THE AUTOMORPHISM GROUP OF FINITE p-ABELIAN p-GROUPS

BY
RicARD M. DAviTT

If n is an integer, a group G is called n-Abelian if (zy)" = z"y" for all ele-
ments z, y of G. It isimmediate that, for each integer n, the class of n-Abelian
groups forms a variety which contains the variety of Abelian groups as a sub-
variety. F. Levi [8], O. Griin [5] and R. Baer [2], [3] have developed theory
pertaining to n-Abelian groups for arbitrary groups. In this paper we restrict
our attention to the class of finite p-Abelian p-groups, where p is a prime
number. It should be noted that each p-Abelian p-group is trivially a regular
p-group and also that each p-group of exponent p is a p-Abelian p-group.

It is well known that if G is a finite non-cyclic Abelian p-group of order
greater than p’, then the order 0 (@) of G divides the order of the automorphism
group 4 (@) of G [9, Lemma 1]. It is natural to conjecture that if @ is a finite
non-cyclic p-group of order greater than p’, then o (G) divides 0(4 (G)). In
recent years this result has proved for certain classes of finite p-groups [4],
[9], [10]. Corollary 3 shows that it is also true for the class of finite p-Abelian
P-groups.

In the paper the following notation is used. @ is a finite p-group; exp G
is the exponent of G; H < ( means H is a subgroup of G and H < G means H
is a proper subgroup of G; H A G means H is normal in G; E denotes the
identity subgroup of G. If S is a subset of a group, then (S) denotes the sub-
group generated by S. Cg(H) is the centralizer of H in G and N¢(H ) is the
normalizer of H in G. The commutator A% "k of two elements A, k of G
is denoted by (h, k). G® is the derived group of G, Z (@) is the center of G

Vi (@) = ({x”k:xeG}) and % (G) = ({xeG:o(w)|p'°}).

I(G) denotes the group of inner automorphisms of G and I denotes the
identity element of A(@). If 6 A(G) and H < G, then 6 IH denotes the
restriction of 8 to H. If H and K are groups, then H = K means H is iso-
morphic to K. When there is no ambiguity, the indexing group G will be
omitted in the above notation.

Dermvition 1. D(G) = (8¢ A(G) : 0|ayn = Ioya)}-

It is immediate that I (G) < D(@) < A(G). The principal theorem of the
paper, Theorem 3, states that if G is a finite non-Abelian p-Abelian p-group,
then o (@) [ o(D (@) I 0(A(@)). We will prove this theorem through a series
of remarks, lemmas and theorems. The first two lemmas are computational
in nature.

Lemva 1. Letk > 1. Ifr = 2 % (p + 1)% then p|r

Received June 2, 1969.
76



AUTOMORPHISM GROUP OF FINITE P-ABELIAN p-GROUPS 77

Lemma 2. Ifp # 2 and n > 0 then
P+ 1) =1modp™™ and (@ + 1) = A + p"*") mod p"*™.
Let G be a p-Abelian p-group. Since G is regular,
Vi = {2 :2e@ and Q = {xe@:o(z)|p"%.

Furthermore, C. Hobby has shown that G < @, and 0; < Z [6, Theorem 1].
Consequently, exp I (@) < p.

An extremely useful decomposition of p-Abelian p-groups of exponent
greater than p, which was suggested by a construction of J. Adney and T. Yen
[1, Lemma 1], is found in

Lemma 3. Let G be a p-Abelian p-group of exponent greater than p and let
V1 = (@) ® M, whereo(a) = p"",n>land M < G. If
L= {zeG:2"eM},
thenty < L,LAG G = (@L, (@ nL = (@ < %W(Z) and G/L = {(aL)
18 cyclic of order p".

