
LOCALLY ADJUNCTABLE FUNCTORS

BY

Certain operations in mathematics, such as the algebraic closure of a field,
construction of a universal covering space, or introductioa of coordinates in
geometry resemble, but fail to be, adjoint functors. We generalize the notion
of ad]oint functor to include such situations by lowering the degree of uni-
versality required of the ad]unction morphisms. Certain group-valued func-
tors arise which yield very familiar groups in the particular cases considered.

After the preliminaries are established, we give the proof that a "locally
ad]unctable" functor can be characterized in terms of a functor with genuine
adjoint. This will be followed by a discussion of related results, special cases
("locally reflective" subcategories) and examples. We then show how a
canonical group-valued functor may be associated with every locally ad]uncta-
ble functor. We close with a discussion of some unresolved questions con-
cerning the construction of locally adjunctable functors and the fibration of a
locally adjunctable functor by a "best possible" genuine ad]oint situation.

DEIINIWION. Let F :/ -- Cbe a functor. We say F is locally left adjunct-
able if for any f" X -- F (A) in ( and A e/, there exists an object f(X) e A,
an A-morphism fl f(X) A, and a (-morphism f0 X --. F (f(X)) such
that f F (fl)f0. Moreover, if f F (h)g with h A’ A, then there exists
a unique t:f(X) A’ such that ht fl and F ()f0 g, i.e. the following
diagram commutes in ("

x h.:

F(A) F(g)
F(I)

If F has a left adjoint, say G, then F is clearly locally left adjunctable be-
cause the front adjunction for X serves as the "fo" for every f with domain X
and codomain in F (.a.), and G (X) serves as the "f(X)" for every such f.

If F and G are two functors with common codomain D, (G, F) denotes the
comma category [6]. (Its objects are triples (B, A f,) where B e domain of G,
A e domain of F, andf G (B) -- F (A) in D; and (h, g) (B, A, f) -- (/, 2:, ])
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in (G, F) if ]G(h) F(g)f in D.) We shall write (C, F) for (lc, F) and
write (C, X) instead of (C, Ix) where Ix denotes the functor from the trivial
one object category onto the object X e C. This category is sometimes called
"the category of objects over X". Also if A is any category, (A, A) is lust
the morphism category of A. If F" A C is a functor there is an obvious
functor (F, A (A, A --. (C, F (A) ). Then the definition may be stated in
terms of universal elements (see [7] or [8]) as follows. Let A be any object
of A. Then for every object (X, A, f) of (C, F (A) ), there exists a universal
element, namely the pair (f0, (f(X), A, fl) ), for the functor hs o (F, A where
hs denotes the covariant part of the (C, F (A))-hom functor. Then as
universal element, the factorization of f is unique to within equivalence of
(X). It is also clear that the functor F is locally left adjunctable iff each
ffunctor (F, A has a left adjoint. For reference we present the dual concept

DEFINITION. A functor F A -- C is locally right adjunctable if for every
f" F (A) --, X in C, there exist f(X) e A, f" A -+ f(X) and f0" F (f (x)) --, X
in C such that f f0 F (fl). Moreover if f hF (g) with g A ---+ A’ there
exists a unique A’ ---, f (X) such that tg fl and f0 F (t) h.

We shall deal primarily with locally left adjunctable functors and shall
give a dual statement when it is not especially obvious. Unless otherwise
noted, the functor F A -- C is fixed. There is a naturally induced functor
F" (A, A) --+ (C, F) given by

(A1, A, a) (F (A1), A, F (a))

on objects and/ (h, g) (E (h), g) on morphisms.
We can now state the characterization"

TEOE A. F is locally left adjunctable iff F has a left adjoint.

For the duration of the following lemmas, assume that F is locally left
junctable, f" X -- F (A) is a fixed C-morphism, and f F (fl)fo as in the
definition. Furthermore any use of the subscripts "0" and "1" is understood
to be as in the definition.

LEMMA 1. Suppose that fo factors as fo F (h )g. Then h is right invertible.

