left.\quad H_{1}(G\rangle H, A \otimes Z G\right)$ is the direct sum of $H_{1}(H, A)$ and $|G|-1$ copies of $A /[A, H] \otimes H / H^{\prime}$.

The computation of $H_{1}\left(P_{n}, A_{n}\right)$ follows easily. For $n=1, A_{1}=$ $\mathbf{Z} / p \mathbf{Z} \otimes \mathbf{Z} P_{1}$, so $H_{1}\left(P_{1}, A_{1}\right)=0$. For $n>1, A_{n}$ may be taken to be $A_{n-1} \otimes Z P_{1}$, since $P_{1} \ P_{n-1}$ acts faithfully on this. Thus Theorem 4 shows that $H_{1}\left(P_{n}, A_{n}\right)$ is the direct sum of $H_{1}\left(P_{n-1}, A_{n-1}\right)$ and $p-1$ copies of

$$
A_{n-1} /\left[A_{n-1}, P_{n-1}\right] \otimes P_{n-1} / P_{n-1}^{\prime}
$$

However, $A_{n-1} /\left[A_{n-1}, P_{n-1}\right]$ is cyclic of order p and $P_{n-1} / P_{n-1}^{\prime}$ is elementary Abelian of order p^{n-1}. The following result is therefore obtained.

Corollary. $H_{1}\left(P_{n}, A_{n}\right)$ is elementary Abelian of order p^{k}, where $k=\frac{1}{2} n(n-1)(p-1)$.

It thus only remains to prove Theorems 1-4.

2. Proofs of Theorems 1 and 2

We begin by expressing the groups $C(G ; H)$ and $G \ H$ in terms of generators and relations.

Lemma 1. $C(G ; H)$ is the Abelian group generated by a set of symbols $r^{g}\left(h_{1}, h_{2}\right)$, where h_{1}, h_{2} run through H and g runs through $G-\{1\}$, with defining relations

$$
\begin{align*}
r^{g}\left(h_{1} h_{2}, h_{3}\right) & =r^{g}\left(h_{1}, h_{2}\right)+r^{g}\left(h_{2}, h_{3}\right), \tag{1}\\
r^{g}\left(h_{1}, h_{2} h_{3}\right) & =r^{\theta}\left(h_{1}, h_{2}\right)+r^{g}\left(h_{1}, h_{3}\right) \tag{2}\\
r^{g}\left(h_{1}, h_{2}\right)+r^{r^{-1}}\left(h_{2}, h_{1}\right) & =0 \tag{3}
\end{align*}
$$

where h_{1}, h_{2}, h_{3} run through H and g runs through $G-\{1\}$.
Let U be the Abelian group with these generators and relations. For $x \in G_{1}$ let V_{x} be the Abelian group generated by $r^{x}\left(h_{1}, h_{2}\right)$ and $r^{x^{-1}}\left(h_{1}, h_{2}\right)$ with defining relations (1), (2), (3), where g runs through $\left\{x, x^{-1}\right\}$. For $y \in G_{2}$ let W_{y} be the Abelian group generated by $r^{y}\left(h_{1}, h_{2}\right)$ with defining relations (1), (2), (3), where $g=g^{-1}=y$. Clearly U is the direct sum of the groups V_{x} and W_{y}, as x runs through G_{1} and y runs through G_{2}. In view of the relation (3), V_{x} is generated by the $r^{x}\left(h_{1}, h_{2}\right)$ alone. Elimination of $r^{x^{-1}}\left(h_{1}, h_{2}\right)$ from the defining relations of V_{x} shows that V_{x} is generated by the $r^{x}\left(h_{1}, h_{2}\right)$ with defining relations (1), (2), where $g=x$. Thus V_{x} is isomorphic to T. As for W_{y}, the defining relations show that there is an epimorphism of T onto W_{y} which carries $h_{1} H^{\prime} \otimes h_{2} H^{\prime}$ onto $r^{y}\left(h_{1}, h_{2}\right)$; the kernel is generated by the elements corresponding to the left hand side of (3) and is therefore K. Thus W_{y} is isomorphic to T / K and U is isomorphic to $C(G ; H)$.

For arbitrary groups G and H the wreathe product $G \geqslant H$ is a split extension
by G of the direct product B of $|G|$ copies of $H . \quad G$ acts transitively and regularly on these copies of H; thus if we identify one of them with H, the copies are precisely the transforms H^{g} as g runs through $G . \quad B$ is the direct product of the H^{g} and each element x of B may be written uniquely in the form

$$
x=\prod_{\theta \epsilon G} x_{g}^{g}
$$

where $x_{g} \in H$ and all but a finite number of x_{g} are equal to 1 . The element x_{g} will be called the g-component of x. The action of G on B is described by the statement that the g_{1}-component of $x^{g}(g \in G)$ is $x_{g_{1} g^{-1}}$.

It follows that $G \geqslant H$ is generated by G and H. A set of defining relations of $G\rangle H$ is furnished by the multiplication tables of G and H, together with relations expressing the commutativity of elements in $H^{g_{1}}$ and $H^{g_{2}}$ for distinct elements g_{1}, g_{2} of G. To state this more formally let F be a free group with basis consisting of a set of symbols $u(g), v(h)$, where g runs through $G-\{1\}$ and h runs through $H-\{1\}$. Put $u(1)=v(1)=1$. Let

$$
\begin{array}{rlr}
b\left(g_{1}, g_{2}\right) & =u\left(g_{1} g_{2}\right)^{-1} u\left(g_{1}\right) u\left(g_{2}\right) & \left(g_{1}, g_{2} \in G\right), \\
c\left(h_{1}, h_{2}\right) & =v\left(h_{1} h_{2}\right)^{-1} v\left(h_{1}\right) v\left(h_{2}\right) & \left.h_{1}, h_{2} \in H\right), \\
d^{g}\left(h_{1}, h_{2}\right) & =\left[v\left(h_{1}\right)^{u(\theta)}, v\left(h_{2}\right)\right] & \left(h_{1}, h_{2} \in H, g \in G-\{1\}\right) \tag{6}
\end{array}
$$

Let R be the normal closure in F of the elements $b\left(g_{1}, g_{2}\right), c\left(h_{1}, h_{2}\right), d^{g}\left(h_{1}, h_{2}\right)$. Then there is an isomorphism between $G \backslash H$ and F / R in which g, h correspond to $u(g) R, v(h) R$. The Schur multiplier of $G\rangle H$ is $R \cap F^{\prime} /[R, F]$.

