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In [4] Deskins defined the normal index of a maximal subgroup M in a
finite group G as the order of a chief factor H/K of G where H is minimal
in the set of normal supplements to M in G. We let (G:M) denote this
number. The following two results relating to normal index were announced
by Deskins [4].

(A) The finite group G is solvable if and only if for each maximal sub-
group M of G, 7(G:M) is a power of a prime.

(B) The finite group G is solvable if and only if (G:M) [G:M] for
each maximal subgroup M of G.

In this note we obtain (B) as a corollary to a theorem on p-solvability.
We also show that if G has at least one solvable maximal subgroup M such
that (G:M) [G:M], then G is solvable. The authors would like to thank
Professor Deskins for some comments helpful in the preparation of this
paper. All groups are assumed to be finite.
We begin with a lemma stated by Deskins [4, 2.1] and proved here for the

sake of completeness.

LEMMA 1. (G:M) is uniquely determined by M.

Proof. We wish to show that if H1 and H2 are minimal in the set of normal
supplements to M in G and K1 and K2 are maximal G-subgroups of H1 and
Hs respectively, then HI/KII Hs/Ks I. The proof is by induction on
G ]. By the minimality of Hi, Ki _< M, i 1, 2, so if K n Ks (1), the

result follows by induction. Thus we may suppose that K
We note that

HnK <] G and HnKs_<HM

solid,Ks <_ K1. ThusHnK_< KnK (1). Similarly, HsnK
(1). In G/KI Ks, H K2/K Ks is minimal in the set of normal supplements
to M/K K. Certainly H1 K/K K. is a supplement, so suppose X/K K2
is a normal supplement to M/KI K with HI K2/KI K >_ X/K K: Then

(X H)M (X H)K M (zgs H K)M

(XnHK)M XM G.
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However by the minimality of H1, X :> H1, so X H1 Ks. Similarly
H K1/K1 K2 is a minimal normal supplement to M/KI
If K1 K2 (1>, the lemma follows by induction, hence we may assume
K K. (1}. So H and H are minimal normal subgroups of G. Let L
denote the core of M in G. If L <1}, then by Corollary 2 of [1, p. 120],
IHll IH21. If L <1>, consider 7(G/L’M/L). We claim that
(G/L’M/L) H L/L ]. To show this it suffices to show that H L/L
is a minimal normal supplement to M/L in G/L. Suppose X/L

_
H, L/L

with X <3 G and M/L X/L G/L. Then

(X n H1)M (X H)LM (XL H L)M XM G.

However, by the minimality of H1, X n H1 H,, so that X H1 L. Simi-
larly H L/L is a minimal normal supplement to M/L in G/L. By induction
HL/L! HL/L [. However, since H and H2 are minimal normal

subgroups, H, n L H. n L (1>. So

and the lemma is proved.

LEMMA 2. If N < G and N

_
M, then (G/N’M/N) y(G’M).

Proof. Let (X/N)/(Y/N) be a chief factor of G/N, where X is minimal
with respect to X/N M/N GIN. Then by Lemma 1, (G/N’M/IV)
XY i. Let H

_
X be a minimal normal supplement to M in G. HN

_
X,

HN <:I G, and (HN’)M G, so by the minimality of X, HN X. Since
Y >_N, HY X. LetH/KbeachieffactorofGwithHaY_K. Then
Y

_
KY < X, andKY <:l GsoKY YandK Hn Y. This implies

that [H/K X/Y l. By Lemma 1, ,(G:/) [H/K I, and
,(G/N’M/N) X/Y l.
For notational purposes, let n denote the p-part of n. More precisely

if p is a prime and n p"m with (p, m) 1, then n p". The motiva-
tion for Theorem 1 is the result (B) mentioned in the introduction.

THEOREM 1. The finite group G is p-solvable if and only if
(v(G:M)) [G:M]

for each maximal subgroup M of G.

Proof. Deny and let G be a counterexample of minimal order. Then
G must satisfy the following.

(1) G is neither a p-group nor a p’-group, where p’ denotes the comple-
ment of p in the set of all primes.

(2) G is not simple.
If G is simple then for each maximal subgroup M of G (G:M) G I.

However if M contains a Sylow p-subgroup of G, [G:M] 1.
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(3) G has a unique minimal normal subgroup H, and G/H is p-solvable.
Note that p-solvability is preserved by direct products and is inherited by

subgroups. By the minimality of G and Lemma 2, every proper homomor-
phic image of G is p-solvable. Thus if H and K are two minimal normal
subgroups of G, G/H and G/K are p-solvable and so G/(H n K) is p-solvable.

(4) Pl IH]
If p H ], then H is p-solvable, but by (3) G/H is p-solvable, sot hat G is

p-solvable.
(5) The Frattini subgroup, (G), is trivial. This follows by (3) and the

fact that (G) is nilpotent.
(6) H <_ (G), where (G) is the intersection of all maximal subgroups

of G with index relatively prime to p.