LEMMA 2. (f0)l is an equivalence.

These two lemmas follow from the fact that (f0, (f (X), A, fl) is a universal
element.

LEMMA 3. Suppose a A ----> A’ in A. Then there exists a unique equivalence

e" f(Z ----> (F (a )f (Z )

such that (F (a)f)l e f and F (e)fo (F (a)f)o
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Proof. Let (F (a)f) (X) nd (F (a)f) jx. The fctoriztion
F (a)f F (af)fo through the object F (f(X)) induces unique t" 2: -- f(X)such that

afx jx nd F (t) (F (a)f)0 f0.
Hence F (f t) (F (a)f)o f so there exists unique e" f(X) suchf te fi
and F (e)fo. Note j e (afx t)e afx so e stisfies the two equations re-
quired.
We now show t is n inverse of e finishing the proof s e hs lredy been

uniquely determined. Consider first te f(X) f(X). Since fx e fx,
we know te lf(x) if F (te)fo f0 but this last equation holds because

F (te)fo F (t) (F (e)fo) F (t) (F (a)f)o fo.
On the other hand,

jl et all tet all (te)t all jl
and

F (et) (F (a)f)o F (e)F (t) (F (a)f)o F (e)fo (F (a)f)o,

so et lz. Q.E.D.

We may suppress the equivalence appearing in Lemma 3 by rewriting the
conclusion as (F (a)f)l = fl and f0 (F (a)f)0 where ""= means "equal to
within unique equivalence". We shall state and prove Lemma 4 using this
convention.

LEMMA 4. Suppose g’X’ ---. X in C.
ffo )o ff )o.

Then (fg) . fl (fo g )l and

ProoL
(fg)l (F(fl)fog)l"fl(fog)l and (fg)o (F(j’l)fog)o (fog)o. Q.E.D.

We shall now sketch the proof of Theorem A.
First suppose F is locally left adjunctable. Then each object (X, A, f) in

((2, F) determines an object (f(X), A, fl) of (A, A), which is determined to
within a unique equivalence. (To define a functor from (C, F) to (A, &)
we must make choices from among classes of equivalent objects and mor-
phisms, but the problems which arise from this are artificial and will be
ignored in the proof through the device of using "=" to sometimes mean
"." as used above.) Hence define F*" (C, F) --. (A, A) on objects by

F* (X, A, f) (f(X), A,
If (h, g)" (Z, A, f) -- (X, 2[, ]) in ((2, F), define

F* (h, g) (]oh)l g).

Then (0 h)l, g)" (f(Z), A, f) --. (](R), 2:, ) in (A, A) by upplication of
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Lemmas 3 and 4 to the morphisms of the commutative diagram

F(f(X))

It is then a routine matter to show F* is a functor. To prove F* is a left
djoint/,let (Z,A,f) e (C,F). When#F*(Z,A,f) (F(f(Z)),A,F(fl))
and the front adjunction for (X, A, f) is (f0, 1). We omit the details.
Now suppose left adjoint G of is given, nd let f" X --, F (A) in C.

Let the front djunction associated with (X, A, f) be (, e) FG (X, A, f)
(X,A,f). DenoteG(X,A,f) by (B,B’,g),soF(g)= F(e)f. Considerthe
morphism

(f, 1)" (Z, A, f) (F (A), A, F (1))

which induces a unique (, ) (B, B’, g) -- (A, A, 1) in (A, A) such that

(F(), e)

Thus in prticulr F ()g f, and it can be shown, using the properties of
djunctions and right cancellability of that this factorization of f satisfies
the second prt of the definition of a local adjunction decomposition. This
proves the theorem.

Note that by applying Lemma 3, if F is locally left adjunctble, then F*#
is naturally equivalent to the identity functor on (A, A), nd F* could actually
be chosen to be left inverse for. We could obviously hve used TheoremA
s a starting point, but in pplications the functor on comma categories may
not be especially clarifying, and it is usually the local adjunction morphisms
which are of interest nyway.

