ON MIXING AND PARTIAL MIXING BY N. A. FRIEDMAN AND D. S. ORNSTEIN¹ #### 1. Introduction Let (X, α, m) denote the unit interval with Lebesgue measure, and let τ be an invertible ergodic measure preserving transformation on X. τ is mixing if (1.1) $$\lim_{n} m(A \cap \tau^{n}B) = m(A)m(B), \qquad A \text{ and } B \text{ in } \alpha.$$ Given $\alpha > 0$, τ is partially mixing for α if (1.2) $$\lim_{n} \inf m(A \cap \tau^{n}B) \ge \alpha m(A)m(B), \qquad A \text{ and } B \text{ in } \alpha.$$ In [3], a transformation τ is constructed such that τ is partially mixing for $\alpha = \frac{1}{8}$ but τ is not mixing. It is easily verified that τ is mixing if and only if τ is partially mixing for $\alpha = 1$. The results in this paper are in two parts. The first result is concerned with mixing transformations. Let τ be mixing, $f \in L_1$, and let (k_n) be an increasing sequence of positive integers. Define f_n and E(f) as $$f_n(x) = (1/n) \sum_{i=1}^n f(\tau^{k_i}(x)), \qquad E(f) = \int f \, dm.$$ In [1], Blum and Hanson proved that f_n converges to E(f) in the mean. In §4, we construct an example such that for a. e. x, $f_n(x)$ does not converge pointwise. The second result concerns partial mixing transformations. In §5, it is shown that given $\alpha \in (0, 1)$, there is an explicit construction of a transformation τ such that τ is partially mixing for α but τ is not partially mixing for any $\alpha + \varepsilon$, $\varepsilon > 0$. Both of the above results are based on a construction given in §3. Some preliminary results are given in §2. We shall utilize notation and terminology n [2]. #### 2. Preliminaries In [2], [3], the S operator was defined for a tower with columns of equal width. The definition will now be extended to the case where the columns generally have unequal widths. Let $$T = \{C_j : 1 \longrightarrow j \longrightarrow q\} \text{ where } C_j = (I_{j,k} : 1 \longrightarrow k \longrightarrow h_j).$$ The intervals in C_i have the same width $w_i(T)$. The top of T is $$A(T) = \bigcup_{j=1}^q I_{j,h_j},$$ Received June 1, 1969. ¹ Research supported by a National Science Foundation grant. and the base of T is $$B(T) = \bigcup_{i=1}^{q} I_{i,1};$$ hence, $$(2.1) m(A(T)) = m(B(T)) = \sum_{j=1}^{q} w_j(T).$$ A subtower T_* of T is a copy of T if there exists $\alpha \in (0, 1]$ such that $w_j(T_*) = \alpha w_j(T)$, $1 \le j \le q$, and the h_j are the same. In this case, we also denote T_* as αT . Note that given $\alpha \in (0, 1)$, T can be decomposed into two disjoint copies αT and $(1 - \alpha)T$. We shall now define S(T) where T is as above. The transformation τ_T will be extended so as to map a subinterval of the top interval of each column onto a subinterval of the base interval of each column where the length of each subinterval is proportional to the corresponding widths. Let $p_j = w_j(T)/m(B(T))$, $1 \le j \le q$. Hence (2.1) implies $$\sum_{j=1}^q p_j = 1.