Proof. Clearly 9 is a subset of L. Since G < @, L A G and (o)L < G.
If g e G, then g* = a*”m where 0 < k < p"and me M. Thusm = ¢g%a™ =
(9a*)?, ga* e L and G = (a)L. Clearly (@) n L = (a*") < %(Z). Hence
G/L = (aL) is cyclic of order p". ||

LemMa 4. (i) The mapping o : G — G defined by o (a*1) = a*®*™1, where
0 <k < p"andleL,is an automorphism of G of order p™ under which L is left
elementwise fired. Hence o ¢ D (G).
@ii) For any z e Wl[Z (L)], the mapping ¢, : G — G defined by
¢.(a'1) = (az)",

where 0 < k < p" and le L, is an automorphism of G under which L s left
elementwise fixed. Hence ¢, e D (G).
(i) IfS = {¢:: 2 e W[Z (L)}, then S < D(F) < A (@) and S = Q,[Z (L)].

Proof. (i) To see that ¢ is a homomorphism let g, h e @. Then g = a*4;,
h = a”l,, where 0 < ky, ks < p"and ly, he L. Let

'l d*l, =
where l; ¢ L and let ky + k; = k3 + rp” where 0 < k3 < p” and r > 0. Then
a(gh) = a.(aksa'p”lglz) — aka(p-i-l)arp"ls L = aka(zn+1)arp”(1»+l)l3x L = a(k1+kz)(p+1)l3 A
= t,’761(17+1)l1 akz(p+1)l2 —_ a'(g)a‘ (h)

Clearly o fixes L elementwise and hence o (L) = L. Sinces(a) = o and
@, L) = G,0eA(QR). Indeed, since ©,(Z) < L, 0 e D (G).

To determine the order of s, it suffices to consider the action of the powers of
¢ on ¢ alone. A routine induction proof shows that if » > 0, then
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o (a) = a®™". By Lemma 2,
. 1yp% +1
o (a) = @@t = gl ™

while . .
-1 n— 1
™ (a) = a®TT = g = g g,

Therefore o () = p".

(i) Letxe QuZ(L)]. Since (az)” = a”"z”" = a™, ¢, is an automorphism
of G under which L is elementwise fixed [7, p. 174]. Indeed since @ (Z) <
L, ¢, ¢ D (G).

(i) Let z, y eQu[Z(L)]. Since ¢, ¢,(a) = ¢s(ay) = azy = ¢z (a),
S < D(@) £ A(@). Indeed the mapping p which sends x into ¢, is clearly
an isomorphism of Q.[Z (L)] onto S. ||

CoROLLARY 1. If x € Q,[Z (L)], then o(¢,) = o(x) and
(9) = {1y e(@)}.

CoROLLARY 2. If M < Qu[Z(L)] and T = {¢,:xe M}, then T < S and
M=T,

LemMmaA 5. If R = (o), then
ceNiyaoy(S), RS <D(G)<AW@),
Ra8 = (pa) = ™), o(RS) = p" o (@lZ(L)])
and RS/8S = (Sc) is cyclic of order p™".
Proof. Let xeQu[Z(L)] and le L. Then
o ¢0() =1 and o '¢0(a) = az”t.
Hence, 0 ¢y 0 = ¢go+1 ¢ S,0eNie(S) and RS < D(G) £ A(G).

In determining R n S it suffices to consider the action of the automorphisms
under consideration on a alone. Since a” ¢ % (Z) n L,

Parn
is defined. As in the proof of Lemma 4, ¢®* (a) = aa”". Hence,
@) = (gam) < Bn 8.

Conversely, let 6 e RnS. Then6(a) = ax where z ¢ @,[Z (L)] and 0 (a) = aa®
where k is an integer. Hence,

z=del)nL = (&)
By Corollary 1,
Oe(pan) and R n S = (¢o).

Since 0 (Rn 8) = p, 0(RS) = p" 0 (Q[Z (L)]) and RS/S = (So) is cyclic of
order p" - ||
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LeEvMMA 6. Let x e Q,[Z(L)] and let s, k > 1. Then
(6:0%)" = c™¢r where r = D i (p + 1)
Proof. The proof is by induction on s. Since
o gso* (@) = aa®,
the lemma is true if s = 1. Inductively assume that for s > 1,

(¢z ak)t—l = a(‘_l)kd’xﬂ

where ¢ = D321 (p + 1)®. Then
(¢m ojc)c = ¢a: a_ka_(c—l)k¢zq = daktﬁx(zﬁl) sk¢zq = a"’q&,r
wherer = (p + 1)* + ¢ = 25 (@ + D* |

LemMA 7. If 0 ¢ 2 (RS), then 0 = ¢, where x ¢ W[Z (L)].

