SOME HOMOLOGY GROUPS OF WREATHE PRODUCTS¹

BY

NORMAN BLACKBURN

Let p be a prime and for each integer $n \ge 1$ denote by P_n the Sylow psubgroup of the symmetric group of degree p^n . Thus P_n is a group of order p^k , where $k = 1 + p + \cdots + p^{n-1}$; in particular P_1 is the cyclic group of order p. P_n acts as a permutation group on p^n symbols and if these symbols form a basis of an elementary Abelian p-group A_n , then A_n is a $\mathbb{Z}P_n$ -module. The split extension of A_n by P_n is P_{n+1} :

$$P_{n+1} = A_n P_n.$$

In this note the groups $H_2(P_n, \mathbb{Z})$ and $H_1(P_n, A_n)$ will be computed. I wish to express my gratitude to L. Evens for a number of discussions which have helped me considerably in this work.

1. Statement of results

For n = 1, $H_2(P_1, \mathbb{Z}) = 0$ since P_1 is cyclic. For n > 1, P_n is the wreathe product of P_1 and P_{n-1} :

$$P_n = P_1 \wr P_{n-1}.$$

The calculation of $H_2(P_n, \mathbb{Z})$ will be achieved by computing the Schur multiplier of a wreathe product $G \ H$, where G and H are arbitrary groups and G acts as in its regular representation. To state the result let T be the tensor square of the abelian group H/H':

$$T = H/H' \otimes H/H'.$$

Let K be the subgroup of T generated by all elements of the form

$$h_1 H' \otimes h_2 H' + h_2 H' \otimes h_1 H'$$
 $(h_1, h_2 \in H).$

Let G_1 denote a set of elements of G having the property that if $x \in G$ and $x^2 \neq 1$, then G_1 contains either x or x^{-1} but not both. Let G_2 be the set of involutions in G. Let C(G; H) denote the direct sum of $|G_1|$ copies of T and $|G_2|$ copies of T/K.

THEOREM 1. $H_2(G \ H, \mathbf{Z})$ is the direct sum of $H_2(G, \mathbf{Z})$, $H_2(H, \mathbf{Z})$ and C(G; H).

Application of this with $G = P_1$, $H = P_{n-1}$ shows that $H_2(P_n, \mathbb{Z})$ is the direct sum of $H_2(P_{n-1}, \mathbb{Z})$ and $C(P_1; P_{n-1})$. As is well known, P_{n-1}/P'_{n-1} is elementary Abelian of order p^{n-1} , so in this case T is elementary Abelian of

 $^{^{\}rm 1}$ The author wishes to acknowledge support of this research by a National Science Foundation grant.

Received July 1, 1969.

order $p^{(n-1)^2}$. For p odd, $|G_1| = \frac{1}{2}(p-1)$ and $|G_2| = 0$, so $C(P_1; P_{n-1})$ is elementary Abelian of order p^c , where $c = \frac{1}{2}(p-1)(n-1)^2$ For p = 2 $|G_1| = 0$, $|G_2| = 1$ and $|K| = 2^{(1/2)(n-2)(n-1)}$; hence $C(P_1; P_{n-1})$ is elementary Abelian of order $2^{(1/2)n(n-1)}$. The following is thus a consequence of Theorem 1.

COROLLARY.
$$H_2(P_n, Z)$$
 is elementary Abelian of order p^m , where
 $m = \frac{1}{2}(p-1)(1^2 + 2^2 + \dots + (n-1)^2)$ (p odd),
 $= \frac{1}{6}n(n^2 - 1)$ (p = 2).

Another fact emerges from the calculation used to prove Theorem 1. This concerns a certain characteristic subgroup Z(G) defined for any group G as follows. An element x of G lies in Z(G) if and only if whenever ρ is an isomorphism of G onto T/U with U contained in the center of T, then $x\rho$ is contained in the center of T. If G is isomorphic to F/R, where F is free, Z(G) corresponds to the group Y/R, where Y/[R, F] is the center of F/[R, F].

An element z lies in Z(G) if G is generated by the roots of z (cf. [2, page 137]). It follows from this fact and the definition of the wreathe product that $Z(P_2)$ is the center of P_2 if p is odd.

THEOREM 2. Suppose that G is a finite group and that H is a group for which $H' \cap Z(H) \neq 1$. Then $W' \cap Z(W) \neq 1$, where $W = G \downarrow H$.

COROLLARY. For p odd, $Z(P_n)$ is the center of P_n .

This corollary is proved by induction on n. It is trivial for n = 1 and has been established for n = 2. For n > 2, $Z(P_{n-1})$ is the center of P_{n-1} by the inductive hypothesis. Since P_{n-1} is non-Abelian it follows that $P'_{n-1} \cap Z(P_{n-1}) \neq 1$. By Theorem 2, $P'_n \cap Z(P_n) \neq 1$. Thus $Z(P_n)$ is a nontrivial subgroup of the center of P_n . Since the center of P_n is of order p, the corollary is proved.

This corollary implies a theorem of L. Evens [1] which states that, for p odd, if G is a p-group and $G/\gamma_k(G)$ is isomorphic to P_n then $\gamma_k(G) = 1$.

The proof of Theorem 1 follows the method of Schur for the calculation of the multiplier. For the one-dimensional homology groups let A be a $\mathbb{Z}G$ module and let R be the kernel of the $\mathbb{Z}G$ -epimorphism of $A \otimes \mathbb{Z}G$ onto Awhich carries $a \otimes g$ into $ag(a \in A, g \in G)$. Since $H_1(G, A \otimes \mathbb{Z}G) = 0$ the exact homology sequence gives the isomorphism

$$H_1(G, A) = R \cap [A \otimes ZG, G]/[R, G]$$

It is possible to approach this isomorphism from a more group-theoretical viewpoint which brings out the analogy with the method of Schur. To do this the following will be proved; in this the restriction that A be Abelian is dropped. Thus suppose that G, A are groups and that G acts on A; that is, for each $g \in G$ an automorphism $a \to a^{\sigma}$ of A is defined and $(a^{\sigma_1})^{\sigma_2} = a^{\sigma_1 \sigma_2}$. The free product G * A of G and A will be considered, and the embeddings of A, G in G * A will be denoted respectively by i, j.