If F X -- F (A) in C, then local solution set for f is solution set for f
with respect to the functor (F, A)" (A, A) -, (C, F (A)). We may then
state the following.

TEOREM B (Local Adoint Functor Theorem). Let F A -- C be a functor
where A is well powered, has intersections (generalized pullbacks ) and equalizers.
Then F is locally left adjunctable iff F preserves intersections and equalizers, and
satisfies the local solution set condition.

Proof. Apply the classical adjoint functor theorem to the functors
(F, A ), A e A, recalling that product in the category (A, A ) is precisely
intersection in A. Q.E.D.

It should be noted that locally adjunctble functors do not preserve general
limits. We shall now turn to a particular type of locally ad]unctable functor.
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DEFINITION. If A is a subcategory of C, we say A is locally reflective in C if
the inclusion functor is locally left adjunctable.

Notice that the morphism category of any category A is a fibration of
A (see [3]) via the domain functor, and similarly (C, F) is a fibration of C.
Hence theorem A exhibits the functor F as a fibration of the functor F.
(The dual of this theorem gives an opfibration of locally right adjunctable
functors.) In the case of locally reflective subcategories there is a kind of
converse to theorem A. We assume (for convenience only) that the fibra-
tions mentioned henceforth are split and normal.

THEOREM C. Suppose P E ---. C is a fibration and B P-I(A) is a full
reflective subcategory of E where A is a full subcategory of C. Then A is locally
reflective in C. Conversely, by Theorem A, every locally reflective subcategory
arises as the image under a fibration of a reflective subcategory.

Proof. Let f" X -- P (B) be a C-morphism with B e B. Consider

0/ 0f (B) f* (B) -- Bin E (notation of [3]). Let e’f* (B) R be the reflection map of f* (B)
into B. Then there exists a unique 0f R -4 B such that 0f e 0f. We shall
show the factorization f P (O/)P (e) through P (R) e A is a local reflection
decomposition for f.

Suppose f gh with h X --/ and/ e B. Consider

0g Og (B) g* (B) --. B and 0h 0h (g* (B)) "f* (B) -- g* (B).

Again there is a unique 0" R --* g* (B) such that tih e 0h. Then clearly
P (h)P (e) h. Also gP (h) P (/) because 0 h /as h e h /e.
Hence it remains to show P (0h) is unique with this property.
To this end assume m" P (R) -- B satisfies mP (e) h and gm P ().

Consider
O" Ov(o) B" P (Of)* (B --, B.

Since P is a fibration there is a unique 0’ R -- B" with 0" 0’ f and
P(0’) 1(). Finally, let 0 0(g*(B))’B" -- g*(B). To show
P (0h) m, it suffices to show 0h e 0 0’e because e is a reflection map.
However, we claim this equation holds because P is a fibration: Since
0 0h e 0, there exists a unique morphism r such that P (r) h and
0gr 00he, so 0he r. But also

O(OO’e) (OO,)O’e O"O’e 0/e 0r and P(O,O’e) ml.(R)P(e) h,

so 0m 0’e r also, proving the claim. Q.E.D.

Since the composition of fibrations is a fibration, Theorem C combined with
Theorem A implies that the image of a locally reflective subcategory under a
fibration is locally reflective. We now show that the fibration of a locally
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reflective subctegory guaranteed by Theorem A has lifting property very
reminiscent of lifting properties of topological fibrtions. HereD (C, A) -- Cis the domain functor.

THEOREM D. Let A be a full locally reflective subcategory of C, P ] ----> C be a
functor such that B p-1 (A) is a full reflective subcategory of F. Then:

(1) P "lifts" to a functor [ ] ---+ (C, A) such that D[ P;
(2) If P’ E -- (C, A) agrees with [ on B and if DP’ P, then there is a

natural transformation P’ ---+ [ such that B (E) 1p(E) for all E e F;
(3) If, moreover, P is a fibration, then each component of is right invertible.

Proof. (1) For Eet, define P (E) (P (E), PR (E), P (e) where
e" E -- R (E) is the reflection map of E into B, and for t’E E’ in t,
define [ (t) (P (t), PR (t)), where R" t -- B is the reflector. Then/ is
clearly a functor such that D/ P.