Proof. Let 0¢Q;(RS). By Lemma 5, 6 = ¢,06° where 0 < k < p"™
and ¢, ¢ S. Suppose, by way of contradiction, that ¥ > 0. Then by
Lemma 6,

I =6 = (¢,0")° = 0"Ppyr

where r = .2, (p 4+ 1)*. By Lemma 1, p[r. Let r = ap. Since
0<k<p'ando() = p", ¢ = I. Thus

I # a'kp = ¢;c(“013) GR n S = <¢a?”>
and by Corollary 1, 27 ¢ (a*") < (a”). Since z ¢ L,
£ eMn{@) =E and o =¢, =1

which is a contradiction. Thus 6 = ¢, where z e 2,[Z(L)]. Finally, by
Corollary 1, x e [Z (L)]. ||

Let G be a non-Abelian p-Abelian p-group of exponent p™*' where m > 1.
Let U, be Abelian of type (ny > ++- > n,). Choosea;, ‘-, a; ¢ G such that
Vi = @fa(a?) and 0(a;) = p™*. For each 1, let

M; = @af) and L; = {zeG:2"c M},

Lemma 8. For each 1,

Q< L;A G, G = (a,~>L;, <ai> nL; = <a1?n‘> < QI(Z):

G/L; = {a; L;) s cyclic of order p"* and V1(L;) = M;. Furthermore if j #= 1,
then aje L; .

Proof. Fix<. Since Uy = {(af) ® M., the first part of lemma follows from
Lemma 3. Also,ifj 5 ¢, thena? e M;and a; e L;. Consequently, af ¢ U1 (L;)
and M; < 0;:(L;). Conversely, if y ¢ 01(L:), then y = 2” for some z ¢ L;.
Therefore y = z°eM; and U1(L:) = M:. |
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We note that U; < Z and exp Uy = p™. Hence either exp Z = p™ or
expZ = p™*.

Lemma 9. Letexp Z = exp Uy = p” and let n; = m for some fized ©.. Then
C(L;) = (af)Z(L:) is an Abelian normal subgroup of G and Q.;[C(L:)] =
(a?),1Z (L))

Proof. Since L; A G, C(L;) A G. Also since af ¢ Z,
@)z (L:) < C(Lq).

If xeC(L:), then z = afl where 0 < k < p™ and leL;. If p|k, then
af e (a?) < Z and it follows 1mmed1ately that l e Z (L ). Suppose, by way of
contradiction, that p \ k. Then o(z) = p™™ = p™" = exp G and
G = (z,L;). Sincez ¢ C(L;),z e Z which contradicts the fact that exp Z = p™.
Thus pl k and C(L;) = (al)Z(L;) is an Abelian normal subgroup of G.
Finally, since af € ., (Z),

0u,[C (Li)] = {a?)Qn;[Z (Ls)]. I

The following lemma which is merely an implementation of Lemma 4 is
included for notational purposes.

Lemma 10. (i) For each 1, the mapping a; : G — @ defined by
oi(a@kl) = o,

where0 < k < p™ and !l € L; , is an automorphism of G of order p™. IfR; = (o),
then R; < D(G) < A(G).

(i) For fized 7, let x € Qu,[Z (Li)]. Then the mapping i, : G — G defined
by . (akl) = (a;z)*], where 0 < k < p™ and l e L;, s an automorphism of
G. If

Si = {t‘d’w tZe Q,,,.[Z (Li)]},
then 8; < D(G) < A(G) and 8; = 9.,1Z (L,)).
LemMa 11, T = @iaR;existsand o;e Naey(Si), 1 < 4,5 < t.

Proof. Fixiandletj 4. If l;eL;, thenl; = a%l; where 0 < k < p™
and l;e L; n L;. Consequently,
o7'0i0; () = o70i0i(dbl;) = dbl; = I;.
Since o7'0s0;(a;) = a?™ we see that oje Cacq (0:). If
Oelos)n{o;] = 1),

then 6(l) = ! for each le L; and 6(a;) = a;. Since G = (a;, L;), 0 = I
and T = @1 R; exists.