THEOREM 3. Let S be the kernel of the epimorphism of P = G * A onto the split extension of A by G. Then S/[S, P] is generated by the elements

$$\bar{d}(g, a) = (a^{g}i)^{-1}(gj)^{-1}(ai)(gj)[S, P],$$

where g, a run through G, A respectively. The definining relations of the Abelian group S/[S, P] are

$$\bar{d}(g, a_1)\bar{d}(g, a_2) = \bar{d}(g, a_1 a_2), \qquad \bar{d}(g_1 g_2, a) = \bar{d}(g_1, a)\bar{d}(g_2, a^{g_1}).$$

When A is Abelian, that is, when A is a ZG-module, A is written additively and ag is written for a^{g} . In this case the theorem states that S/[S, P] is the group $C_1(G, A)/B_1(G, A)$. Thus there is a homomorphism α of S/[S, P]into A such that $\overline{d}(g, a)\alpha = a(1-g)$ and the kernel of α is $H_1(G, A)$. Let β be the epimorphism of P onto the direct product of G and A, and let D be the kernel of β . Since β carries S into A, $[S, P] \leq D$. Hence β induces α on S/[S, P] and the kernel of α is $S \cap D/[S, P]$.

Corollary 1. $H_1(G, A) \cong S \cap D/[S, P]$.

Let *H* be the subgroup (Ai)S of *P*. Then H/H' is a Z*G*-module and it is deduced from the universal properties of the free and tensor products that there is a Z*G*-isomorphism between H/H' and $A \otimes ZG$ in which $(gj)^{-1}(ai) \cdot (gj)H'$ and a $a \otimes g$ correspond ($a \in A, g \in G$). In this isomorphism S/H' corresponds to the kernel *R* of the Z*G*-epimorphism of $A \otimes ZG$ into *A* which carries $a \otimes g$ into ag, and [S, P]/H' corresponds to [R, G]. Theorem 3 thus has the following consequence.

COROLLARY 2. Suppose that A is a ZG-module and that R is the kernel of the ZG-homomorphism of $A \otimes ZG$ into A which carries $a \otimes g$ into ag $(a \in A, g \in G)$. Then R/[R, G] is generated by the elements

$$c(a, g) = a \otimes g - ag \otimes 1 + [R, G].$$

The defining relations of the abelian group R/[R, G] are

$$c(a_1, g) + c(a_2, g) = c(a_1 + a_2, g), \quad c(a, g_1 g_2) = c(a, g_1) + c(ag_1, g_2)$$

Thus an isomorphism exists between R/[R, G] and $C_1(G, A)/B_1(G, A)$, and considerations similar to those following Theorem 3 show that in this isomorphism

$$R \cap [A \otimes ZG, G]/[R, G]$$

corresponds to $H_1(G, A)$. This last isomorphism is the same as the one obtained from the exact homology sequence, though at first sight it looks a little different. It should be observed that in view of the second of these relations, if G is generated by X, R/[R, G] is generated by the c(a, x) with $x \in X$.

Corollary 2 can be used to calculate the first homology group whenever sufficiently simple defining relations of G are known. For example suppose that A is a **Z**H-module for some group H. Then if G is any group $A \otimes \mathbb{Z}G$ has the structure of a $\mathbb{Z}(G \wr H)$ -module.

THEOREM 4. $H_1(G \wr H, A \otimes \mathbb{Z}G)$ is the direct sum of $H_1(H, A)$ and |G| - 1 copies of $A/[A, H] \otimes H/H'$.

The computation of $H_1(P_n, A_n)$ follows easily. For n = 1, $A_1 = \mathbb{Z}/p\mathbb{Z} \otimes \mathbb{Z}P_1$, so $H_1(P_1, A_1) = 0$. For n > 1, A_n may be taken to be $A_{n-1} \otimes \mathbb{Z}P_1$, since $P_1 \geq P_{n-1}$ acts faithfully on this. Thus Theorem 4 shows that $H_1(P_n, A_n)$ is the direct sum of $H_1(P_{n-1}, A_{n-1})$ and p - 1 copies of

$$A_{n-1}/[A_{n-1}, P_{n-1}] \otimes P_{n-1}/P'_{n-1}$$

However, $A_{n-1}/[A_{n-1}, P_{n-1}]$ is cyclic of order p and P_{n-1}/P'_{n-1} is elementary Abelian of order p^{n-1} . The following result is therefore obtained.

COROLLARY. $H_1(P_n, A_n)$ is elementary Abelian of order p^k , where $k = \frac{1}{2}n(n-1)(p-1)$.

It thus only remains to prove Theorems 1-4.

2. Proofs of Theorems 1 and 2

We begin by expressing the groups C(G; H) and $G \wr H$ in terms of generators and relations.

LEMMA 1. C(G; H) is the Abelian group generated by a set of symbols $r^{\sigma}(h_1, h_2)$, where h_1, h_2 run through H and g runs through $G - \{1\}$, with defining relations

(1)
$$r^{g}(h_{1}, h_{2}, h_{3}) = r^{g}(h_{1}, h_{2}) + r^{g}(h_{2}, h_{3}),$$

(2)
$$r^{g}(h_{1}, h_{2} h_{3}) = r^{g}(h_{1}, h_{2}) + r^{g}(h_{1}, h_{3})$$

(3)
$$r^{g}(h_{1}, h_{2}) + r^{g^{-1}}(h_{2}, h_{1}) = 0$$

where h_1 , h_2 , h_3 run through H and g runs through $G - \{1\}$.