The group $R /[R, F]$ will be investigated first. Let

$$
\begin{aligned}
\bar{b}\left(g_{1}, g_{2}\right) & =b\left(g_{1}, g_{2}\right)[R, F], \bar{c}\left(h_{1}, h_{2}\right)=c\left(h_{1}, h_{2}\right)[R, F], \\
\bar{d}^{g}\left(h_{1}, h_{2}\right) & =d^{g}\left(h_{1}, h_{2}\right)[R, F] .
\end{aligned}
$$

$R /[R, F]$ is of course generated by $\bar{b}\left(g_{1}, g_{2}\right), \bar{c}\left(h_{1}, h_{2}\right)$ and $\bar{d}^{g}\left(h_{1}, h_{2}\right)$. These elements satisfy the following relations.

$$
\begin{equation*}
\bar{b}(g, 1)=\bar{b}(1, g)=1 \tag{7}
\end{equation*}
$$

$$
\bar{b}\left(g_{2}, g_{3}\right) \bar{b}\left(g_{1}, g_{2} g_{3}\right)=\bar{b}\left(g_{1} g_{2}, g_{3}\right) \bar{b}\left(g_{1}, g_{2}\right) \quad \text { for any elements } g_{1}, g_{2}, g_{3} \text { of } G
$$

$$
\begin{equation*}
\bar{c}(h, 1)=\bar{c}(1, h)=1 \tag{8}
\end{equation*}
$$

$$
\bar{c}\left(h_{2}, h_{3}\right) \bar{c}\left(h_{1}, h_{2} h_{3}\right)=\bar{c}\left(h_{1} h_{2}, h_{3}\right) \bar{c}\left(h_{1}, h_{2}\right) \text { for any elements } h_{1}, h_{2}, h_{3} \text { of } H
$$

For $g \epsilon G-\{1\}$ and any elements h_{1}, h_{2}, h_{3} of H,

$$
\begin{align*}
& \bar{d}^{g}\left(h_{1} h_{2}, h_{3}\right)=\bar{d}^{g}\left(h_{1}, h_{3}\right) \bar{d}^{g}\left(h_{2}, h_{3}\right) \\
& \bar{d}^{g}\left(h_{1}, h_{2} h_{3}\right)=\bar{d}^{g}\left(h_{1}, h_{2}\right) \bar{d}^{g}\left(h_{1}, h_{3}\right) \tag{9}
\end{align*}
$$

For $g \epsilon G-\{1\}$ and any elements h_{1}, h_{2} of H,

$$
\begin{equation*}
\bar{d}^{g}\left(h_{1}, h_{2}\right) \bar{d}^{g^{-1}}\left(h_{2}, h_{1}\right)=1 \tag{10}
\end{equation*}
$$

The relations (7) and (8) are of course simply the usual expression of associativity in an extension. The first of the relations (9) is proved as follows.

$$
\begin{aligned}
\bar{d}^{o}\left(h_{1} h_{2}, h_{3}\right) & =\left[v\left(h_{1} h_{2}\right)^{u(g)}, v\left(h_{3}\right)\right][R, F] \\
& =\left[\left(v\left(h_{1}\right) v\left(h_{2}\right) c\left(h_{1}, h_{2}\right)^{-1}\right)^{u(g)}, v\left(h_{3}\right)\right][R, F] \quad \text { by }(5) \\
& =\left[\left(v\left(h_{1}\right)^{u(g)} v\left(h_{2}\right)^{u(g)}, v\left(h_{3}\right)\right][R, F]\right.
\end{aligned}
$$

since $c\left(h_{1}, h_{2}\right) \in R$. Since $\left[v\left(h_{1}\right)^{u(g)}, v\left(h_{3}\right)\right]$ is central modulo $[R, F]$, it follows that

$$
\begin{aligned}
\bar{d}^{g}\left(h_{1} h_{2}, h_{3}\right) & =\left[v\left(h_{1}\right)^{u(g)}, v\left(h_{3}\right)\right]\left[v\left(h_{2}\right)^{u(\theta)}, v\left(h_{3}\right)\right][R, F] \\
& =\bar{d}^{g}\left(h_{1}, h_{3}\right) \bar{d}^{g}\left(h_{2}, h_{3}\right) .
\end{aligned}
$$

The second relation (9) is proved similarly. As for (10),

$$
\begin{aligned}
\bar{d}^{g}\left(h_{1}, h_{2}\right)^{-1} & =\left[v\left(h_{2}\right), v\left(h_{1}\right)^{u(g)}\right][R, F] \\
& =\left[v\left(h_{2}\right)^{u(g)-1}, v\left(h_{1}\right)\right]^{u(g)}[R, F] .
\end{aligned}
$$