By Lemma 5, o; € Na)(S:) for each 7. Fix ¢ and let j = ¢ Let
% € Da,[Z(L:)] and let ;e L;. Then I; = ajl; where 0 < k < p* and
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lieL;n L;. Consequently,

o7t o oi(ls) = b l; = I;.
Furthermore,

07 a0 (@) = aioy (z).

Since G/L; = (a?"'Ly), x = a;"™m; where 0 < r < p™ and mje L;. Hence

o7t (@) = o7 @i"my) = ajm;.

If y = ajm;, then ye9,,[Z (L:)] and o7 i¢z0; = iy € S;. Hence
i€ Naw (S:). I
LemMa 12. For each i, let W; = {ips: x e 0 (Z)}. Then
W:i<D@)LA@G) and W:=2Q(Z).
Furthermore, if j = 1, then W; < Cacay (Ws).
Proof. The first part of the lemma follows by Corollary 2; the last part

follows by a routine computation when we observe that ©,(Z) < Q.;[Z (L:)]
for each 7. ||

Techniques due to R. Ree [10, Theorem 1] are used in the proof of the
following.

TueoreM 1. Let G be a non-Abelian p-Abelian p-group of exponent p™
wherem > 1. If expZ = exp V1 = p™, then o(G)I o(D(@)) lo(A @).

Proof. Let Uy be Abelian of type (n, > -+ > n;). Let

UV = @ia(a?) where o(a;) = p™™.

The theorem is proved by considering two cases.
Casel. expZ(L1) < expZ = p"'. By Lemmas 5 and 9,

RS < D(G) £ A@)
and
0(R181) = p™ 0 @u,lZ (In)]) = p™ "0[Z (L1)] = o(C (In)).

Furthermore, the mapping p: C(L1) — C (L) defined by p(z) = (a1, z)
is an endomorphism of C'(L,) since C (L) is a normal Abelian subgroup of G.
Let K = Ker pand M = Im p. Then o(C(L1)) = o(K)o(M). We note
that 0(Z) | o(K) since Z < K < C(Ly). Since M < G < & < Ly and
M < Ch), M < UWZL,)). Let T = {1¢,:yeM}. By Corollary 2,
T<SandT =M.

Weshall show that B; SinI(G) = T. Let6eR:SinI(G@). Sincefe I(G),
0(0) < pand 0eQ(R:S:). By Lemma 7, 6 = 1¢, where z ¢ 4[Z (L1)]. Let
geGbesuchthat = I,. IfleL;,then6(l) = 1¢.(1) =1 = g"'lg. Hence
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g e C(Ly) and p(g) is defined. Also 1¢.(01) = arnz = g 'arg. Hence
z = (a1, g) = pl@)eM and 1¢,¢T. Conversely, let 1¢, ¢ T. Then

zeM = Imp.
Choose ¢ € G such that p(g) = (a1, g) = z. It follows that

19: = I, eI (G)nRiS: and T = R SinlI(G). I
Now
V=RS&IG)XD@G)IAWG)
and
o(V) = 0(C(n))o(G/Z)/o(M) = 0(K)o(G/Z).

Since 0(Z) ] 0o(K), we see that o(G) | o(V)Io(D(G))Io(A(G)).

CaseI1. exp Z(L1) = exp G = p™*. In this case n; = ny = m and with-
out loss of generality we may assume that a; ¢ Z (L;). By Lemmas 5 and 9,
R:S; < D(@G) £ A(G) and

0(R282) = p™ "0 (@nolZ (I2)]) = 0(n,[C (Ln)].
Since Z < 94,[C(L2)], 0(Z)|0(B,[C(Ls)]). Furthermore, the mapping
p: C(Lz) — C (L) defined by p(x) = (az, x) is an endomorphism of C (Lz).
If M = Im p, then M < 2,,[Z(L:)]. Let T = {s¢,:yeM}. By Corollary

2, T<S;andT=M. Asincasel,T = R,S:nI(G).
Let V.= R.8:I(G) < D(G) < A(G). Then

o(V) = 0(Q,[C(L2)])0(G/Z) /0 (M).
If (a2, ) = eforeach z ¢ C(Ly), then M = E and
o (V) = 0(Q,[C (L2)])o (G/Z).