Let U be the Abelian group with these generators and relations. For $x \in G_1$ let V_x be the Abelian group generated by $r^x(h_1, h_2)$ and $r^{x^{-1}}(h_1, h_2)$ with defining relations (1), (2), (3), where g runs through $\{x, x^{-1}\}$. For $y \in G_2$ let W_y be the Abelian group generated by $r^y(h_1, h_2)$ with defining relations (1), (2), (3), where $g = g^{-1} = y$. Clearly U is the direct sum of the groups V_x and W_y , as x runs through G_1 and y runs through G_2 . In view of the relation (3), V_x is generated by the $r^x(h_1, h_2)$ alone. Elimination of $r^{x^{-1}}(h_1, h_2)$ from the defining relations of V_x shows that V_x is generated by the $r^x(h_1, h_2)$ with defining relations (1), (2), where g = x. Thus V_x is isomorphic to T. As for W_y , the defining relations show that there is an epimorphism of T onto W_y which carries $h_1 H' \otimes h_2 H'$ onto $r^y(h_1, h_2)$; the kernel is generated by the elements corresponding to the left hand side of (3) and is therefore K. Thus W_y is isomorphic to T/K and U is isomorphic to C(G; H).

For arbitrary groups G and H the wreathe product $G \wr H$ is a split extension

by G of the direct product B of |G| copies of H. G acts transitively and regularly on these copies of H; thus if we identify one of them with H, the copies are precisely the transforms H^{g} as g runs through G. B is the direct product of the H^{g} and each element x of B may be written uniquely in the form

$$x = \prod_{g \in G} x_g^g,$$

where $x_g \in H$ and all but a finite number of x_g are equal to 1. The element x_g will be called the *g*-component of x. The action of G on B is described by the statement that the g_1 -component of x^g ($g \in G$) is $x_{g_1g^{-1}}$.

It follows that $G \ H$ is generated by G and H. A set of defining relations of $G \ H$ is furnished by the multiplication tables of G and H, together with relations expressing the commutativity of elements in H^{σ_1} and H^{σ_2} for distinct elements g_1, g_2 of G. To state this more formally let F be a free group with basis consisting of a set of symbols u(g), v(h), where g runs through $G - \{1\}$ and h runs through $H - \{1\}$. Put u(1) = v(1) = 1. Let

(4)
$$b(g_1, g_2) = u(g_1 g_2)^{-1} u(g_1) u(g_2)$$
 $(g_1, g_2 \epsilon G),$

(5)
$$c(h_1, h_2) = v(h_1 h_2)^{-1}v(h_1)v(h_2)$$
 $h_1, h_2 \in H$,

(6)
$$d^{g}(h_{1}, h_{2}) = [v(h_{1})^{u(g)}, v(h_{2})] \quad (h_{1}, h_{2} \in H, g \in G - \{1\}).$$

Let R be the normal closure in F of the elements $b(g_1, g_2)$, $c(h_1, h_2)$, $d^{\sigma}(h_1, h_2)$. Then there is an isomorphism between $G \wr H$ and F/R in which g, h correspond to u(g)R, v(h)R. The Schur multiplier of $G \wr H$ is $R \cap F'/[R, F]$.

The group R/[R, F] will be investigated first. Let

$$b(g_1, g_2) = b(g_1, g_2)[R, F], \bar{c}(h_1, h_2) = c(h_1, h_2)[R, F],$$

$$\bar{d}^g(h_1, h_2) = d^g(h_1, h_2)[R, F].$$

R/[R, F] is of course generated by $\bar{b}(g_1, g_2)$, $\bar{c}(h_1, h_2)$ and $\bar{d}^g(h_1, h_2)$. These elements satisfy the following relations.

(7)
$$\vec{b}(g,1) = \vec{b}(1,g) = 1,$$

 $ar{b}(g_2\,,g_3)ar{b}(g_1\,,g_2\,g_3)=ar{b}(g_1\,g_2\,,g_3)ar{b}(g_1\,,g_2) \quad ext{for any elements } g_1\,,g_2\,,g_3 ext{ of } G.$

(8)
$$\bar{c}(h,1) = \bar{c}(1,h) = 1,$$

 $\bar{c}(h_2, h_3)\bar{c}(h_1, h_2 h_3) = \bar{c}(h_1 h_2, h_3)\bar{c}(h_1, h_2)$ for any elements h_1, h_2, h_3 of H.

For $g \in G - \{1\}$ and any elements h_1 , h_2 , h_3 of H,

(9)
$$\bar{d}^{g}(h_{1},h_{2},h_{3}) = \bar{d}^{g}(h_{1},h_{3})\bar{d}^{g}(h_{2},h_{3}), \bar{d}^{g}(h_{1},h_{2},h_{3}) = \bar{d}^{g}(h_{1},h_{2})\bar{d}^{g}(h_{1},h_{3}).$$

For $g \in G - \{1\}$ and any elements h_1 , h_2 of H,

(10)
$$\bar{d}^{g}(h_1, h_2)\bar{d}^{g^{-1}}(h_2, h_1) = 1.$$

120

The relations (7) and (8) are of course simply the usual expression of associativity in an extension. The first of the relations (9) is proved as follows.