Since $u(g)^{-1} \equiv u\left(g^{-1}\right)$ modulo R,

$$
\bar{d}^{g}\left(h_{1}, h_{2}\right)^{-1}=\left[v\left(h_{2}\right)^{u\left(g^{-1}\right)}, v\left(h_{1}\right)\right]^{u(g)}[R, F]=\bar{d}^{g^{-1}}\left(h_{2}, h_{1}\right),
$$

as asserted.
Theorem 2 will now be proved. Thus suppose that $Z(H) \cap H^{\prime}$ contains an element $z \neq 1$. Since G is finite, an element

$$
w=\prod_{g \epsilon G} v(z)^{u(g)}
$$

may be defined. The order in the product is arbitrary but fixed. Thus

$$
w^{u\left(g_{2}\right)}=\prod_{g_{1} G G} v(z)^{u\left(g_{1}\right) u\left(g_{2}\right)}=\prod_{g_{1} \epsilon G} v(z)^{u\left(g_{1} g_{2}\right) b\left(g_{1}, g_{2}\right)}
$$

by (4), so

$$
w^{u\left(g_{2}\right)} \equiv \prod_{g_{1 \epsilon G} G(z)^{u\left(g_{1} g_{2}\right)}} \quad \text { modulo }[R, F]
$$

since $b\left(g_{1}, g_{2}\right) \in R$. The product on the right hand side is the same as w except for the order of the factors. Restoration of the original order involves the introduction of certain commutators of the form

$$
\left[v(z)^{u\left(g_{1} g_{2}\right)}, v(z)^{u\left(g_{3} g_{2}\right)}\right] .
$$

But this commutator is conjugate to $d^{g}(z, z)$ modulo $[R, F]$. Since $z \in H^{\prime}$, the relation (9) shows that $d^{g}(z, h) \in[R, F]$ for any $h \in H$. Hence

$$
w^{u\left(g_{2}\right)} \equiv w \quad \text { modulo }[R, F] .
$$

Again for $h \in H$,

$$
\begin{aligned}
w^{v(h)} & =\prod_{g \epsilon G} v(z)^{u(g) v(h)} \\
& =\prod_{g \epsilon G} v(z)^{u(g)}\left[v(z)^{u(g)}, v(h)\right] \\
& =v(z)^{v(h)} \prod_{g \epsilon G-(1)} v(z)^{u(g)} d^{g}(z, h) \\
& \equiv v(z)^{v(h)} \prod_{g \epsilon G-\{1\}} v(z)^{u(g)} \quad \text { modulo }[R, F]
\end{aligned}
$$

as before. If T is the group generated by R and all $v(h)(h \in H)$, there is an epimorphism of $T /[R, F]$ onto H and the kernel $R /[R, F]$ is central. It follows since $z \in Z(H)$ that $v(z)$ lies in the center of T modulo $[R, F]$, so

$$
v(z)^{v(h)} \equiv v(z) \quad \text { modulo }[R, F]
$$

Hence

$$
w^{v(h)} \equiv w \quad \text { modulo }[R, F]
$$

It has therefore been proved that w lies in the center of F modulo $[R, F]$. Hence the element of $W=G\rangle H$ corresponding to w, namely

$$
t=\prod_{\theta \epsilon G} z^{\theta}
$$

lies in $Z(W)$. Since $z \in H^{\prime}, t \in W^{\prime}$, so $W^{\prime} \cap Z(W) \neq 1$. This completes the proof of Theorem 2.

Returning to the general case, Theorem 1 rests upon the following lemma.
Lemma 2. $R /[R, F]$ is the Abelian group generated by $\bar{b}\left(g_{1}, g_{2}\right), \bar{c}\left(h_{1}, h_{2}\right)$ and $\bar{d}^{g}\left(h_{1}, h_{2}\right)$ with defining relations (7)-(10).

To prove Lemma 2, choose a well-ordering \leq of G; this ordering need have no relation to the group structure of G.

Let A be the additively written Abelian group generated by elements $\beta\left(g_{1}, g_{2}\right), \gamma\left(h_{1}, h_{2}\right)$ and $\delta^{g}\left(h_{1}, h_{2}\right)$ with defining relations.

$$
\begin{gathered}
\beta(g, 1)=\beta(1, g)=\gamma(h, 1)=\gamma(1, h)=0, \\
\beta\left(g_{2}, g_{3}\right)+\beta\left(g_{1}, g_{2} g_{3}\right)=\beta\left(g_{1} g_{2}, g_{3}\right)+\beta\left(g_{1}, g_{2}\right), \\
\gamma\left(h_{2}, h_{3}\right)+\gamma\left(h_{1}, h_{2} h_{3}\right)=\gamma\left(h_{1} h_{2}, h_{3}\right)+\gamma\left(h_{1}, h_{2}\right), \\
\delta^{g}\left(h_{1} h_{2}, h_{3}\right)=\delta^{g}\left(h_{1}, h_{3}\right)+\delta^{g}\left(h_{2}, h_{3}\right), \\
\delta^{g}\left(h_{1}, h_{2} h_{3}\right)=\delta^{g}\left(h_{1}, h_{2}\right)+\delta^{g}\left(h_{1}, h_{3}\right), \\
\delta^{g}\left(h_{1}, h_{2}\right)+\delta^{g-1}\left(h_{2}, h_{1}\right)=0,
\end{gathered}
$$

where the h_{i} run through H, the g_{i} through G and g through $G-\{1\}$. By (7)(10) there is an epimorphism φ of A onto $R /[R, F]$ such that

$$
\boldsymbol{\beta}\left(g_{1}, g_{2}\right) \varphi=\bar{b}\left(g_{1}, g_{2}\right), \quad \gamma\left(h_{1}, h_{2}\right) \varphi=\bar{c}\left(h_{1}, h_{2}\right), \quad \delta^{g}\left(h_{1}, h_{2}\right) \varphi=d^{g}\left(h_{1}, h_{2}\right)
$$

The assertion of Lemma 2 is that φ is a monomorphism; this will be proved by constructing a mapping ψ of $R /[R, F]$ into A such that $\varphi \psi$ is the identity mapping on A.