$$ We decompose the left half of I_{j,h_j} into q disjoint subintervals $E_{j,l}$ where $m(E_{j,l}) = p_l w_j/2$, $1 \leq j, l \leq q$. We also decompose the right half of $I_{l,1}$ into q disjoint subintervals $F_{l,j}$ where $m(F_{l,j}) = p_l w_j/2$, $1 \leq j, l \rightarrow q$. $E_{j,l}$ is now mapped linearly onto $F_{l,j}$, $1 \leq j, l \leq q$. The extension is measure preserving since $m(E_{j,l}) = m(F_{l,j})$, $1 \rightarrow j, l \rightarrow q$. We also have $$\sum_{j=1}^{q} p_l w_j/2 = w_j/2, \qquad \sum_{j=1}^{q} p_l w_j/2 = w_l/2.$$ Thus, τ_T is extended to half of A(T) and τ_T^{-1} is extended to half of B(T). Let the corresponding tower be denoted by S(T). As in [2], S(T) consists of a bottom copy T_0 of T and a copy of T above each column in T_0 . We denote $\tau(T) = \lim_n \tau_{S^n(T)}$. As in [2], it follows that $\tau(T)$ is an ergodic measure preserving transformation on T'. If T is an M-tower, then $\tau(T)$ is mixing. (T' is the union of the intervals in T.) Given a tower T and $\alpha \in (0, 1)$, let αT denote a copy of T as above. Note that if A is a union of intervals in T and $B = (\alpha T)'$, then (2.2) $$m(A \cap B) = m(A)\alpha = m(A)m(B)/m(T').$$ Thus if T' = X, then A and B are independent sets. Given disjoint towers T_1 and T_2 , let $T_1 \cup T_2$ denote the tower consisting of the columns in T_1 and the columns in T_2 . We do not require that the columns have the same width. Let T_1 and T_2 be towers with q columns. We say the towers are similar if there exists $\alpha > 0$ such that $w_j(T_1) = \alpha w_j(T_2)$, $h_j(T_1) = h_j(T_2)$, $1 \le j \le q$. In particular, a copy of T is similar to T. However, a tower similar to T need not be a copy of T since it may not be a subtower of T. We note that if T_1 is similar to T_2 , then $S^n(T_1)$ is similar to T_2 , T_3 is similar to T_4 . The following result follows from the definition of the S operator. (2.3) Lemma. Let T_1 and T_2 be similar towers, and let $T_3 = T_1 \cup T_2$. Let $\tau_1 = \tau(T_1)$ and $\tau_2 = \tau(T_3)$. Let I and J be intervals in T_1 . Then $$m(\tau_2^n I \cap J) \ge m(\tau_1^n I \cap J) - 2m(T_2').$$ Let T_1 be a tower, and let C be a column. We shall utilize C to form a tower $T_1(C)$ such that $T_1(C)$ is similar to T_1 . Furthermore, $\tau_{T_1(C)}$ will be an extension of τ_C and $T_1(C)$ will be unique up to similarity. Let T_1 have q columns with heights H_j and widths W_j , $1 \leq j \leq q$. Let h denote the height of C and $H = \min_{1 \leq j \leq q} H_j$. We assume there exists a positive integer K such that H > Kh. Let n_j denote the largest positive integer such that $n_j h \leq H_j$, $1 \leq j \leq q$. Thus $n_j \geq K$, $1 \leq j \leq q$. Define w_i as (2.4) $$w_i = w(C)W_i / \sum_{j=1}^q n_j W_j, \qquad 1 \le i \le q,$$ where w(C) denotes the width of C. Now (2.4) implies (2.5) $$\sum_{j=1}^{q} n_j w_j = w(C),$$ $$(2.6) w_i/w_j = W_i/W_j, 1 \le i, j \le q.