$$\begin{split} \bar{d}^{g}(h_{1} h_{2}, h_{3}) &= [v(h_{1} h_{2})^{u(g)}, v(h_{3})][R, F] \\ &= [(v(h_{1})v(h_{2})c(h_{1}, h_{2})^{-1})^{u(g)}, v(h_{3})][R, F] \quad \text{by (5)} \\ &= [(v(h_{1})^{u(g)}v(h_{2})^{u(g)}, v(h_{3})][R, F], \end{split}$$

since $c(h_1, h_2) \in R$. Since $[v(h_1)^{u(g)}, v(h_3)]$ is central modulo [R, F], it follows that

$$\bar{d}^{\sigma}(h_1 \ h_2 \ , \ h_3) = [v \ (h_1)^{u(\sigma)}, \ v \ (h_3)][v \ (h_2)^{u(\sigma)}, \ v \ (h_3)][R, \ F]$$

$$= \bar{d}^{\sigma}(h_1 \ , \ h_3)\bar{d}^{\sigma}(h_2 \ , \ h_3).$$

The second relation (9) is proved similarly. As for (10),

$$\bar{d}^{g}(h_{1}, h_{2})^{-1} = [v(h_{2}), v(h_{1})^{u(g)}][R, F]$$

$$= [v(h_{2})^{u(g)^{-1}}, v(h_{1})]^{u(g)}[R, F].$$

Since $u(g)^{-1} \equiv u(g^{-1})$ modulo R,

$$\bar{d}^{g}(h_{1}, h_{2})^{-1} = [v(h_{2})^{u(g^{-1})}, v(h_{1})]^{u(g)}[R, F] = \bar{d}^{g^{-1}}(h_{2}, h_{1}),$$

as asserted.

Theorem 2 will now be proved. Thus suppose that $Z(H) \cap H'$ contains an element $z \neq 1$. Since G is finite, an element

 $w = \prod_{g \in G} v(z)^{u(g)}$

may be defined. The order in the product is arbitrary but fixed. Thus

$$w^{u(g_2)} = \prod_{g_1 \in G} v(z)^{u(g_1)u(g_2)} = \prod_{g_1 \in G} v(z)^{u(g_1g_2)b(g_1,g_2)}$$

by (4), so

$$w^{u(g_2)} \equiv \prod_{g_1 \in G} v(z)^{u(g_1g_2)} \mod [R, F],$$

since $b(g_1, g_2) \in R$. The product on the right hand side is the same as w except for the order of the factors. Restoration of the original order involves the introduction of certain commutators of the form

$$[v(z)^{u(g_1g_2)}, v(z)^{u(g_3g_2)}].$$

But this commutator is conjugate to $d^{\sigma}(z, z)$ modulo [R, F]. Since $z \in H'$, the relation (9) shows that $d^{\sigma}(z, h) \in [R, F]$ for any $h \in H$. Hence

$$w^{u(g_2)} \equiv w \mod [R, F].$$

Again for $h \in H$,

$$w^{v(h)} = \prod_{g \in G} v(z)^{u(g)v(h)}$$

= $\prod_{g \in G} v(z)^{u(g)} [v(z)^{u(g)}, v(h)]$
= $v(z)^{v(h)} \prod_{g \in G-\{1\}} v(z)^{u(g)} d^{g}(z, h)$
= $v(z)^{v(h)} \prod_{g \in G-\{1\}} v(z)^{u(g)} \mod [R, F],$

as before. If T is the group generated by R and all v(h) $(h \in H)$, there is an epimorphism of T/[R, F] onto H and the kernel R/[R, F] is central. It follows since $z \in Z(H)$ that v(z) lies in the center of T modulo [R, F], so

$$v(z)^{v(h)} \equiv v(z) \mod [R, F].$$

Hence

$$w^{v(h)} \equiv w \mod [R, F].$$

It has therefore been proved that w lies in the center of F modulo [R, F]. Hence the element of $W = G \wr H$ corresponding to w, namely

$$t = \prod_{g \in G} z^g,$$

lies in Z(W). Since $z \in H'$, $t \in W'$, so $W' \cap Z(W) \neq 1$. This completes the proof of Theorem 2.

Returning to the general case, Theorem 1 rests upon the following lemma.

LEMMA 2. R/[R, F] is the Abelian group generated by $\bar{b}(g_1, g_2), \bar{c}(h_1, h_2)$ and $\bar{d}^g(h_1, h_2)$ with defining relations (7)–(10).

To prove Lemma 2, choose a well-ordering \leq of G; this ordering need have no relation to the group structure of G.

Let A be the additively written Abelian group generated by elements $\beta(g_1, g_2), \gamma(h_1, h_2)$ and $\delta^{g}(h_1, h_2)$ with defining relations.

$$\begin{split} \beta(g, 1) &= \beta(1, g) = \gamma(h, 1) = \gamma(1, h) = 0, \\ \beta(g_2, g_3) &+ \beta(g_1, g_2 g_3) = \beta(g_1 g_2, g_3) + \beta(g_1, g_2), \\ \gamma(h_2, h_3) &+ \gamma(h_1, h_2 h_3) = \gamma(h_1 h_2, h_3) + \gamma(h_1, h_2), \\ \delta^{\sigma}(h_1 h_2, h_3) &= \delta^{\sigma}(h_1, h_3) + \delta^{\sigma}(h_2, h_3), \\ \delta^{\sigma}(h_1, h_2 h_3) &= \delta^{\sigma}(h_1, h_2) + \delta^{\sigma}(h_1, h_3), \\ \delta^{\sigma}(h_1, h_2) &+ \delta^{\sigma^{-1}}(h_2, h_1) = 0, \end{split}$$

where the h_i run through H, the g_i through G and g through $G - \{1\}$. By (7)-(10) there is an epimorphism φ of A onto R/[R, F] such that

$$\beta(g_1, g_2)\varphi = \bar{b}(g_1, g_2), \quad \gamma(h_1, h_2)\varphi = \bar{c}(h_1, h_2), \quad \delta^{g}(h_1, h_2)\varphi = d^{g}(h_1, h_2).$$

The assertion of Lemma 2 is that φ is a monomorphism; this will be proved by constructing a mapping ψ of R/[R, F] into A such that $\varphi \psi$ is the identity mapping on A.

First a factor set of $G \wr H$ in A will be constructed. In doing this elements of B will be denoted by x, y, z and the g-components of x, y, z are denoted by x_g, y_g, z_g respectively. Mappings σ, π of $B \times B$ into A are defined by the formulae

.