First a factor set of $G \ H$ in A will be constructed. In doing this elements of B will be denoted by x, y, z and the g-components of x, y, z are denoted by x_{g}, y_{g}, z_{g} respectively. Mappings σ, π of $B \times B$ into A are defined by the formulae

$$
\begin{align*}
\sigma(x, y) & =\sum_{g \epsilon G} \gamma\left(x_{g}, y_{g}\right), \tag{11}\\
\pi(x, y) & =\sum_{g_{1}<g_{2}} \delta^{g_{2} g_{1}^{-1}}\left(x_{g_{2}}, y_{g_{1}}\right) . \tag{12}
\end{align*}
$$

(A summation sign with inequalities underneath it involving g_{1}, g_{2}, \cdots means that summation is to be carried out over all elements g_{1}, g_{2}, \cdots of G for which the inequalities hold). From the defining relations of A the following relations are easily deduced.

$$
\begin{align*}
\sigma(y, z)+\sigma(x, y z) & =\sigma(x y, z)+\sigma(x, y) \tag{13}\\
\sigma\left(x^{g}, y^{g}\right) & =\sigma(x, y) \tag{14}\\
\pi(x y, z) & =\pi(x, z)+\pi(y, z) \tag{15}\\
\pi(x, y z) & =\pi(x, y)+\pi(x, z) \tag{16}
\end{align*}
$$

Next for each $g \epsilon G$, a mapping τ_{g} of B into A is defined by the formula

$$
\begin{equation*}
\tau_{g}(x)=\sum_{g_{1}<g_{2}, g_{1} g>g_{2} g} \delta^{\sigma_{1} g_{2}^{-1}}\left(x_{g_{1}}, x_{g_{2}}\right) \tag{17}
\end{equation*}
$$

(Note that τ_{1} is the zero mapping.) The relation

$$
\begin{equation*}
\tau_{g}(x y)-\tau_{g}(x)-\tau_{g}(y)=\boldsymbol{\pi}\left(x^{g}, y^{g}\right)-\pi(x, y) \tag{18}
\end{equation*}
$$

holds for all $x \in B, y \in B$. For the defining relations of A applied to the lefthand side yield

$$
\sum_{g_{1}<g_{2}, g_{1} g>g_{2} g}\left\{\delta^{g_{1 g 2}-1}\left(x_{g_{1}}, y_{g_{2}}\right)+\delta^{g_{1 g_{2}}^{-1}}\left(y_{g_{1}}, x_{g_{2}}\right)\right\} .
$$

Upon application of the last of the defining relations of A and (12) to the second term this becomes

$$
\sum_{g_{1}<a_{2}, g_{1} g>g_{2} g} \delta^{g_{1} g_{2}^{-1}}\left(x_{g_{1}}, y_{g_{2}}\right)-\pi(x, y)+\sum_{g_{1}<a_{2}, g_{1} g<g_{2} g} \delta^{g_{2} g_{1}^{-1}}\left(x_{g_{2}}, y_{g_{1}}\right)
$$

Interchanging g_{1} and g_{2} in the last term,

$$
\begin{aligned}
\tau_{g}(x y)-\tau_{g}(x)-\tau_{g}(y) & =-\pi(x, y)+\sum_{g_{1} \theta_{g_{2} g}} \delta^{g_{1} g_{2}^{-1}}\left(x_{g_{1}}, y_{g_{2}}\right) \\
& =-\pi(x, y)+\sum_{g_{1}>g_{2}} \delta^{g_{1} g^{-1}}\left(x_{g_{1} g^{-1}}, y_{g_{2} g^{-1}}\right) \\
& =-\pi(x, y)+\pi\left(x^{g}, y^{g}\right)
\end{aligned}
$$

which is (18). Also if $g \in G$ and $g^{\prime} \in G$,

$$
\begin{equation*}
\tau_{g^{\prime}}\left(x^{g}\right)=\tau_{g g^{\prime}}(x)-\tau_{g}(x) \tag{19}
\end{equation*}
$$

To prove this the summands in the definition of $\tau_{g^{\prime}}\left(x^{g}\right)$ are to be split into two halves defined by $g_{1}<g_{2}$ and $g_{1}>g_{2}$; in the latter half interchange g_{1} and g_{2} and apply the last of the defining relations of A. Subtraction of $\boldsymbol{\tau}_{g g^{\prime}}(x)$ from the resulting expression readily yields (19).

The desired factor set may now be constructed. For $w_{i} \in W=G \ H$, write $w_{i}=g_{i} x_{i}$ with $g_{i} \in G, x_{i} \in B$. A mapping α of $W \times W$ into A is defined by the formula

$$
\alpha\left(w_{1}, w_{2}\right)=\tau_{g_{2}}\left(x_{1}\right)+\pi\left(x_{1}^{g_{2}}, x_{2}\right)+\sigma\left(x_{1}^{g_{2}}, x_{2}\right)+\beta\left(g_{1}, g_{2}\right)
$$

It follows immediately from (13)-(16) and (18)-(19) that

$$
\alpha\left(w_{2}, w_{3}\right)-\alpha\left(w_{1} w_{2}, w_{3}\right)+\alpha\left(w_{1}, w_{2} w_{3}\right)-\alpha\left(w_{1}, w_{2}\right)=0 .
$$

Let Γ be the central extension of A by W with this factor set. Thus there is a epimorphism θ of Γ onto W and a mapping ω of W into Γ such that A is the kernel of $\theta, \omega \theta$ is the identity mapping and

$$
\omega\left(w_{1}\right) \omega\left(w_{2}\right)=\omega\left(w_{1} w_{2}\right) \alpha\left(w_{1}, w_{2}\right)
$$

for all w_{1} and w_{2} in W. In particular for g_{1}, g_{2} in G and h_{1}, h_{2} in H, it follows from (11), (12) and (17) that

$$
\begin{align*}
& \omega\left(g_{1}\right) \omega\left(g_{2}\right)=\omega\left(g_{1} g_{2}\right) \beta\left(g_{1}, g_{2}\right) \tag{20}\\
& \omega\left(h_{1}\right) \omega\left(h_{2}\right)=\omega\left(h_{1} h_{2}\right) \gamma\left(h_{1}, h_{2}\right) \tag{21}
\end{align*}
$$