$$ By (2.5), we can decompose C into $\sum_{j=1}^{q} n_j$ columns where n_j columns have width w_j , $1 \leq j \leq q$. We stack the columns of width w_j to form a single column of height n_j h. If n_j $h < H_j$, then we add $H_j - n_j$ h additional intervals of width w_j to obtain a column c_j of height H_j and width w_j . Let $T_1(C) = \{c_j : 1 \leq j \leq q\}$. $T_1(C)$ is similar to T_1 by (2.6). Let μ denote the total amount of additional measure needed to form $T_1(C)$. Then (2.5) implies $$(2.7) \mu < h \sum_{j=1}^{q} w_j \le hw(C)/K.$$ Let T be a tower, and let C be a column. We can choose p sufficiently large so that if $T_1 = S^p(T)$, then μ in (2.7) can be made arbitrarily small. Let T be an M-tower, and let $\delta > 0$. Since $\tau = \tau(T)$ is mixing, there exists a positive integer N(T) such that $$(2.8) m(\tau^n I \cap J) \geq (1 - \delta)m(I)m(J)/m(T'), n \geq N(T),$$ where I and J are intervals in T. Let T be a tower, and let I be an interval. Given $\alpha \in (0, 1)$, we say αI is in T if there exists a set A consisting of a union of intervals in T such that $A \subset I$ and $m(A) = \alpha m(I)$. #### 3. Construction Let V_1 be an M-tower, $\alpha \in (0, 1)$, $\delta_1 > 0$, $\delta_2 > 0$, and $\eta > 0$. Decompose V_1 into disjoint copies $V_2 = \alpha V_1$ and $V_3 = (1 - \alpha)V_1$. Assume V_1 has q columns with rational widths and α is rational. Then V_2 and V_3 each have q columns with rational widths. Denote the columns of V_3 as C_j with widths a_j/b , $1 \le j \le q$ (a_j and b are integers). Then $S_{a_j}(C_j)$ is a column with width 1/b, $1 \le j \le q$. (We form $S_{a_j}(C_j)$ by dividing C_j into a_j copies and stacking them.) We then stack the $S_{a_i}(C_i)$ to form a single column V_4 ; hence $$V_4 = \prod_{j=1}^q S_{a_j}(C_j)$$ (note that $V_3' = V_4'$). Let r be a positive integer, and let $V_5 = S_r(V_4)$. Let $V_6 = S^p(V_2)$, and let $V_7 = V_6(V_5)$ as defined in §2. Note that p can be chosen sufficiently large with respect to r and η so that if μ denotes the measure added to form V_7 , then $\mu < \eta$. Let $V_8 = V_6 \cup V_7$. V_7 is similar to V_6 , and V_7 is an M-tower. Thus V_8 is an M-tower, and the columns in V_8 have rational widths. Let $N_1 = N(V_1, \delta_1)$. (See (2.8).) If $\tau_1 = \tau(V_1)$, then I and J in V_1 imply $$(3.1) m(\tau_1^n I \cap J) \ge (1 - \delta_1) m(I) m(J) / m(V_1'), n \ge N_1.$$ Since αI and αJ are in V_2 and V_2 is a copy of V_1 , it follows that if $\tau_2 = \tau(V_2)$, then $$(3.2) m(\tau_2^n I \cap J) \ge (1 - \delta_1) \alpha m(I) m(J) / m(V_1'), n \ge N_1.$$ Since $V_6 = S^p(V_2)$, we have $\tau_2 = \tau(V_2) = \tau(V_6)$. Let $\tau_3 = \tau(V_8)$. Hence Lemma 2.3 implies that if E and F are intervals in V_6 , then $$(3.3) m(\tau_3^n E \cap F) \ge m(\tau_2^n E \cap F) - 2m(V_7').$$ Since αI and αJ are in V_6 , (3.2) and (3.3) imply $$(3.4) m(\tau_3^n I \cap J) \ge (1 - \delta_1) \alpha m(I) m(J) / m(V_1') - 2m(V_7'), n \ge N_1.$$ Let $N_1^* = N(V_8, \delta_2)$ where we also assume $N_1^* > N_1$. Since $\tau_3 = \lim_{t \to \infty} \tau_{S^t V_8}$, we can choose t sufficiently large so that if $V_9 = S^t V_8$ and $\tau = \tau_{V_9}$, then $$(3.5) \quad m(\tau^n I \cap J) \ge (1 - \delta_1) \alpha m(I) m(J) / m(V_1') - 2m(V_7'), \quad N_1 \le n \le N_1^*.$$ In (3.5), I and J are in V_1 . # 4. Mixing We shall now construct a mixing transformation in stages utilizing the construction in §3 inductively. At each stage most of the space is mixed. However, at the n^{th} stage, the transformation is defined on a small part of the space B_n so that certain Cesaro averages oscillate. Let T_1 be an M-tower, and let (α_n) , (ε_n) and (η_n) be sequences of positive numbers such that $\alpha_n \upharpoonright 1$, $\varepsilon_n \upharpoonright 0$, $\sum_{n=1}^{\infty} \eta_n < \infty$, and $\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty$. Let $V_1 = T_1$ in §3, and let $T_{1,i} = V_i$, $2 \le i \le 9$, correspond to $\alpha = \alpha_1$, $\delta_1 = \varepsilon_1$, $\delta_2 = \varepsilon_2$, and $\eta = \eta_1$. Let $\tau = \tau_{T_{1,9}}$, $N_1 = N(T_1, \varepsilon_1)$ and $N_1^* = N(T_{1,8}, \varepsilon_2)$. Thus (3.6) implies that if I and J are in T_1 , then $$(4.1) \quad m(\tau^n I \cap J) \ge (1 - \varepsilon_1)\alpha_1 m(I)m(J)/m(T_1') - 2m(T_{1,7}'), \quad N_1 \le n \le N_1^*.$$ Let $T_2 = T_{1,9}$ and $N_2 = N(T_2, \varepsilon_2)$. Consider $V_1 = T_2$ in §3, and let $T_{2,i} = V_i$, $2 \le i \le 9$, correspond to α_2 , ϵ_2 , ϵ_3 and η_2 . Note that $T_{2,6} = S^{p_2}(T_{2,2})$ where we can choose p_2 arbitrarily large. Now $T_{2,2} = \alpha_2 T_2$ and $T_2 = S^{t_1}(T_{1,8})$ for some positive integer t_1 . Thus we can choose p_2 sufficiently large so that if $\tau = \tau_{T_{2,6}}$ and I and J are intervals in $T_{1,8}$, then $$(4.2) m(\tau^n I \cap J) \leq (1 - \varepsilon_2) \alpha_2 m(I) m(J) / m(T'_{1,8}), N_1^* \leq n \leq N_2.$$ Note that (4.2) also holds for I and J in T_1 . Let $N_2^* = N(T_{2,8}, \varepsilon_3)$ and $\tau = \tau_{T_{2,9}}$. Thus (3.5) implies that if I and J are in T_2 , then $$(4.3) \quad m(\tau^n I \cap J) \ge (1 - \varepsilon_2)\alpha_2 m(I)m(J)/m(T_2') - 2m(T_{2,7}'), \quad N_2 \le n \le N_2^*$$ Let us now consider we have T_1, \dots, T_{k-1} . For each $i, 1 \leq i \leq k-2$, we have $$(4.4) m(\tau^n I \cap J) \ge (1 - \varepsilon_{i+1})\alpha_{i+1} m(I)m(J)/m(T'_{i,8}),$$ $$N_i^* \le n \le N_{i+1}, I \text{ and } J \text{ in } T_i, \tau = \tau_{T_{i+1,8}}$$ $$(4.5) m(\tau^n I \cap J) \ge (1 - \epsilon_{i+1})\alpha_{i+1} \, m(I) m(J) / m(T'_{i+1}) - 2m(T'_{i+1,7}),$$ $$N_{i+1} \le n \le N^*_{i+1}, I \text{ and } J \text{ in } T_{i+1}, \tau = \tau_{T_{i+1,9}}$$ Let $T_k = T_{k-1,9}$ and $N_k = N(T_k, \varepsilon_k)$. Consider $V_1 = T_k$ in §3, and let $T_{k,i} = V_i$, $2 \le i \le 9$, correspond to α_k , ε_k , ε_{k+1} and η_k . Note that $T_{k,6} = S^{p_k}(T_{k,2})$ where we can choose p_k arbitrarily large. Now $T_{k,2} = \alpha_k T_k$ and $T_k = S^{t_{k-1}}(T_{k-1,8})$ for some positive integer t_{k-1} . Thus we can choose p_{k-1} sufficiently large so that if $\tau = \tau_{T_{k,6}}$ and I and I are intervals in $T_{k-1,8}$, then $$(4.6) \quad m(\tau^n I \cap J) \geq (1 - \varepsilon_k) \alpha_k \, m(I) m(J) / m(T'_{k-1,8}), \quad N^*_{k-1} \leq n \leq N_k.$$ Let $N_k^* = N(T_{k,8}, \varepsilon_{k+1})$ and $\tau = \tau_{T_{k,9}}$. Thus (3.5) implies that if I and J are in T_k , then $$(4.7) \quad m(\tau^n I \cap J) \ge (1 - \varepsilon_k) \alpha_k \, m(I) m(J) / m(T'_k) - 2m(T'_{k,7}), \quad N_k \le n \le N_k^*.$$ Thus (4.6) and (4.7) imply (4.4) and (4.5) hold for k. Hence the induction step is complete. We thus obtain a sequence of towers (T_k) such that τ_{T_k} extends $\tau_{T_{k-1}}$. The construction implies $$m(T'_k) \leq m(T'_1) + \sum_{i=1}^{k-1} \eta_i$$. Since $\sum_{n=1}^{\infty} \eta_n < \infty$, we can consider $X = \bigcup_{k=1}^{\infty} T'_k = [0, 1)$. We define τ as $\tau = \lim_k \tau_{T_k}$. The properties of (ε_k) and (α_k) imply that $$\lim_{k} (1 - \varepsilon_{k}) \alpha_{k} / m(T'_{k}) = 1.$$ Also, $\lim_{k} (1 - \alpha_{k}) + \eta_{k} = 0$ implies $\lim_{k} m(T'_{k,7}) = 0$. Thus (4.4) and (4.5) imply that if I and J are intervals in T_{k} for some k, then $$\lim_{n}\inf m(\tau^{n}I\cap J)\geq m(I)m(J).$$ Since the intervals in T_k , $k = 1, 2, \dots$, generate α , an approximation argu- ment implies (4.8) $$\lim_{n} \inf m(\tau^{n} A \cap B) \geq m(A)m(B), \qquad A \text{ and } B \text{ in } \mathfrak{C}.$$ Thus (4.8) implies τ is partially mixing for $\alpha = 1$, hence τ is mixing. We now consider the column $T_{n,4}$ which is formed from $T_{n,3} = (1 - \alpha_n)T_n$. Let $B_n = T'_{n,3} = T'_{n,4}$. (Thus $m(B_n) = (1 - \alpha_n)m(T'_n)$.) Now for a fixed integer k, (2.2) implies $$m[B_{n+1} \cap (T'_n - \bigcup_{j=k}^n B_j)] = (1 - \alpha_{n+1}) m(T'_n - \bigcup_{j=k}^n B_j).$$ For fixed k, the sets $B_{n+1} \cap (T'_n - \bigcup_{j=k}^n B_j)$ are disjoint. Hence their measure tends to 0. Since $\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty$, $\lim_{n\to\infty} m(T'_n - \bigcup_{j=k}^n B_j) = 0$. Since this happens for each fixed k and since $m(T'_n) \to 1$, we get that $m(\lim_n \sup B_n) = 1$. Let I denote a base interval in a column in T_1 which has at least two intervals. Thus $x \in I$ implies $\tau(x) \notin I$. Let f denote the characteristic function of I. We shall define an increasing sequence of positive integers $$k_{1,1}, k_{1,2}, \cdots, k_{1,a_1}, k_{2,1}, k_{2,2}, \cdots, k_{2,a_2}, \cdots, k_{n,1}, k_{n,2}, \cdots, k_{n,a_n}, k_{n+1,1}, \cdots$$ such that the average of f along the sequence oscillates for a.e. x. In order to define $k_{n,1}$, $k_{n,2}$, \cdots k_{n,a_n} we consider the column $T_{n,4}$. The interval I chosen above is scattered in T_n as certain intervals in certain columns in T_n . Now $T_{n,4}$ was formed from $T_{n,3}$ which is a copy of T_n . Thus some intervals in $T_{n,4}$ are contained in I and some are not. Let p_n be the number of intervals in $T_{n,4}$ not contained in I. Let $d_n = \sum_{i=1}^{n-1} a_i$ and choose $j_{n,1}$ so that $$d_n/j_{n,1}<1/n.$$ Proceed to choose $j_{n,i}$, $2 \le i \le p_n + 2$, inductively so that $$(d_n + j_{n,1} + \ldots + j_{n,i})/j_{n,i+1} < 1/n,$$ $1 \le i \le p_n + 1.$ Let K_n be the height of $T_{n,4}$; hence we can write $$T_{n,4} = (I_{n,1}, I_{n,2}, \cdots, I_{n,K_n}).$$ There are p_n intervals in $T_{n,4}$ that are not contained in I and we list these as $$I_{n,i_l}, \qquad 1 \leq l \leq p_n.$$ Let $x \in I_{n,i}$ and let t_l be the smallest positive integer such that $\tau^{t_l}(x) \in I_{n,i} \subset I$. If $i_l = K_n$, then take x such that $\tau(x) \in I_{n,1}$. This is possible since we shall have $T_{n,5} = S_{r_n}(T_{n,4})$ where r_n is chosen below. Hence most of I_{n,K_n} is mapped to $I_{n,1}$. By definition of τ on $T_{n,4}$, t_l is well defined and satisfies $t_l < K_n$, $1 \le l \le p_n$. Choose u_n so that $$u_n K_n > k_{n-1,a_{n-1}}$$ and let $j_0 = 1$. Define $$k_{n,j} = (j+u_n)K_n + t_1, \qquad j_0 \le j \le j_1$$ and $$k_{n,j} = (j + u_n)K_n + t_l, \sum_{i=1}^{l-1} j_i < j \le \sum_{i=1}^{l} j_i, \qquad 2 \le l \le p_n.$$ We also define $$k_{n,j} = (j + u_n)K_n + 1, \quad \sum_{i=1}^{p_n} j_i < j \le \sum_{i=1}^{p_n+1} k_{n,j} = (j + u_n)K_n, \quad \sum_{i=1}^{p_n+1} j_i < j \le \sum_{i=1}^{p_n+2} j_i.$$ Let $a_n = \sum_{i=1}^{p_n+2} j_i$ and $b_n = a_n + u_n$. Let $T_{n,4}$ have width w_n . Choose r_n so large that $b_n w_n/r_n < 2^{-n}$. Let C_n denote the subcolumn $(1 - b_n/r_n)T_{n,4}$ of $T_{n,4}$, chosen so that $C'_n \cap I_{n,1}$ is an interval with the same left endpoint as $I_{n,1}$. In the following we consider only $x \in C'_n$. Thus if $x \in I_{n,i}$ then $\tau^{iK} n(x) \in I_{n,i}$, $1 \le j \le b_n$, $1 \le i \le K_n$. Now f is the characteristic function of the chosen interval I and f_v is the v^{th} Cesaro average along the sequence $$k_{1,1}, \dots, k_{1,a_1}, k_{2,1}, \dots k_{n,1}, \dots k_{n,a_n}$$. Let $x \in I_{n,i_1}$. The choice of j_1 guarantees that $$(4.9) f_v(x) > 1 - 1/n$$ for $v = d_n + j_1$. In general, let $x \in I_{n,i_l}$, $1 \le l \le p_n$. The choice of j_1, \dots, j_l guarantees that (4.9) holds for $v = d_n + j_1 + \dots + j_l$. Now consider $x \in I_{n,i} \subset I$. Recall that $x \in I$ implies $\tau(x) \in I$. Hence the choice of j_{p_n+1} guarantees that $$(4.10) f_v(x) < 1/n$$ for $v = d_n + j_1 + \cdots + j_{p_n+1}$. Lastly, the choice of j_{p_n+2} guarantees that for $v = d_{n+1} = \sum_{i=1}^n a_i = d_n + \sum_{i=1}^{p_n+2} j_i$ we have (4.9) satisfied for $x \in I_{n,i} \subset I$ and (4.10) satisfied for $x \in I_{n,i} \subset I$. The choice of r_n implies $m(B_n - E_n) < 2^{-n}m(B_n)$, where $B_n = T'_{n,4}$ and $E_n = C'_n$. We have already shown that $m(\limsup B_n) = 1$; hence $m(\limsup E_n) = 1$. If $x \in \limsup E_n$, then the above construction implies $$\lim \sup f_n(x) = 1$$ and $\lim \inf f_n(x) = 0$. Thus $f_n(x)$ does not converge a.e. # Partial mixing Let τ be partially mixing for some $\alpha > 0$. We define an invariant $\bar{\alpha}(\tau)$ as $$\bar{\alpha}(\tau) = \sup \{\alpha : \tau \text{ is partially mixing for } \alpha\}.$$ It follows at once that τ is partially mixing for $\bar{\alpha}(\tau)$. Thus τ is mixing if and only if $\bar{\alpha}(\tau) = 1$. Given $\alpha \in (0, 1)$, we shall construct τ so that $\bar{\alpha}(\tau) = \alpha$. The construction is a slight modification of the construction in §3. At the n^{th} stage, we have an M-tower T_n . We decompose T_n into disjoint copies ${}_1T_{n,2} = \alpha_n T_n$ and $U_{n,j} = (1 - \alpha_n)/nT_n$, $1 \leq j \leq n$. The method is to mix ${}_1T_{n,2}$ and unmix $U_{n,1}$. Then mix ${}_1T_{n,2}$ with $U_{n,1}$ and unmix $U_{n,2}$. Then mix ${}_1T_{n,2}$, $U_{n,1}$ and $U_{n,2}$, and unmix $U_{n,3}$, etc. Since $m(U'_{n,j}) \leq 1/n$, the perturbation due to $U_{n,j}$ is small. We proceed to describe the construction as follows. Let T_1 be an M-tower, and let (α_n) , (ε_n) and (η_n) be sequences of positive numbers such that α_n is rational and $\lim_n \alpha_n = \alpha$, $\varepsilon_n \downarrow 0$ and $\sum_{n=1}^{\infty} \eta_n < \infty$. At the n^{th} stage, we have an M-tower T_n , and let ${}_1T_{n,2} = \alpha_n T_n$ and $U_{n,j} = (1-\alpha_n)/nT_n$, $1 \leq j \leq n$ as above. Let $V_2 = {}_1T_{n,2}$ and $V_3 = U_{n,1}$. Let ${}_1T_{n,i} = V_i$, $4 \leq i \leq 9$, corresponding to $\delta_1 = \delta_2 = \varepsilon_n$ and $\eta = \eta_n/n$. Now let $V_2 = {}_1T_{n,9}$ and $V_3 = U_{n,2}$. Let ${}_2T_{n,i} = V_i$, $4 \leq i \leq 9$, corresponding to $\delta_1 = \delta_2 = \varepsilon_n$ and $\eta = \eta_n/n$. Proceeding inductively, let k < n, and let $V_2 = {}_kT_{n,9}$ and $V_3 = U_{n,k+1}$. Let ${}_{k+1}T_{n,i} = V_i$, $4 \leq i \leq 9$, corresponding to $\delta_1 = \delta_2 = \varepsilon_n$ and $\eta = \eta_n/n$. Let $T_{n+1} = {}_nT_{n,9}$. At the n^{th} stage, we repeat the construction in §3 n times. This requires choosing positive integers $r_{n,k}$ and $p_{n,k}$, $1 \leq k \leq n$ where $r_{n,k}$ and $p_{n,k}$ are utilized in forming ${}_kT_{n,i}$, $4 \leq i \leq 9$, corresponding to $\delta_1 = \delta_2 = \varepsilon_n$ and $\eta = \eta/n$. Thus the amount of measure added at the n^{th} stage is less than $n\eta_n/n = \eta_n$. Hence the total measure added is finite. Thus we may consider $X = \bigcup_{n=1}^{\infty} T'_n = [0, 1)$ and $\tau = \lim_n \tau_{T_n}$. Utilizing the same technique as in §4, we can choose the parameters $r_{n,k}$ and $p_{n,k}$, $1 \le k \le n$, so that (5.1) $$\lim \inf m(\tau^n \cap J) \ge \lim \inf (1 - \varepsilon_n) \frac{\alpha_n m(I) m(J)}{m(T'_n)} - 2\eta_n/n$$ $$= \alpha m(I) m(J)$$ where I and J are intervals in T_l for some l. Since these intervals generate α , (5.1) implies τ is partially mixing for α . On the other hand, we can guarantee τ is not partially mixing for $\alpha + \varepsilon$, $\varepsilon > 0$, by simply choosing $r_{n,k} = n$, $1 \le k \le n$. Added in proof. U. Krengel has shown examples as in §4 hold for general mixing transformations. ### REFERENCES - J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc., vol. 66 (1960), pp. 308-311. - N. A. FRIEDMAN AND D. S. ORNSTEIN, On induced transformations, Technical report, Univ. of New Mexico. - 3. —, On partially mixing transformations, J. Math. Mech., vol. 20 (1971), pp. 767-775. STATE UNIVERSITY OF NEW YORK ALBANY, NEW YORK STANFORD UNIVERSITY STANFORD, CALIFORNIA