Since 0(Z) | 0 (@n,[C (Lz)]), 0 (@) | 0(V) | 0(D(G)) | 0(4 (@) and the theorem
is true. Hence we may assume that (a2, b1) = y = e for some by e C'(Lz).
Let by = afl; where 0 < k < p™ and LeL;. Since azeZ () A G,
(az, a¥) € Z(L;). Thus

(a2’ bl) = (aflyallcll) = (a2’l1)(a2yallc) = (a’2’a,lc)

and hence p £ k. It now follows that o (b;) = p™** = exp G and indeed that
V1 = (bf) ® M,. Without loss of generality, let @y = by. We note that
ayeZ(Ly), (a2, a1) = y # e and y is an element of order p in M = Im p.
Also since y e Z(Ly) n Z (L), yeZ. Let xeC(Ly). Then z = aim: where
0<r<p™andm € L. Thusp) = (a1,2z) = (@2,aim) = (az,0ai) ="
and M = (y). Therefore

o(M) = o(T) =p and o(V) = 0(,[C(L2)])0(G/Z)/p.

At this point in the proof of Case II it becomes convenient to turn our
attention to two subcases.
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Case II(A). m = 1. Then expG = p°, Z = %(Z), CLe) = Z (L),
an[C(Lz)] = Ql[Z (Lz)], and RzSz = Sz.

If Z < @[Z(Ly)], then p'o(Z) = o(@[Z (L:)]) where I > 1. But then
o(V) = p'o(Z)0(G/Z)/p = p'0(G) and

0@ o) [0 (@))] 04 @)).
Thus we may assume that Z = Q[Z (L,)] and hence that
Sy =W, = {20, xeU(Z)].
Let Wy, = {1¢,: 2 (Z)}. By Lemma 12,
Wi <8, o(Wi) = o[h(Z)] and Wi < Cu (Wa).
Since (af) @ @) < W(Z), o(Wy) > p°. Let W = VWi = W.I(G)W;.
Then W < D(G) < A(@) and
o(W) = o(@)o(W1)/plo(W21(G) n W1)].
We recall that (a2, 1) = y. Let U = (1¢,). Then U < Wiand o(U) = p.

Indeed, it can be shown by methods analogous to those used earlier in the
proof that U = W,oI(G@) n W,. Thus

o(W) = 0(@)o(W1)/p*
and since o (Wy) > p°, o(G)Io(W)Io(D(G))Io(A @).
Case II(B). m > 2. ThenexpG > p*and m = my = n, > 2. Since
a1 € Ca@ (R2) and o1 € N 4¢a) (S2),
W = RS I(G)Ry = VRi < D(@) < A@).

Now 8(a?) = af for each 6 ¢V while o1(a?) = af’af = af since o(a) =
p"™ > p’. Henceoy¢V,V < W = VRyand o(W) = p'o(V) where I > 1.
Therefore

o(W) = p'o(@n,[C (L))o (G/Z)/p = "0 (@,[C (L2)])0 (G/Z).
Since 0(Z) | 0(@n,[C (Lx)]), 0 (@) | o (W) [0(D (@) [0 (A (@)). |
Lemma 13.  If G is a non-Abelian p-group of exponent p, then
0(@)| oD@ |o(4A@).