If L does not contain H then v(G:L) H i, so that (v(G:L)
however by hypothesis v(G:L) [G’L],.
By Theorem 2 of [5], (G) is solvable. Since G/H is p-solvable G is p-

solvable, this contradiction shows that G does not exist.
The converse follows easily. Suppose G is p-solvable and M is a maximal

subgroup of G. Let L core (M). G/L is p-solvable so if L (1}, by
induction,

(,(G/L:M/L) ) [G/L’M/L]
By Lemma 2, (,(G/L’M/L)), ,(G:M). If L {1}, then ,(G:M)
H I where H is a minimal normal subgroup of G. (Note that G is not sim-

ple.) Since H is a minimal normal subgroup of a p-solvable group H is a
p-group or a p-group. If H is a p group, then [G’M],
H is a p-group then H is abelian and H n M <:] G. However, M is corefree
soHnM land[G:M] [Hi.

COROLLARY. The finite group G is solvable if and only if v(G:M) [G:M]
for each maximal subgroup M of G.

Proof. If (G:M) [G:M] for each M, then in particular ((G:M))
[G"M] for each p. Thus G is p-solvable for each prime p, hence G is solvable.
The converse is obvious.

Since v(G:M) is the order of a chief factor of G, if G is simple
then 7(G:M) [G for each maximal subgroup M of G. Thus if we force
subgroups of equal normal index to be related in some way the structure of G
is restricted somewhat as is indicated by Theorem 2.

THEOREM 2. If all nonnormal maximal subgroups of equal normal index
are conjugate in G, then G is solvable.

Proof. Suppose that the theorem is false and let G be a counter-example
of minimal order. Then G must satisfy the following.

(1) G is not simple.
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If G is simple then all maximal subgroups in G are conjugate. By Lemma 2
of [3] G is cyclic. This contradiction implies that G is not simple.

(2) G has a unique minimal normal subgroup H, and furthermore G/H
is solvable.
By (1), G is not simple so let H be a minimal normal subgroup of G. Then

G/H inherits the conjugacy property, so that by the minimality of G, G/H
is solvable. If there were two distinct minimal normal subgroups, then G
would be solvable.

(3) Any two maximal subgroups which do not contain H are conjugate.
Let M1 and M2 be two maximal subgroups not containing H. Then by

(2) 5/I1 and M2 are selfnormalizing. Moreover, since H is the unique minimal
normal subgroup of G, 7(G:M) 7(G:M) H I. By hypothesis M
and M are conjugate.

(4) (G)= 1.
If not, then H

_
(G) so that G/(G) is solvable. But then G is solvable.

(5) Let M be a maximal subgroup which does not contain H, and let q
be a prime divisor of [G:M]. Then H

_
Cq(G).

Let L be a maximal subgroup of G with ([G:L], q) 1. Then L is not
conjugate to M, so by (3), L H.
By Theorem 2 of [5] H is solvable. Then G/H and H are solvable, which

is a contradiction showing that G does not exist.

We now localize our conditions on index and normal index to one maximal
subgroup of G. We obtain some results under the assumption that G possesses
a solvable maximal subgroup.

TEORM 3. If G has a solvable maximal subgroup M with prime power
normal index, then G is solvable.

Proof. Assume that the theorem is false, and let G be minimal counter-
example. Let M be a solvable maximal subgroup of G with 7(G:M) p,
where p is a prime. Since 7(G:M) p", G is not a simple group. Let N
be a minimal normal subgroup of G. We consider two cases.

Case 1. N

_
M. ThenT(G/N:M/N) 7(G:M) p"by Lemma 2.

Since M is solvable, M/N and N are solvable. By the minimality of G,
GIN is solvable. Thus G is solvable. This is a contradiction.

Case 2.
is solvable.
is solvable.
follows.

N M. ThenG MNandG/NM/NnMsothatG/N
Since 7(G’M) NI it follows that N is a p-group. Thus G
This contradiction shows that G does not exist, hence the theorem

We now present the theorem mentioned in the introduction of the present
paper.

THEOREM 4. If G has a solvable maximal subgroup M such that 7(G:M)
[G" M], then G is solvable.
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Proof. Deny and let G be a counterexample of minimal order. Then G
must satisfy the following.

(1) M is corefree.
If not, let L core(M). By Lemma 2, /(G:M) (G/L:M/L). By

the minimality of G, G/L is solvable. However L is solvable, and so G is
solvable which is a contradiction.

(2) G is not simple.
If G is simple, v(G:M) GI which implies that M (1). But then G

is cyclic contrary to the fact G is not solvable.
(3) Let K be a minimal normal subgroup of G. Then G MK,

inK=
By(1),K;Mso,(G:M) Ki. Then[G:i]= KisothatG=MK

undMnK (1).
Now let L be a minimM normal subgroup of M. Let

K C(L) k e K 1-ll l for all e L}.