(11)
$$\sigma(x, y) = \sum_{g \in G} \gamma(x_g, y_g),$$

(12)
$$\pi(x,y) = \sum_{g_1 < g_2} \delta^{g_2 g_1^{-1}} (x_{g_2}, y_{g_1}).$$

(A summation sign with inequalities underneath it involving g_1, g_2, \cdots means that summation is to be carried out over all elements g_1, g_2, \cdots of G for which the inequalities hold). From the defining relations of A the following relations are easily deduced.

(13)
$$\sigma(y, z) + \sigma(x, yz) = \sigma(xy, z) + \sigma(x, y),$$

(14)
$$\sigma(x^g, y^g) = \sigma(x, y),$$

(15)
$$\pi(xy, z) = \pi(x, z) + \pi(y, z)$$

(16)
$$\pi(x, yz) = \pi(x, y) + \pi(x, z).$$

Next for each $g \in G$, a mapping τ_g of B into A is defined by the formula

(17)
$$\tau_g(x) = \sum_{g_1 < g_2, g_1 g > g_2 g} \delta^{g_1 g_2^{-1}}(x_{g_1}, x_{g_2}).$$

(Note that τ_1 is the zero mapping.) The relation

(18)
$$\tau_g(xy) - \tau_g(x) - \tau_g(y) = \pi(x^g, y^g) - \pi(x, y)$$

holds for all $x \in B$, $y \in B$. For the defining relations of A applied to the lefthand side yield

$$\sum_{g_1 < g_2, g_1 g > g_2 g} \{ \delta^{g_1 g_2^{-1}}(x_{g_1}, y_{g_2}) + \delta^{g_1 g_2^{-1}}(y_{g_1}, x_{g_2}) \}.$$

Upon application of the last of the defining relations of A and (12) to the second term this becomes

$$\sum_{g_1 < g_2, g_1 g > g_2 g} \delta^{g_1 g_2^{-1}}(x_{g_1}, y_{g_2}) - \pi(x, y) + \sum_{g_1 < g_2, g_1 g < g_2 g} \delta^{g_2 g_1^{-1}}(x_{g_2}, y_{g_1}).$$

Interchanging g_1 and g_2 in the last term,

$$\begin{aligned} \tau_g(xy) - \tau_g(x) - \tau_g(y) &= -\pi(x, y) + \sum_{g_1g > g_2g} \delta^{g_1g_2^{-1}}(x_{g_1}, y_{g_2}) \\ &= -\pi(x, y) + \sum_{g_1 > g_2} \delta^{g_1g^{-1}}(x_{g_1g^{-1}}, y_{g_2g^{-1}}) \\ &= -\pi(x, y) + \pi(x^g, y^g), \end{aligned}$$

which is (18). Also if $g \in G$ and $g' \in G$,

(19)
$$\tau_{g'}(x^g) = \tau_{gg'}(x) - \tau_g(x).$$

To prove this the summands in the definition of $\tau_{g'}(x^g)$ are to be split into two halves defined by $g_1 < g_2$ and $g_1 > g_2$; in the latter half interchange g_1 and g_2 and apply the last of the defining relations of A. Subtraction of $\tau_{gg'}(x)$ from the resulting expression readily yields (19).

The desired factor set may now be constructed. For $w_i \in W = G \wr H$, write $w_i = g_i x_i$ with $g_i \in G$, $x_i \in B$. A mapping α of $W \times W$ into A is defined by the formula

$$\alpha(w_1, w_2) = \tau_{g_2}(x_1) + \pi(x_1^{g_2}, x_2) + \sigma(x_1^{g_2}, x_2) + \beta(g_1, g_2)$$

It follows immediately from (13)-(16) and (18)-(19) that

 $\alpha(w_2, w_3) - \alpha(w_1 w_2, w_3) + \alpha(w_1, w_2 w_3) - \alpha(w_1, w_2) = 0.$

Let Γ be the central extension of A by W with this factor set. Thus there is a epimorphism θ of Γ onto W and a mapping ω of W into Γ such that A is the kernel of θ , $\omega\theta$ is the identity mapping and

$$\omega(w_1)\omega(w_2) = \omega(w_1 w_2)\alpha(w_1, w_2)$$

for all w_1 and w_2 in W. In particular for g_1 , g_2 in G and h_1 , h_2 in H, it follows from (11), (12) and (17) that

(20)
$$\omega(g_1)\omega(g_2) = \omega(g_1 g_2)\beta(g_1, g_2)$$

(21)
$$\omega(h_1)\omega(h_2) = \omega(h_1 h_2)\gamma(h_1, h_2)$$

Also if $g \in G - \{1\}$,

$$\omega(h_1^g)\omega(h_2) = \omega(h_1^g h_2)\pi(h_1^g, h_2), \qquad \omega(h_2)\omega(h_1^g) = \omega(h_1^g h_2)\pi(h_2, h_1^g),$$

whence

$$[\omega(h_1^g), \omega(h_2)] = \pi(h_1^g, h_2) - \pi(h_2, h_1^g).$$

It follows that

(22)
$$[\omega(h_1)^{\omega(g)}, \omega(h_2)] = \delta^g(h_1, h_2).$$

From (20)-(22) it is seen that A is contained in the group generated by all $\omega(g)$, $\omega(h)$ as g, h run through G, H respectively. Hence Γ is generated by these elements. Therefore since F is free, there is an epimorphism χ of F onto Γ such that $u(g)\chi = \omega(g), v(h)\chi = \omega(h)$. By comparing (4)-(6) with (20)-(22) it is seen that

$$b(g_1, g_2)\chi = \beta(g_1, g_2), \quad c(h_1, h_2)\chi = \gamma(h_1, h_2), \quad d^g(h_1, h_2)\chi = \delta^g(h_1, h_2).$$

Since A lies in the center of Γ , χ carries R onto A, and [R, F] is contained in the kernel of χ . Hence χ induces an epimorphism ψ of R/[R, F] onto A, and ψ is given by

$$ar{b}(g_1, g_2)\psi = eta(g_1, g_2), \ \ ar{c}(h_1, h_2)\psi = \gamma(h_1, h_2), \ \ ar{d}^g(h_1, h_2)\psi = \delta^g(h_1, h_2).$$

Hence $\varphi \psi$ is the identity mapping, and Lemma 2 is proved.