Proof. R. Ree actually proved this lemma in [10]. In Theorem 1 of that
paper he showed that o (G) l 0(4 (G)) when G is a non-Abelian p-group of
exponent p by constructing a subgroup of A(G), say W, such that
o (@) | o(W) | 0(A(G)). A closer investigation of that proof reveals that it is
indeed true that W < D(G) and hence that

o(@) o) oD (@) ]0(4(@)). Il

m+1

Lemma 14. Let G be a p-Abelian p-group of exponent p™ where m > 1
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and let Uy = @1 (a?) where o(a;) = p™*. Suppose a eZ for some fized j.
(i) Let 0eD(L;). If we extend 0 to the mapping 0 : G — G defined by
8(a*1) = a*0 (1), where0 < k < p™ andleL;,thende A (G).
() IfV; = {0: 01s an extension of 0 € D (L;)}, then V; < D(G) < A(G)
and o (V;) = o(D(L;)).
(i) R;V; £ D(@) < A(G) and o(R; V;) = p™o(V;) = p"o(D (L;)).

Proof. (i) Let #eD(L;) and let & be the extension of § to G. Since
ajeZ, 0(a,’~’"5) = a,”"j and G = (a;j, L;), it is clear that 8 ¢ 4 (@).

(ii) Since D(L;) < A(L;), it follows that V; < A(G) and o(V;) =
o(D(L;)). Then since % (Z) < Q[Z(L;)] and since each 6 ¢ D(L;) fixes
M[Z (L;)] elementwise, each 8 ¢ V; fixes @1 (Z) elementwise and V; < D (G) <
A@).

(iii) Since oj € Cace) (V;), R;V; < D(G) < A(@). T reR;nV;, then

7(a;) = ajand 7(l) = lforeach (e L;. Hence, 7 = I and
o(B; V;) = o(R;)o(V;) = p™o(D(Ly)). Il

TaEOREM 2. Let G be a non-Abelian p-Abelian p-group of exponent p™
wherem > 1. Ifexp Z = exp G = p™", then

0(@) [o(D@)] o(4@)).

Proof. 1If Gis a p-Abelian p-group satisfying the hypothesis of the theorem,
then U is a non-trivial Abelian p-group of type (n, > -+ = n.). The proof
is by induection on ¢.

If t = 1, then 0, is eyclic of order p™. Choose a; € Z such that o (a;) = p™ ™.
Then V1 = {(af) ® M, where M; = E. Hence L; = & and G/@ = (a: ) is
cyclic of order p™. Since @ is not Abelian and a; € Z, Q is a non-Abelian p-
group of exponent p. By Lemma 13,

o(@) oD @) | o(A@)).
If V, = {0 : 6is an extension of 6 ¢ D(Q;)} as defined in Lemma 14, then
R, Vi< D(@) < A(G) and o(R V1) = p™o(D(@)).
Since 0 (G) = p™'o(%) and o (Q) | o(D (1)),
0(@) |[o@B1 V1) | oD (@) ] 0(4(@)).

Inductively, assume that the theorem is true for ¢ — 1 wheret > 1. Let G
be a p-Abelian p-group satisfying the hypothesis of the theorem such that
9y is Abelian of type (ny > -+ = n,) wheret > 2. Choose a; ¢ Z such that
o(ay) = p™* and choose as, - - - , @, € G such that V; = @i (a?) and 0(a;) =
p™*'. Then G/L, = (a1 L) is cyclic of order p™*. Since a; ¢ Z, L, is a non-
Abelian p-Abelian p-group of exponent at least p’. But Vi(Li) = M; =
@iz (a?) has type (ng > --- > n;). Thus there are { — 1 elements in a
basis for V1 (L1). If exp Z(Li) = exp Vi(Ly1), then o(Ly) | o(D(Ly)) by
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Theorem 1. If exp Z(L;) = exp L, then o(L;) | o(D(I,)) by the in-
duction hypothesis. If V; = {6 : §is an extension of 6 ¢ D (L)} as defined in
Lemma 14, then

RiVi<D(@@) <A@ and oR Vi) = p™o(D(L1)).
Since 0 (@) = p™o (L) and o (L) | o(D (L)),
0(@) | o®1 V1) | 0D (@) | o(4(@)). [

Lemma 13, Theorem 1 and Theorem 2 may be consolidated into the follow-
ing,

TueoreMm 3. If G is a non-Abelian p-Abelian p-group, then
0(@) [o(D(@))]| 0(A(@)).

CoroLLARY 3. If G is a non-cyclic p-Abelian p-group of order greater than
P’ then 0 (@) | 0(4 (@)).
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