(2) Note that since the subcategories involved are full, the reflectors may
be normalized so that they leave the objects nd morphisms of the reflective
subcategories fixed. Again, let e’E -- R (E) be reflection map. Then
P’ (R (E)) P (R (E)) 1pE). Now, abusing the notation of comma
ctegories somewhat, we may assume P’ (E) P (E) A for A e/, and for
E E’ in ], P’ (t) (P (t), P’ (t)r) where P (t)r denotes the codomain

end of P’ (t). Thus

P’ (e) (P (e), P’ (e)) P’ (E) -- 1

so P’ (e) P’ (E) P (e). Thus we can define for each E e t, morphism

,, (1,() P’ (e) P’ (e)r) P’ (E) -- P (E).

It is straightforward to show that {}, is a natural transformation from
P’ to/5, and clearly D () le(E).

(3) Finally, if P is a fibmtion which maps B onto/k, the imuges of reflection
mps are the local reflection maps, i.e., the local front adjunctions. Also,
the codomain end of each v is an A-morphism and the left factor of a local
front adjunction, so by Lemma 1, is right invertible. Q.E.D.

Note there is no guarantee that the collection of right inverses in (3) corn-
prise a natural transformation from P to P. We now give a last result for
general locally left adjunctable functors which seems to be of interest.

THEOa,M E. Let F" A C be locally left adjunctable. Then:
(1) For each (X, A, f) e (C, F) there is a group of automorphisms off(X),

II, (x, A, f), such that if a, a’ "f(X) --. A’ in k satisfy F (a)fo F (a’)fo,
then there exists a unique a IIr (X, A, f) such that aa a and F (a)fo fo.

(2) II" (C, F) -- Groups is a contravariant functor.

Proof. (1) Let F (a)fo s F (a)fo. Then by Lemmu 2, using "_"
as before, (f0)0 f0 and (f0) 1]x). By Lemmu 3, So (f0)0 and
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sl (F (a)fo)l a(fo)l ’ a. Similarly s’ f0 and s’ a’ where s’ also
denotes the morphism F (a)f0. Hence we have two factorizations of s through
the local front adjunction f0, so there exists a unique equivalence
a f(X) --* f(X) such that aa a’ and F (a)f0 f0. Then (1) follows
clearly.

(2) Suppose (r,b): (X,A,f)---+ (Y,B,g)in(C,F). Let (gor)l= tand
(go r)0 p so go r F (t)p. Now let a e Hv(Y, B, g) and consider at and t,
both morphisms from (gor)(X) to g(Y). Now

F (at)p (F (a)go)r go r F (t)
so there exists a unique a eIIv(X, g(Y), got) such that (at)a t. Since
F (b)f gr, there is a unique equivalence e:f(X) (go r)(X) preserving
commutativity, hence a group isomorphism between IIv(X, g(Y), got) and
IIv(X, A, f) given by a-1 --+ e-la-e. There is thus a well defined function

IIv(r, b) II v(Y, B, g) - IIv(X, A, f)

given by iIv(r, b)(a) e-a-e. To show IIv(r, b) is a morphism of groups
suppose a, fl e IIv(Y, B, g). Now by the previously mentioned group iso-
morphism it suffices to show a ta-t-1 where a and t are determined as
above. But satisfies/tt and a satisfies ata t, so aflta t. It is now
a straightforward but messy argument using the uniquenesses available to
show iIv is a functor. Q.E.D.

The group 1-Iv(X, A, f) may be more simply characterized as the group of
automorphisms a of f(X) such that F (a)f0 f0.
The assignment F, IIv can be shown to be a functor between appropriately

defined categories. Note that if F is locally right adjunctable, then one gets a
eovariant functor from (F, () to groups. We now turn to some examples.