Lemma 2 shows that R/[R, F] is the direct sum of three groups \overline{B} , \overline{C} and \overline{D} . \overline{B} is generated by the elements $\overline{b}(g_1, g_2)$ and has defining relations (7); thus \overline{B} is isomorphic to $C_2(G, \mathbb{Z})/B_2(G, \mathbb{Z})$ and the boundary operator corresponds to the homomorphism ν_1 of \overline{B} into F/F' which carries $\overline{b}(g_1, g_2)$ into $u(g_2)u(g_1 g_2)^{-1}u(g_1)F'$. Similarly \overline{C} is generated by the elements $\overline{c}(h_1, h_2)$ and has defining relations (8); thus \overline{C} is isomorphic to $C_2(H, \mathbb{Z})/B_2(H, \mathbb{Z})$ and the boundary operator corresponds to the homomorphism ν_2 of \overline{C} into F/F' which carries $\overline{c}(h_1, h_2)$ into $v(h_2)v(h_1 h_2)^{-1}v(h_1)F'$. Finally \overline{D} is generated by the elements $\overline{d}^o(h_1, h_2)$ and has defining relations (9) and (10); thus by Lemma 1, \overline{D} is isomorphic to C(G; H).

124

To complete the proof of Theorem 1 let ν be the natural homomorphism of F onto F/F'. Of course ν induces a homomorphism $\bar{\nu}$ of R/[R, F] into F/F', and the kernel of $\bar{\nu}$ is the desired group $R \cap F'/[R, F]$. By (4), (5) and (6), the restriction of $\bar{\nu}$ to \bar{B} is ν_1 , the restriction of $\bar{\nu}$ to \bar{C} is ν_2 , and the restriction of $\bar{\nu}$ to \bar{D} is zero. Since the images of ν_1 and ν_2 intersect in 1, the kernel of $\bar{\nu}$ is the direct sum of the kernel of ν_1 , the kernel of ν_2 and \bar{D} . So $R \cap F'/[R, F]$ is isomorphic to the direct sum of $H_2(G, Z], H_2(H, Z)$ and C(G; H).

Theorem 1 is therefore proved.

3. Proof of Theorem 3

The proof of Theorem 3 is along the same lines as that of Lemma 2. It will be recalled that the group G acts on the group A, that P is the free product G * A of G and A and that S is the kernel of the epimorphism of P onto the split extention of A by G. Denote by i, j respectively the embeddings of A, G in P and for $g \in G, a \in A$ define

$$d(g, a) = (a^{g}i)^{-1}(gj)^{-1}(ai)(gj).$$

Then $d(g, a) \in S$. It is easy to check the following relations:

$$d(g, a')^{ai} = d(g, a'a^{o^{-1}})d(g, a^{o})^{-1},$$

$$d(g', a)^{oj} = d(g, a^{o'})^{-1}(d(g'g, a).$$

It follows from these three relations that every element of P is of the form (gj)(ai) d, where d is a product of the d(g, a) and their inverses. Hence S is generated by the d(g, a). If

$$\bar{d}(g, a) = d(g, a)[S, P],$$

the above relations become

$$\bar{d}(g, a_1 a_2) = \bar{d}(g, a_1)\bar{d}(g, a_2),$$

 $\bar{d}(g_1 g_2, a) = \bar{d}(g_2, a^{o_1})\bar{d}(g_1, a).$

Let C be the Abelian group generated by a set of symbols $\delta(g, a)$ $(g \in G, a \in A)$ with defining relations

$$\begin{split} \delta(g, \, a_1 \, a_2) &= \, \delta(g, \, a_1) \delta(g, \, a_2), \\ \delta(g_1 \, g_2, \, a) &= \, \delta(g_2, \, a^{\sigma_1}) \delta(g_1, \, a). \end{split}$$

Then there is an epimorphism φ of C onto S/[S, P] such that

$$\delta(g, a)\varphi = \bar{d}(g, a).$$

The assertion of Theorem 3 is that φ is a monomorphism; this will be proved by constructing a mapping ψ of S/[S, P] into C such that $\varphi \psi$ is the identity mapping on C.

The split extension of A by G will be denoted by K and the element k_i of K

will be written $g_i a_i$ with $g_i \epsilon G$, $a_i \epsilon A$. A mapping α of $K \times K$ into C is defined by the formula

$$\alpha(k_1, k_2) = \delta(g_2, a_1).$$

Then

$$\begin{aligned} \alpha \left(k_{2} , \, k_{3}\right) \alpha \left(k_{1} \, k_{2} , \, k_{3}\right)^{-1} \alpha \left(k_{1} , \, k_{2} \, k_{3}\right) \alpha \left(k_{1} , \, k_{2}\right)^{-1} \\ &= \, \delta \left(g_{3} , \, a_{2}\right) \delta \left(g_{3} , \, a_{1}^{g_{2}} a_{2}\right)^{-1} \delta \left(g_{2} \, g_{3} , \, a_{1}\right) \delta \left(g_{2} , \, a_{1}\right)^{-1} \\ &= \, 1. \end{aligned}$$