Also if $g \in G-\{1\}$,

$$
\omega\left(h_{1}^{g}\right) \omega\left(h_{2}\right)=\omega\left(h_{1}^{g} h_{2}\right) \pi\left(h_{1}^{g}, h_{2}\right), \quad \omega\left(h_{2}\right) \omega\left(h_{\mathbf{1}}^{g}\right)=\omega\left(h_{\mathbf{1}}^{g} h_{2}\right) \pi\left(h_{2}, h_{\mathbf{1}}^{g}\right),
$$

whence

$$
\left[\omega\left(h_{1}^{g}\right), \omega\left(h_{2}\right)\right]=\pi\left(h_{1}^{g}, h_{2}\right)-\pi\left(h_{2}, h_{1}^{g}\right) .
$$

It follows that

$$
\begin{equation*}
\left[\omega\left(h_{1}\right)^{\omega(g)}, \omega\left(h_{2}\right)\right]=\delta^{g}\left(h_{1}, h_{2}\right) . \tag{22}
\end{equation*}
$$

From (20)-(22) it is seen that A is contained in the group generated by all $\omega(g), \omega(h)$ as g, h run through G, H respectively. Hence Γ is generated by these elements. Therefore since F is free, there is an epimorphism χ of F onto Γ such that $u(g) \chi=\omega(g), v(h) \chi=\omega(h)$. By comparing (4)-(6) with (20)(22) it is seen that
$b\left(g_{1}, g_{2}\right) \chi=\beta\left(g_{1}, g_{2}\right), \quad c\left(h_{1}, h_{2}\right) \chi=\gamma\left(h_{1}, h_{2}\right), \quad d^{\theta}\left(h_{1}, h_{2}\right) \chi=\delta^{\theta}\left(h_{1}, h_{2}\right)$.
Since A lies in the center of Γ, χ carries R onto A, and $[R, F]$ is contained in the kernel of χ. Hence χ induces an epimorphism ψ of $R /[R, F]$ onto A, and ψ is given by
$\bar{b}\left(g_{1}, g_{2}\right) \psi=\beta\left(g_{1}, g_{2}\right), \quad \bar{c}\left(h_{1}, h_{2}\right) \psi=\gamma\left(h_{1}, h_{2}\right), \quad \bar{d}^{g}\left(h_{1}, h_{2}\right) \psi=\delta^{g}\left(h_{1}, h_{2}\right)$. Hence $\varphi \psi$ is the identity mapping, and Lemma 2 is proved.

Lemma 2 shows that $R /[R, F]$ is the direct sum of three groups \bar{B}, \bar{C} and \bar{D}. \bar{B} is generated by the elements $\bar{b}\left(g_{1}, g_{2}\right)$ and has defining relations (7); thus \bar{B} is isomorphic to $C_{2}(G, \mathbf{Z}) / B_{2}(G, \mathbf{Z})$ and the boundary operator corresponds to the homomorphism ν_{1} of \bar{B} into F / F^{\prime} which carries $\bar{b}\left(g_{1}, g_{2}\right)$ into $u\left(g_{2}\right) u\left(g_{1} g_{2}\right)^{-1} u\left(g_{1}\right) F^{\prime}$. Similarly \bar{C} is generated by the elements $\bar{c}\left(h_{1}, h_{2}\right)$ and has defining relations (8); thus \bar{C} is isomorphic to $C_{2}(H, Z) / B_{2}(H, Z)$ and the boundary operator corresponds to the homomorphism ν_{2} of \bar{C} into F / F^{\prime} which carries $\bar{c}\left(h_{1}, h_{2}\right)$ into $v\left(h_{2}\right) v\left(h_{1} h_{2}\right)^{-1} v\left(h_{1}\right) F^{\prime}$. Finally \bar{D} is generated by the elements $\bar{d}^{g}\left(h_{1}, h_{2}\right)$ and has defining relations (9) and (10); thus by Lemma $1, \bar{D}$ is isomorphic to $C(G ; H)$.

To complete the proof of Theorem 1 let ν be the natural homomorphism of F onto F / F^{\prime}. Of course ν induces a homomorphism $\bar{\nu}$ of $R /[R, F]$ into F / F^{\prime}, and the kernel of $\bar{\nu}$ is the desired group $R \cap F^{\prime} /[R, F]$. By (4), (5) and (6), the restriction of $\bar{\nu}$ to \bar{B} is ν_{1}, the restriction of $\bar{\nu}$ to \bar{C} is ν_{2}, and the restriction of $\bar{\nu}$ to \bar{D} is zero. Since the images of ν_{1} and ν_{2} intersect in 1 , the kernel of $\bar{\nu}$ is the direct sum of the kernel of ν_{1}, the kernel of ν_{2} and \bar{D}. So $R \cap F^{\prime} /[R, F]$ is isomorphic to the direct sum of $H_{2}(G, Z], H_{2}(H, \mathbf{Z})$ and $C(G ; H)$.

Theorem 1 is therefore proved.