(1) The category of simply connected spaces is locally coreflective in the
category of "well connected" spaces, i.e., those spaces which admit simply
connected covering spaces: if f S -- X is a map and p --* X is a simply
connected covering of X, then any lifting of f yields a local coreflection map.
Moreover, the associated automorphism group is the deck transformation
group, which for such spaces, is of course isomorphic to the fundamental
group of X. Notice that the same situation in the corresponding categories
of pointed spaces is a genuine coreflection. The base point forgetting fanctor
is a (discrete) opfibration. More generally the dual of Theorem C says that
any coreflective subcategory of a category of pointed spaces gives rise to a
corresponding locally coreflective subcategory when base points are removed.

It is clear in such cases how the associated automorphism groups arise.

For another such example see [4] or [5].
(2) The category of algebraically closed fields is locally reflective in the

category of fields (with unitary homomorphisms). If f: ]c --+ L is an em-
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bedding into an algebraically closed field, the local reflection of ] with respect
to f is the closure of f(]) in L. Then the associated automorphism group in
this instance is precisely the group of f(/c)-automorphisms of the closure
of f (]).

Another related example is the subcategory of separably closed fields.

(3) In [2], Joseph D’Atri points out the existence of a pair of functors
arising in Chapter II of Artin’s book Geometric algebra [1] and demonstrates,
in effect, that they fail to be an adjoint pair because of the freedoms involved in
choosing coordinates for a geometry. We shall show in fact that each of these
functors is locally adjunctable. We summarize the situation first.

(a) Artin showed that any (not necessarily commutative) field k yields a
Desarguian plane geometry k2, whose points are pairs of elements of ] and
whose lines are those subsets of ]2 satisfying linear equations with coefficients
in k. On the other hand, he showed that one could associate with any Desar-
guian plane geometry G a field ( (G) which could then be used to coordinatize
the geometry. This will be used in 3 (b). The first construction sets up a
functor into a category of Desarguian plane geometries. The objects of this
category are pairs of sets (P, L) with an incidence relation which satisfies
the axioms for a Desarguian plane geometry (see [1, Chapter II]).
A morphism is an incidence relation and parallelism preserving pair of

functions of the respective pairs of sets. (It can be shown such maps are all
injective. )
Then the functor from the category of fields to the category of geometries is

locally right adjunctable: if f ] -+ G is a morphism in the category of geom-
etries, then there exists a field )(G) such that there is an isomorphism
f0:( (G) G-this is merely a coordinatization of G with the origin and
coordinate directions received from ]c via f. Then the morphism
f01f k - (G) is clearly of the form (fl)2. The automorphism group is
trivial here.

It is apparent that other coordinatization procedures may be viewed in a
similar way.

(b) Artin has also showed how to associate with any Desarguian plane
geometry G, a (not necessarily commutative) field (G) of direction preserving
endomorphisms of the group of translations of G (a translation is an auto-
morphism of G with no fixed points). He demonstrated that one may repre-
sent any element of this field as an inner automorphism 0 0-1... where is
an automorphism (in the category of geometries, of course) leaving a pre-
scribed point of G fixed. Now a morphism in the category of geometries
G -- G’ induces functorially a homomorphism of the respective automorphism
groups of G and G’, which in turn, by the above representation, induces
functorially a field homomorphism (s) )(G) --* ((G’). This functor )
from geometries to fields is locally left adjunctable: if f: ] --* ((G) in the
category of fields, define f G ( (f(k)) --* G to be the restriction of the
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coordinatization isomorphism between (G) and G with respect to any fixed
choice of coordinates. Define f0"/c -- ) (Gs) by f0 ( (fl)-lf. The auto-
morphism group in this case is the multiplicative group of non-zero elements
of (G).

Similar procedures may be applied to projective geometry and vector spaces,
yielding the general linear group.
We should note that the existence of a "best" fibration of locally adjunct-

able functor is still somewhat unresolved as is the related problem of the
construction of a locally adjunctable functor from minimal data.

In general those constructions realizable as adjoint functors are candidates
for generalization by replacing "adjoint" by "local adjoint." For instance
local limits may be defined in this way. We plan to explore the above questions
further in a later paper.
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