Hence α is a factor set and there exists a corresponding central extension Γ of C by K. Thus there is an epimorphism θ of Γ onto K and a mapping ω of K into Γ such that C is the kernel of θ , $\omega\theta$ is the identity mapping and

$$\omega(k_1)\omega(k_2) = \omega(k_1 k_2)\alpha(k_1, k_2)$$

for all k_1 and k_2 in K. In particular

$$\omega(g)\omega(a^g) = \omega(ga^g)\alpha(g, a^g) = \omega(ag)\delta(1, 1) = \omega(ag),$$

and

$$\omega(a)\omega(g) = \omega(ag)\alpha(a, g) = \omega(ag)\delta(g, a),$$

so that

$$\omega(a^{g})^{-1}\omega(g)^{-1}\omega(a)\omega(g) = \delta(g, a);$$

Also $\omega(g_1)\omega(g_2) = \omega(g_1 g_2)$ and $\omega(a_1)\omega(a_2) = \omega(a_1 a_2)$. Hence there is a homomorphism χ of P into Γ such that $(ai)\chi = \omega(a)$ and $(gj)\chi = \omega(g)$ for $a \in A, g \in G$. Thus

$$d(g, a)\chi = \omega(a^g)^{-1}\omega(g)^{-1}\omega(a)\omega(g) = \delta(g, a).$$

Hence χ carries S onto C, and since C is contained in the center of Γ , [S, P] is contained in the kernel of χ . Hence χ induces an epimorphism ψ of S/[S, P] onto C, and ψ is given by

$$\bar{d}(g,a)\psi=\delta(g,a).$$

Hence $\varphi \psi$ is the identity mapping and Theorem 3 is proved.

4. Proof of Theorem 4

Suppose that G, H are groups and that A is a ZH-module. Then the split extension AH of A by H and the wreathe product $K = G \wr AH$ may be formed. K may then be regarded as the split extension of $B = A \otimes ZG$ by $W = G \wr H$, the action of W on B being given by

$$(a \otimes 1)h = ah \otimes 1, \qquad (a \otimes g_1)g_2 = a \otimes g_1 g_2,$$

where $a \in A$, $h \in H$, $g_1 \in G$, $g_2 \in G$; further if $g \in G - \{1\}$,

$$(a \otimes g)h = a \otimes g.$$

Thus B is a **Z**W-module. Let R be the kernel of the **Z**W-homomorphism of $B \otimes \mathbf{Z}W$ onto B which carries $b \otimes w$ into bw. By a remark following Theorem

126

3, Corollary 2, R/[R, W] is generated by the elements

 $\bar{b}_{g'}(a, g) = b_{g'}(a, g) + [R, W]$ and $\bar{c}_g(a, h) = c_g(a, h) + [R, W]$, where

$$b_{g'}(a, g) = (a \otimes g') \otimes g - (a \otimes g')g \otimes 1,$$

$$c_g(a, h) = (a \otimes g) \otimes h - (a \otimes g)h \otimes 1;$$

here $a \in A$, $g \in G$, $g' \in G$, $h \in H$. Let $b(a, g) = b_1(a, g)$, $\bar{b}(a, g) = \bar{b}_1(a, g)$. Then it is easy to verify that

$$b_{g'}(a, g) = b(a, g'g) - b(a, g')g.$$

Hence

$$\bar{b}_{g'}(a, g) = \bar{b}(a, g'g) - \bar{b}(a, g'),$$

so R/[R, W] is generated by the $\bar{b}(a, g)$ and the $\bar{c}_g(a, h)$. The following relations hold.

- (1) \bar{b} is linear in a.
- (2) For all $g \in G$, \bar{c}_g is linear in a.
- (3) $\bar{b}(a, 1) = 0.$
- (4) For $a \in A$ and $h_i \in H$, $\bar{c}_1(a, h_1) + \bar{c}_1(ah_1, h_2) = \bar{c}_1(a, h_1, h_2)$.
- (5) For $g \in C \{1\}$, \bar{c}_g is homomorphic in h.
- (6) For $g \in G \{1\}$, $c_g(a, h) = 0$ if $a \in [A, H]$.

Of these (1), (2), (3) are obvious and (4), (5) follow easily from the definition of \bar{c}_g . To prove (6) it is necessary to show that

 $(a(1-h) \otimes g) \otimes (1-h') \epsilon [R, W]$

for any $a \in A$, $h \in H$, $h' \in H$ and $g \in G - \{1\}$. If $b = a \otimes g$, $bh^{g} = ah \otimes g$, so it must be shown that

 $b(1 - h^g) \otimes (1 - h') \epsilon [R, W].$

But the left side is easily seen to be equal to

 $(b \otimes h^{g} - bh^{g} \otimes 1)(1 - h') - (b \otimes h' - bh' \otimes 1)(1 - h^{g}),$

since $hh'^{\theta} = h'^{\theta}h$ and bh' = b.

LEMMA 3. The relations (1)-(6) constitute a system of defining relations of R/[R, W].

To prove this let C be an additively written Abelian group generated by symbols $\beta(a, g)$ and $\gamma_g(a, h)$, where a, g, h run through A, G, H respectively with defining relations

$$\beta(a_1 + a_2, g) = \beta(a_1, g) + \beta(a_2, g),$$

$$\gamma_g(a_1 + a_2, h) = \gamma_g(a_1, h) + \gamma_g(a_2, h),$$

$$\beta(a, 1) = 0,$$

$$\begin{aligned} \gamma_1(a, h_1 h_2) &= \gamma_1(a, h_1) + \gamma_1(ah_1, h_2), \\ \gamma_g(a, h_1 h_2) &= \gamma_g(a, h_1) + \gamma_g(a, h_2) \quad (g \neq 1), \\ \gamma_g(a, h) &= 0 \quad (a \in [A, H], g \neq 1). \end{aligned}$$

Let Γ be the direct sum of the abelian groups B and C; the elements of Γ will be written as ordered pairs (b, c). Mappings ξ and η of $B \times G$ and $B \times H$ into C respectively, both linear in B, may be defined satisfying

$$\xi(a \otimes g, g') = \beta(a, gg') - \beta(a, g), \qquad \eta(a \otimes g, h) = \gamma_g(a, h),$$

on account of the first two defining relations of C. Hence for $g \in G$ and $h \in H$ endomorphisms \bar{g} , \bar{h} of Γ may be defined as follows:

$$(b, c)\bar{g} = (bg, c + \xi(b, g)), \quad (b, c)\bar{h} = (bh, c + \eta(b, h)).$$