Obviously K is a subgroup of K.
(4) K (1).
First note that K is M-invariant. For let g, M, k K and L. Then

#e- - ela-, for some l L. This follows by the normality of L in M.
So #g-1-1 gg- #g-. That is, gkg- K, so that K is M-
invariant. However, since M is maximal in G, the only M-invariant sub-
group of K are K and (1). If K K, we have L < G contrary to (1),
thus K

(5) (ILl, KI) 1.
If not, let ]L p" and let P be a Sylow p-subgroup of LK containing L.

Then P n K is a nontrivial normal subgroup of P so that Z(P) n K (1).
But, by (4), Z(P) n K

_
C(L) (1}. ThereforePnK 1 and (5)

follows.
(6) For each prime q dividing K I, L leaves precisely one Sylow q-sub-

group of K invariant.
This follows by Theorem 2.2 of [6, p. 224] and the fact that C(L) (1).
(7) M leaves a Sylow subgroup of K invariant.
Let Q be an L-invariant Sylow subgroup of K. Let g e M, e L. As in

--1--lf --1--1(4), g rig g ll Qlx g g-Qg. So g-Qg is an L-invariant Sylow sub-
group of K. By (6) g-lQg Q. Thus Q is an M-invariant Sylow subgroup
of K.

Now K has no proper M-invariant subgroups, so Q K and so K is
solvable. Thus G/K and K are solvable so that G is solvable which is
contradiction, showing that G does not exist.

Considering S, the symmetric group on 4 symbols, we see that Theorem
4 cannot be substantially improved by replacing the solvability of M by
nilpotence.
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An attempt to localize Theorem 1 fails, as can be seen in the following
example: Let G A5 Zs, where A5 is the simple group of order 60 and Zs
is of order 5. Let M A4 Zs. Then M is 5-solvable, indeed, M is 5-
closed and 5-nilpotent. [(G:M))]5 [G:M]5 5, but G is not 5-solvable.
We do obtain a result in this direction.

Recall that the group is p-closed if it has a normal Sylow p-subgroup.

THEOREM 5. Suppose that G has a corefree maximal subgroup M such
that M is p-closed, p a prime which divided M I. Further, suppose that

((G:M)) [G:M].

Then G is p-solvable and the p-length of G is 1.

Proof. Assume that the theorem is false and let G be a counter-example
of minimal order. As in the proof of Theorem 1, G is not simple. Let P
be a p-Sylow subgroup of M. Then P is a normal subgroup of M, and since
M is corefree it follows that P is a p-Sylow subgroup of G. Let K be a mini-
mal normal subgroup of G. Then G MK and (G:M) K I. Since
[G:M] 1, it follows that K is a p’-group. We also note that
G/K M/K n M so that G/K is p-closed. This shows that G is p-solvable
and l(G) 1. Since G can not exist, the theorem follows.
The finite group G is supersolvable if and only if y(G:M) [G:M] p,

p a prime, for each maximal subgroup M of G. This fact follows from re-
sults (A) and (B) of Deskins [4] mentioned earlier in the present note and
by Theorems 7.2.8 and 9.3.8 of [7]. Hence, we can use the concept of normal
index to characterize supersolvable groups.

Recall that a proper normal subgroup H of G is called a generalized Frattini
subgroup of G if G Na(P) for each normal subgroup L of G and each
Sylow p-subgroup P of L such that G HNa(P) (see [2]). Now let G be a
supersolvable group. Then the Fitting subgroup F(G) of G is not a general-
ized Frattini subgroup of G (see [2]) because of Corollary 3.6.1 of [2], hence
(G) is properly contained in F(G) by Corollary 3.1.1 of [2]. Therefore,
there exists a maximal subgroup M of G such that F(G) __< M. We note that
M is supersolvable and (G:M) [G:M] p, p is a prime. We now show
that the converse to the above facts about supersolvable groups is also true.

THEOREM 6. If G contains a supersolvable maximal subgroup M such that
y(G:M) is a prime and the Fitting subgroup, F(G), is not contained in M,
then G is supersolvable.

Proof. Because of Theorem 3, G is solvable. Assume that (G) 1.
Then M/(G) is a supersolvable maximal subgroup of G/(G) and

y(G/(G) :M/(G) (G:M)

by Lemma 2. By Theorem 7.4.8 of [7] it follows that

F(G/(G) F(G)/(G) <_ M/(G).
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By induction, G/(G) is supersolvable, hence G is supersolvable by Theorem
9.3.8 of [7]. Thus, we can assume that (G) 1. By Theorem 7.4.15 of
[7], F(G) is a direct product of all minimal normal subgroups of G. Since
F(G) _< M, there exists a minimal normal subgroup K of G not contained in
M. Therefore, G MK and M n K 1. From this it follows that
y(G:M) K i, and the order of K is a prime. Since G/K is supersolvable,
G is supersolvable.
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