3. Proof of Theorem 3

The proof of Theorem 3 is along the same lines as that of Lemma 2. It will be recalled that the group G acts on the group A, that P is the free product $G * A$ of G and A and that S is the kernel of the epimorphism of P onto the split extention of A by G. Denote by i, j respectively the embeddings of A, G in P and for $g \epsilon G, a \in A$ define

$$
d(g, a)=\left(a^{o} i\right)^{-1}(g j)^{-1}(a i)(g j)
$$

Then $d(g, a) \in S$. It is easy to check the following relations:

$$
\begin{aligned}
& d\left(g, a^{\prime}\right)^{a i}=d\left(g, a^{\prime} a^{g^{-1}}\right) d\left(g, a^{o}\right)^{-1} \\
& d\left(g^{\prime}, a\right)^{g j}=d\left(g, a^{g^{\prime}}\right)^{-1}\left(d\left(g^{\prime} g, a\right)\right.
\end{aligned}
$$

It follows from these three relations that every element of P is of the form ($g j$) (ai) d, where d is a product of the $d(g, a)$ and their inverses. Hence S is generated by the $d(g, a)$. If

$$
\bar{d}(g, a)=d(g, a)[S, P]
$$

the above relations become

$$
\begin{aligned}
& \bar{d}\left(g, a_{1} a_{2}\right)=\bar{d}\left(g, a_{1}\right) \bar{d}\left(g, a_{2}\right), \\
& \bar{d}\left(g_{1} g_{2}, a\right)=\bar{d}\left(g_{2}, a^{\sigma_{1}}\right) \bar{d}\left(g_{1}, a\right)
\end{aligned}
$$

Let C be the Abelian group generated by a set of symbols $\delta(g, a)(g \in G$, $a \in A$) with defining relations

$$
\begin{aligned}
& \delta\left(g, a_{1} a_{2}\right)=\delta\left(g, a_{1}\right) \delta\left(g, a_{2}\right), \\
& \delta\left(g_{1} g_{2}, a\right)=\delta\left(g_{2}, a^{\sigma_{1}}\right) \delta\left(g_{1}, a\right) .
\end{aligned}
$$

Then there is an epimorphism φ of C onto $S /[S, P]$ such that

$$
\delta(g, a) \varphi=\bar{d}(g, a)
$$

The assertion of Theorem 3 is that φ is a monomorphism; this will be proved by constructing a mapping ψ of $S /[S, P]$ into C such that $\varphi \psi$ is the identity mapping on C.

The split extension of A by G will be denoted by K and the element k_{i} of K
will be written $g_{i} a_{i}$ with $g_{i} \in G, a_{i} \in A$. A mapping α of $K \times K$ into C is defined by the formula

$$
\alpha\left(k_{1}, k_{2}\right)=\delta\left(g_{2}, a_{1}\right)
$$

Then

$$
\begin{aligned}
\alpha\left(k_{2}, k_{3}\right) \alpha\left(k_{1} k_{2}, k_{3}\right)^{-1} \alpha\left(k_{1}, k_{2}\right. & \left.k_{3}\right) \alpha\left(k_{1}, k_{2}\right)^{-1} \\
& =\delta\left(g_{3}, a_{2}\right) \delta\left(g_{3}, a_{1}^{g_{2}} a_{2}\right)^{-1} \delta\left(g_{2} g_{3}, a_{1}\right) \delta\left(g_{2}, a_{1}\right)^{-1} \\
& =1 .
\end{aligned}
$$

Hence α is a factor set and there exists a corresponding central extension Γ of C by K. Thus there is an epimorphism θ of Γ onto K and a mapping ω of K into Γ such that C is the kernel of $\theta, \omega \theta$ is the identity mapping and

$$
\omega\left(k_{1}\right) \omega\left(k_{2}\right)=\omega\left(k_{1} k_{2}\right) \alpha\left(k_{1}, k_{2}\right)
$$

for all k_{1} and k_{2} in K. In particular

$$
\omega(g) \omega\left(a^{g}\right)=\omega\left(g a^{g}\right) \alpha\left(g, a^{g}\right)=\omega(a g) \delta(1,1)=\omega(a g)
$$

and

$$
\omega(a) \omega(g)=\omega(a g) \alpha(a, g)=\omega(a g) \delta(g, a)
$$

so that

$$
\omega\left(a^{g}\right)^{-1} \omega(g)^{-1} \omega(a) \omega(g)=\delta(g, a)
$$

Also $\omega\left(g_{1}\right) \omega\left(g_{2}\right)=\omega\left(g_{1} g_{2}\right)$ and $\omega\left(a_{1}\right) \omega\left(a_{2}\right)=\omega\left(a_{1} a_{2}\right)$. Hence there is a homomorphism χ of P into Γ such that (ai) $\chi=\omega(a)$ and $(g j) \chi=\omega(g)$ for $a \in A, g \in G$. Thus

$$
d(g, a) \chi=\omega\left(a^{g}\right)^{-1} \omega(g)^{-1} \omega(a) \omega(g)=\delta(g, a)
$$

Hence χ carries S onto C, and since C is contained in the center of $\Gamma,[S, P]$ is contained in the kernel of χ. Hence χ induces an epimorphism ψ of $S /[S, P]$ onto C, and ψ is given by

$$
\bar{d}(g, a) \psi=\delta(g, a)
$$

Hence $\varphi \psi$ is the identity mapping and Theorem 3 is proved.

4. Proof of Theorem 4

Suppose that G, H are groups and that A is a $Z H$-module. Then the split extension $A H$ of A by H and the wreathe product $K=G\rceil A H$ may be formed. K may then be regarded as the split extension of $B=A \otimes Z G$ by $W=G\rangle H$, the action of W on B being given by

$$
(a \otimes 1) h=a h \otimes 1, \quad\left(a \otimes g_{1}\right) g_{2}=a \otimes g_{1} g_{2}
$$

where $a \in A, h \in H, g_{1} \in G, g_{2} \in G$; further if $g \in G-\{1\}$,

$$
(a \otimes g) h=a \otimes g
$$

Thus B is a $Z W$-module. Let R be the kernel of the $Z W$-homomorphism of $B \otimes Z W$ onto B which carries $b \otimes w$ into $b w$. By a remark following Theorem

3 , Corollary $2, R /[R, W]$ is generated by the elements

$$
\bar{b}_{g^{\prime}}(a, g)=b_{g^{\prime}}(a, g)+[R, W] \quad \text { and } \quad \bar{c}_{g}(a, h)=c_{g}(a, h)+[R, W]
$$

where

$$
\begin{aligned}
b_{g^{\prime}}(a, g) & =\left(a \otimes g^{\prime}\right) \otimes g-\left(a \otimes g^{\prime}\right) g \otimes 1 \\
c_{g}(a, h) & =(a \otimes g) \otimes h-(a \otimes g) h \otimes 1
\end{aligned}
$$

here $a \in A, g \in G, g^{\prime} \in G, h \in H . \quad$ Let $b(a, g)=b_{1}(a, g), \bar{b}(a, g)=\bar{b}_{1}(a, g)$. Then it is easy to verify that

$$
b_{g^{\prime}}(a, g)=b\left(a, g^{\prime} g\right)-b\left(a, g^{\prime}\right) g
$$

Hence

$$
\bar{b}_{g^{\prime}}(a, g)=\bar{b}\left(a, g^{\prime} g\right)-\bar{b}\left(a, g^{\prime}\right)
$$

so $R /[R, W]$ is generated by the $\bar{b}(a, g)$ and the $\bar{c}_{g}(a, h)$. The following relations hold.
(1) \bar{b} is linear in a.
(2) For all $g \epsilon G, \bar{c}_{g}$ is linear in a.
(3) $\bar{b}(a, 1)=0$.
(4) For $a \in A$ and $h_{i} \in H, \bar{c}_{1}\left(a, h_{1}\right)+\bar{c}_{1}\left(a h_{1}, h_{2}\right)=\bar{c}_{1}\left(a, h_{1} h_{2}\right)$.
(5) For $g \in C-\{1\}, \bar{c}_{g}$ is homomorphic in h.
(6) For $g \in G-\{1\}, c_{g}(a, h)=0$ if $a \in[A, H]$.

Of these (1), (2), (3) are obvious and (4), (5) follow easily from the definition of \bar{c}_{g}. To prove (6) it is necessary to show that

$$
(a(1-h) \otimes g) \otimes\left(1-h^{\prime}\right) \epsilon[R, W]
$$

for any $a \in A, h \in H, h^{\prime} \in H$ and $g \in G-\{1\}$. If $b=a \otimes g, b h^{g}=a h \otimes g$, so it must be shown that

$$
b\left(1-h^{g}\right) \otimes\left(1-h^{\prime}\right) \epsilon[R, W] .
$$

But the left side is easily seen to be equal to

$$
\left(b \otimes h^{g}-b h^{g} \otimes 1\right)\left(1-h^{\prime}\right)-\left(b \otimes h^{\prime}-b h^{\prime} \otimes 1\right)\left(1-h^{g}\right)
$$

since $h h^{\prime g}=h^{\prime \theta} h$ and $b h^{\prime}=b$.
Lemma 3. The relations (1)-(6) constitute a system of defining relations of $R /[R, W]$.

To prove this let C be an additively written Abelian group generated by symbols $\beta(a, g)$ and $\gamma_{g}(a, h)$, where a, g, h run through A, G, H respectively with defining relations

$$
\begin{aligned}
\beta\left(a_{1}+a_{2}, g\right) & =\beta\left(a_{1}, g\right)+\beta\left(a_{2}, g\right) \\
\gamma_{g}\left(a_{1}+a_{2}, h\right) & =\gamma_{g}\left(a_{1}, h\right)+\gamma_{g}\left(a_{2}, h\right) \\
\beta(a, 1) & =0
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{1}\left(a, h_{1} h_{2}\right) & =\gamma_{1}\left(a, h_{1}\right)+\gamma_{1}\left(a h_{1}, h_{2}\right) \\
\gamma_{g}\left(a, h_{1} h_{2}\right) & =\gamma_{\theta}\left(a, h_{1}\right)+\gamma_{\theta}\left(a, h_{2}\right) \quad(g \neq 1) \\
\gamma_{g}(a, h) & =0 \quad(a \in[A, H], g \neq 1)
\end{aligned}
$$

Let Γ be the direct sum of the abelian groups B and C; the elements of Γ will be written as ordered pairs (b,c). Mappings ξ and η of $B \times G$ and $B \times H$ into C respectively, both linear in B, may be defined satisfying

$$
\xi\left(a \otimes g, g^{\prime}\right)=\beta\left(a, g g^{\prime}\right)-\beta(a, g), \quad \eta(a \otimes g, h)=\gamma_{g}(a, h)
$$

on account of the first two defining relations of C. Hence for $g \epsilon G$ and $h \epsilon H$ endomorphisms \bar{g}, \bar{h} of Γ may be defined as follows:

$$
(b, c) \bar{g}=(b g, c+\xi(b, g)), \quad(b, c) \bar{h}=(b h, c+\eta(b, h))
$$

It is easily deduced from the definition and linearity of ξ that

$$
\xi\left(b, g_{1} g_{2}\right)=\xi\left(b, g_{1}\right)+\xi\left(b g_{1}, g_{2}\right)
$$

and hence $\bar{g}_{1} \bar{g}_{2}=\overline{g_{1} g_{2}}$; also $\overline{1}_{g}$ is the identity mapping. Again the fourth and fifth defining relations of C imply that

$$
\eta\left(b, h_{1} h_{2}\right)=\eta\left(b, h_{1}\right)+\eta\left(b h_{1}, h_{2}\right),
$$

whence $\overline{h_{1}} \overline{h_{2}}=\overline{h_{1} h_{2}}$; also $\overline{1}_{H}$ is the identity mapping. The relations

$$
\begin{aligned}
\xi(b h, g)-\xi(b, g) & =\xi\left(b h h^{\theta^{-1}}, g\right)-\xi\left(b h^{\prime g^{-1}}, g\right), \\
\eta\left(b g^{-1}, h\right)+\eta\left(b h^{g}, h^{\prime}\right) & =\eta\left(b, h^{\prime}\right)+\eta\left(b h^{\prime} g^{-1}, h\right)
\end{aligned}
$$

also hold for $g \neq 1$, but this verification is slightly more tedious. In proving both it may be assumed that $b=a \otimes g^{\prime}$ in view of the linearity of ξ and η. The first relation is clear, since if $g^{\prime}=1, b h^{\prime g^{-1}}=b$ and $b h h^{\prime \theta^{-1}}=b h$, whereas if $g^{\prime} \neq 1, b h=b$. Similarly the second relation reduces to $\eta\left(b g^{-1}, h\right)=$ $\eta\left(b h^{\prime} g^{-1}, h\right)$ if $g^{\prime}=1$, or to $\eta\left(b h^{g}, h^{\prime}\right)=\eta\left(b, h^{\prime}\right)$ if $g^{\prime} \neq 1$; the second is trivial unless $g^{\prime}=g$, so both reduce to $\eta\left(a h \otimes g, h^{\prime}\right)=\eta\left(a \otimes g, h^{\prime}\right)$, which follows from the last of the defining relations of C. Thus the relations are proved, and from them it is easy to see that for $g \neq 1, \overline{h^{g}}$ and $\overline{h^{\prime}}$ commute. Hence Γ is a ZW-module, and

$$
(b, c) g=(b g, c+\xi(b, g)), \quad(b, c) h=(b h, c+\eta(b, h))
$$

In particular the projection of Γ onto B is a $Z W$-homomorphism, and since $\beta(a, 1)=0$.

$$
(a \otimes 1,0) g-(a \otimes g, 0)=(0, \beta(a, g))
$$

Also

$$
(a \otimes g, 0) h-((a \otimes g) h, 0)=\left(0, \gamma_{g}(a, h)\right)
$$

There is an Abelian group homomorphism χ of $B \otimes Z W$ into Γ such that $(b \otimes w) \chi=(b, 0) w$ for all $b \in B, w \in W$. This is clearly a $Z W$-homomorphism.

The kernel of the composite of χ with the projection of Γ onto B is R, so the first component of any element of $R \chi$ is 0 . Since ($0, c$) $w=(0, c),[R, W]$ is contained in the kernel of χ. Hence χ induces a homomorphism ψ of $R /[R, F]$ into C, given by

$$
\bar{b}(a, g) \psi=\beta(a, g), \quad \bar{c}_{\theta}(a, h) \psi=\gamma_{\theta}(a, h)
$$

But on account of (1)-(6), there is an epimorphism φ of C onto $R /[R, W]$ such that $\varphi \psi$ is the identity mapping on C. Hence φ is an isomorphism and Lemma 3 is proved.

Lemma 3 shows that $R /[R, W]$ is the direct sum of the group \bar{B} generated by all $\bar{b}(a, g)$ and the groups $\bar{C}_{g}(g \in G)$ generated by the $\bar{c}_{g}(a, h)$. The Abelian group \bar{B} has defining relations (1) and (3). For $g \neq 1, \bar{C}_{g}$ has defining relations (2), (5) and (6) and is therefore isomorphic to $A /[A, H] \otimes H / H^{\prime}$. Finally \bar{C}_{1}, having defining relations (2) and (4), is isomorphic to $C_{1}(H, A) / B_{1}(H, A)$.

Let ν be the additive epimorphism of $B \otimes Z W$ onto B which carries $b \otimes w$ into b; thus $[B \otimes Z W, W]$ is the kernel of ν. The homomorphism $\bar{\nu}$ of $R /[R, W]$ into B induced by ν is given by

$$
\begin{gathered}
\bar{b}(a, g) \bar{\nu}=a \otimes(1-g), \quad \bar{c}_{1}(a, h) \bar{\nu}=a(1-h) \otimes 1, \\
\bar{c}_{g}(a, h) \bar{\nu}=0 \quad(g \neq 1) .
\end{gathered}
$$

If μ is the additive endomorphism of $A \otimes \mathbf{Z} G$ onto A which carries $a \otimes g$ into a, μ is zero on $\bar{B} \bar{\nu}$ but μ is faithful on $\bar{C}_{1} \bar{\nu}$. Hence $\bar{B}_{\bar{\nu}} \cap \bar{C}_{1} \bar{\nu}=0$. Thus the kernel $R \cap[B \otimes Z W, W] /[R, W]$ of $\bar{\nu}$ is the direct sum of the kernel S_{1} of the restriction of $\bar{\nu}$ to \bar{B} and the groups $\bar{C}_{g}(g \neq 1) . \quad S_{1}$ is of course isomorphic to $H_{1}(H, A)$, and it is clear that $S_{2}=0$. Hence $R \cap[B \otimes Z W, W] /[R, W]$ is the direct sum of $H_{1}(H, A)$ and $|G|-1$ copies of $A /[A, H] \otimes H / H^{\prime}$. Since the former group is isomorphic to $H_{1}(W, B)$, Theorem 4 is proved.

References

1. L. Evens, Terminal p-groups, Illinois J. Math., vol. 12 (1968), pp. 682-699.
2. P. Hall, The classification of prime-power groups, J. Reine Angew. Math., vol. 182 (1940), pp. 130-141.

University of Illinois at Chicago Circle
Chicago, Illinois

[^0]: ${ }^{1}$ The author wishes to acknowledge support of this research by a National Science Foundation grant.

 Received July 1, 1969.