It is easily deduced from the definition and linearity of ξ that

$$\xi(b, g_1 g_2) = \xi(b, g_1) + \xi(bg_1, g_2),$$

and hence $\bar{g}_1 \bar{g}_2 = \overline{g_1 g_2}$; also \bar{l}_g is the identity mapping. Again the fourth and fifth defining relations of C imply that

$$\eta(b, h_1 h_2) = \eta(b, h_1) + \eta(bh_1, h_2),$$

whence $\bar{h_1} \bar{h_2} = \overline{h_1 h_2}$; also \bar{l}_H is the identity mapping. The relations

$$\begin{aligned} \xi(bh, g) - \xi(b, g) &= \xi(bhh'^{g^{-1}}, g) - \xi(bh'^{g^{-1}}, g), \\ \eta(bg^{-1}, h) + \eta(bh^{g}, h') &= \eta(b, h') + \eta(bh'g^{-1}, h) \end{aligned}$$

also hold for $g \neq 1$, but this verification is slightly more tedious. In proving both it may be assumed that $b = a \otimes g'$ in view of the linearity of ξ and η . The first relation is clear, since if g' = 1, $b{h'}^{g^{-1}} = b$ and $bh{h'}^{g^{-1}} = bh$, whereas if $g' \neq 1$, bh = b. Similarly the second relation reduces to $\eta(bg^{-1}, h) =$ $\eta(bh'g^{-1}, h)$ if g' = 1, or to $\eta(bh^g, h') = \eta(b, h')$ if $g' \neq 1$; the second is trivial unless g' = g, so both reduce to $\eta(ah \otimes g, h') = \eta(a \otimes g, h')$, which follows from the last of the defining relations of C. Thus the relations are proved, and from them it is easy to see that for $g \neq 1$, $\overline{h^g}$ and $\overline{h'}$ commute. Hence Γ is a ZW-module, and

$$(b, c)g = (bg, c + \xi(b, g)), \qquad (b, c)h = (bh, c + \eta(b, h)).$$

In particular the projection of Γ onto B is a ZW-homomorphism, and since $\beta(a, 1) = 0$.

$$(a \otimes 1, 0)g - (a \otimes g, 0) = (0, \beta(a, g)).$$

Also

$$(a \otimes g, 0)h - ((a \otimes g)h, 0) = (0, \gamma_g(a, h))$$

There is an Abelian group homomorphism χ of $B \otimes \mathbb{Z}W$ into Γ such that $(b \otimes w)\chi = (b, 0)w$ for all $b \in B$, $w \in W$. This is clearly a $\mathbb{Z}W$ -homomorphism.

The kernel of the composite of χ with the projection of Γ onto *B* is *R*, so the first component of any element of $R\chi$ is 0. Since (0, c)w = (0, c), [R, W] is contained in the kernel of χ . Hence χ induces a homomorphism ψ of R/[R, F] into *C*, given by

$$\overline{b}(a, g)\psi = \beta(a, g), \quad \overline{c}_g(a, h)\psi = \gamma_g(a, h).$$

But on account of (1)-(6), there is an epimorphism φ of C onto R/[R, W] such that $\varphi \psi$ is the identity mapping on C. Hence φ is an isomorphism and Lemma 3 is proved.

Lemma 3 shows that R/[R, W] is the direct sum of the group \overline{B} generated by all $\overline{b}(a, g)$ and the groups \overline{C}_g ($g \in G$) generated by the $\overline{c}_g(a, h)$. The Abelian group \overline{B} has defining relations (1) and (3). For $g \neq 1$, \overline{C}_g has defining relations (2), (5) and (6) and is therefore isomorphic to $A/[A, H] \otimes H/H'$. Finally \overline{C}_1 , having defining relations (2) and (4), is isomorphic to $C_1(H, A)/B_1(H, A)$.

Let ν be the additive epimorphism of $B \otimes \mathbb{Z}W$ onto B which carries $b \otimes w$ into b; thus $[B \otimes \mathbb{Z}W, W]$ is the kernel of ν . The homomorphism $\overline{\nu}$ of R/[R, W] into B induced by ν is given by

$$\begin{split} b(a,g)\bar{\nu} &= a \otimes (1-g), \qquad \bar{c}_1(a,h)\bar{\nu} &= a(1-h) \otimes 1, \\ \bar{c}_g(a,h)\bar{\nu} &= 0 \quad (g \neq 1). \end{split}$$

If μ is the additive endomorphism of $A \otimes \mathbb{Z}G$ onto A which carries $a \otimes g$ into a, μ is zero on $\overline{B}\overline{p}$ but μ is faithful on $\overline{C}_1 \overline{p}$. Hence $\overline{B}\overline{p} \cap \overline{C}_1 \overline{p} = 0$. Thus the kernel $R \cap [B \otimes \mathbb{Z}W, W]/[R, W]$ of \overline{p} is the direct sum of the kernel S_1 of the restriction of \overline{p} to \overline{B} and the groups \overline{C}_g $(g \neq 1)$. S_1 is of course isomorphic to $H_1(H, A)$, and it is clear that $S_2 = 0$. Hence $R \cap [B \otimes \mathbb{Z}W, W]/[R, W]$ is the direct sum of $H_1(H, A)$ and |G| - 1 copies of $A/[A, H] \otimes H/H'$. Since the former group is isomorphic to $H_1(W, B)$, Theorem 4 is proved.

REFERENCES

- 1. L. EVENS, Terminal p-groups, Illinois J. Math., vol. 12 (1968), pp. 682-699.
- 2. P. HALL, The classification of prime-power groups, J. Reine Angew. Math., vol. 182 (1940), pp. 130-141.
 - UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS