ON MIXING AND PARTIAL MIXING

BY
N. A. FriepmaN AND D. S. OrRNSTEIN!

1. Introduction

Let (X, @, m) denote the unit interval with Lebesgue measure, and let =

be an invertible ergodic measure preserving transformation on X. 7 is mixing
if

(1.1) lim, m (4 n 7"B) = m(4)m(B), A and Bin G.
Given a > 0, 7 is partially mixing for o if
(1.2) lim, inf m(4 n 7"B) = am(4)m (B), A and Bin Q.

In [3], a transformation 7 is constructed such that 7 is partially mixing for
a = } but 7 is not mixing. It is easily verified that 7 is mixing if and only if =
is partially mixing for o = 1.

The results in this paper are in two parts. The first result is concerned with
mixing transformations. Let 7 be mixing, f ¢ L1, and let (k. ) be an increasing
sequence of positive integers. Define f, and E (f) as

fal) = A/n) Liaf@ @), EF) = [fdm.

In [1], Blum and Hanson proved that f. converges to E (f) in the mean. In
§4, we construct an example such that for a. e. z, f. (z) does not converge
pointwise.

The second result concerns partial mixing transformations. In §5, it is
shown that given a ¢ (0, 1), there is an explicit construction of a transformation
7 such that 7 is partially mixing for @ but 7 is not partially mixing for any
atee>0.

Both of the above results are based on a construction given in §3. Some
preliminary results are given in §2. We shall utilize notation and terminology
n [2].

2. Preliminaries

In [2], [3], the S operator was defined for a tower with columns of equal
width. The definition will now be extended to the case where the columns gen-
erally have unequal widths. Let

T=1{C;j:1—>j—q whereC; = (I;p:1—k— hy).
The intervals in C; have the same width w; (7). The top of T is
AT) = Ulas Lipy,s
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and the base of T is
B(T) = U?=1 Ij,l 5
hence,

@2.1) m(4(T)) = m(B(T)) = 2.5= wi(T).

A subtower T'x of T is a copy of T if there exists a e (0, 1] such that w; (T«) =
aw; (T),1 < j < q, and the A; are the same. In this case, we also denote T'x
as aT. Note that given a e (0, 1), T can be decomposed into two disjoint
copies aT and (1 — «)T.

We shall now define S(T') where T is as above. The transformation 7,
will be extended so as to map a subinterval of the top interval of each column
onto a subinterval of the base interval of each column where the length of each
subinterval is proportional to the corresponding widths. Let p; = w;(T)/
m(B(T)),1 <j < gq. Hence (2.1) implies

Yiapi =1

We decompose the left half of I;; into ¢ disjoint subintervals E;; where
m(E;1) = prwi/2,1 < j,1 <q We also decompose the right half of I;,
into ¢ disjoint subintervals F; ; where m (F1 ;) = piw;/2,1 < j,l—q. E;:is
now mapped linearly onto F;;,1 < 5,1 < gq. The extension is measure pre-
serving since m (E;,1) = m(F1,;),1 —j,1—q. We also have

Dlapmiwi/2 = wi/2, 2iapiwi/2 = w/2

Thus, 77 is extended to half of A (T) and 77" is extended to half of B(T).
Let the corresponding tower be denoted by S (7). Asin [2], S(T') consists
of a bottom copy T of T and a copy of T above each column in 7% .

We denote 7 (T') = lim, 7gn(ry . Asin [2], it follows that 7 (T") is an ergodic
measure preserving transformation on 77, If T is an M-tower, then +(T') is
mixing. (7" is the union of the intervalsin 7.)

Given a tower T and a ¢ (0, 1), let a7 denote a copy of T as above. Note
that if A is 2 union of intervalsin T' and B = (aT')’, then

(2.2) mAnB) =mA)a =mA)mB)/m(T").

Thusif 7¥ = X, then A and B are independent sets.

Given disjoint towers T; and T, let Ty u T, denote the tower consisting of
the columns in 7T, and the columns in 7. We do not require that the col-
umns have the same width.

Let T and T, be towers with ¢ columns. We say the towers are similar if
there exists @ > 0 such that w; (T1) = aw;(Ts), ki (T1) = h;i(T2),1 < j < q.
In particular, a copy of T is similar to . However, a tower similar to 7' need
not be a copy of T since it may not be a subtower of T. We note that if T is
similar to T, then 8™ (T}) is similar to 8" (T2),n = 1,2, - - - .

The following result follows from the definition of the S operator.
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(2.3) Lemma. Let Ty and T, be similar towers, and let Ts = Tru T,. Let
71 = 7(T1) and 72 = 7(Ts). Let I and J be intervals in T1. Then

mEgIad) > m@ErIad) — 2m(Ty).

Let T be a tower, and let C be a column. We shall utilize C to form a tower
T1(C) such that T2 (C) is similar to 7y. Furthermore, 71,(¢) will be an ex-
tension of 7¢ and T (C) will be unique up to similarity. Let T; have ¢ col-
umns with heights H; and widths W;,1 <j < q. Let & denote the height of
C and H = minigj, H;. We assume there exists a positive integer K such
that H > Kh. Let n; denote the largest positive integer such that n; A < H;,
1<j<q Thusn; > K,1 <j <gq. Define w; as

(2.4) wi = w(CYWy/ D 2y nj Wy, 1£7{=q
where w (C) denotes the width of C. Now (2.4) implies

(2.5) 2wy = w(C),

(2.6) wi/w; = Wi/W;, 1<4,j<q

By (2.5), we can decompose C into >-%_3 n; columns where n; columns have
width w;, 1 < j < ¢. We stack the columns of width w; to form a single col-
umn of height n; h. If n; h < H;, then we add H; — n; h additional intervals
of width w; to obtain a column ¢; of height H; and width w;. Let T4(C) =
{c;:1 <j<gql Ti(C)is similar to T, by (2.6). Let u denote the total
amount of additional measure needed to form T:(C). Then (2.5) implies

2.7) w<hDiaw < hw(C)/K.

Let T be a tower, and let C be a column. We can choose p sufficiently large
so that if Ty = S®(T), then uin (2.7) can be made arbitrarily small.

Let T be an M-tower, and let 6 > 0. Since 7 = 7(T') is mixing, there exists
a positive integer N (T') such that

(2.8) m('InJ) 2 (1 — &)mI)mJ)/m(T'), n 2 N(T),

where I and J are intervals in T

Let T be a tower, and let I be an interval. Given ae (0, 1), we say ol isin
T if there exists a set A consisting of a union of intervals in 7" such that A < I
and m(A) = am ().

3. Construction

Let V1 be an M-tower, a € (0,1),8, > 0,8: > 0,and 9 > 0. Decompose V;
into disjoint copies Va = aViand Vs = (1 — «)V;. Assume V;has g columns
with rational widths and « is rational. Then V, and V; each have g columns
with rational widths. Denote the columns of V3 as C; with widths a;/b,
1 < j < q (a; and b are integers). Then S,; (C;) is a column with width
1/b,1 <j<gq (Weform S, (C;) by dividing C; into a; copies and stacking
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them.) We then stack the S,;(C;) to form a single column V, ; hence
Vi = JT8x 8s; (Cs) (note that Vi = V).

Let r be a positive integer, and let Vs = S,(V.). Let Vi = S8”(V2), and let
Vi = Vs(Vs) as defined in §2. Note that p can be chosen sufficiently large
with respect to r and 5 so that if u denotes the measure added to form V7,
then u < 9. Let Vs = Veu Vy. V;yis similar to Vs, and V7 is an M-tower.
Thus Vs is an M-tower, and the columns in V3 have rational widths.

Let Ny = N(Vi, &). (See (28).) If 1 = 7(V1), then I and J in V;
imply

(3.1) mErInJd) > (1 — &)mT)mJ)/m(Vy), n > Ni.
Since af and aJ are in V, and V, is a copy of Vi, it follows that if 7, = = (V,),
then

(3.2) m@InlJ) 2 (1 = &)amI)m(J)/m(V1), n > Ni,
Since Vg = S®(V:), we have r; = 7(V,) = 7(Vs). Let 73 = v(Vs). Hence
Lemma 2.3 implies that if ¥ and F are intervals in Vg, then

(3.3) m(;EnF) > m@GE;EnF) — 2m(Vy).

Since af and o are in Vi, (3.2) and (3.3) imply

84) m@ErInJ) > (1 = 8)amI)mJ)/m(Vy) — 2m(Ve), n > Ny.

Let Ni = N (Vs, 8;) where we also assume NT > Ny. Since 73 = limsw Tstv, ,
we can choose ¢ sufficiently large so that if Vo = S*Vsand r = 7y, , then

(3.5) m@E'InJd)> (1 —&)amIImJT)/m(Vi) —2m(Vz), Ni<n< Ny
In (3.5), I and J are in V;.

4. Mixing

We shall now construct a mixing transformation in stages utilizing the con-
struction in §3 inductively. At each stage most of the space is mixed. How-
ever, at the nt® stage, the transformation is defined on a small part of the space
B, so that certain Cesaro averages oscillate.

Let T be an M-tower, and let (), (£.) and (9.) be sequences of positive
numbers such that o, | 1,6, | 0, D me1in < ©,8nd Doy (1 — @n) = .
Let Vi = T1in §3,andlet Ty, = V;,2 < ¢ < 9, correspond to & = o, 61 = &1,
o = €2,&Dd11 =M. Letr = TTy ,N1 = N(Tl,el) a,nde = N(Tl,s, 82).
Thus (3.6) implies that if I and J are in T, then

@.1) m@E"InJd) > (1 — e)aymI)mJ)/m(Ty) — 2m(T17), Ni<n <Nt

Let Ty = Tip and N, = N(T,, &). Consider Vi = T. in §3, and let
Tei = Vi, 2 < 7 £°9, correspond to oy, &, & and n,. Note that
T = S*2(T,,2) where we can choose p. arbitrarily large. Now T2 = as T
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and T, = S (T1;s) for some positive integer ;. Thus we can choose p. suf-
ficiently large so that if 7 = 71,, and I and J are intervals in Ty, then
“2) m@E'InJ)< A - a)am)m)/m(Tis), Ni<n<N.

Note that (4.2) also holds for I and J in T} .
Let N3 = N (T:s,&) and 7 = r7,,. Thus (8.5) implies that if I and J are
in T, ) then

@3) mE"InJ) > (1 — &)z m(Iym(J)/m(Ts) — 2m(Tsz1), N:<n< Ny

Let us now consider we have Ty, - -+, Th—1. Foreach:, 1 <<k — 2,
we have

(4.4) m@E" InJ) 2 (1 — gin)ain m(I)m(J)/m(Té,s),
Nf<n<Nia,TandJin Ti, 7 = 77,400
5) m@Ind) > (1 — en)anmTm)/m(Tin) — 2m(Tiar),
Nipn<n < Nin,ITandJin T, 7 = 71,0,

Let Ty = Ti19 and Ny = N (Tx, &). Consider V; = T in §3, and let
Tyi =V, 2=<17<9, correspond to ax, &, &+ and nx. Note that Tre =
S%%(T4.2) where we can choose py arbitrarily large. Now Tkx» = oy Tx and
T = 8% '(Ts_18) for some positive integer ;. Thus we can choose pi—1
sufficiently large so that if 7 = 77,, and I and J are intervals in Ty, then

46) m@InJ) > (I — &)a m(I)m(J)/m(Tias), Nia < n < Ni.

Let Ny = N (Tis, ér41) and 7 = 77,,. Thus (3.5) implies that if I and J
are in Ty, then

@7) m@E"Ind) > (1 — e)oamTmJ)/m(Ti) — 2m(Trs), N <n< N

Thus (4.6) and (4.7) imply (4.4) and (4.5) hold for k. Hence the induction
step is complete.

We thus obtain a sequence of towers (T'x) such that rr, extends rr,_, . The
construction implies

m(Ty) < m(T1) + D izt ni.

Since Y a1 s < ©, we can consider X = Up=y T4 = [0, 1). We define 7 as
7 = limg 7r,. The properties of (&) and (ax) imply that

lime (1 — &)aw/m(Th) = 1.

Also, limx (1 — ax) + m = 0 implies limg m(Tys) = 0. Thus (4.4) and
(4.5) imply that if I and J are intervals in T for some %, then

lim, inf m ("I nJ) > mT)mJ).

Since the intervalsin 7%, k = 1, 2, - - -, generate @, an approximation argu-
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ment implies
4.8) lim, inf m(+"A n B) > m(4)m(B), A and B in Q.

Thus (4.8) implies = is partially mixing for & = 1, hence 7 is mixing.

We now consider the column 7', , which is formed from T3 = (1 — @) T
Let B, = Ths = Tuna. (Thusm(B,) = (1 — an)m(T5).)

Now for a fixed integer &, (2.2) implies

m[Buprn (Tn — U= B)] = (1 — anp)m (T — Ui=y By).

For fixed k, the sets Byy1n (T — Ul B;) are disjoint. Hence their measure
tends to 0. Since Duy (1 — an) = o, limpsew m(Ty — Uk B;) = 0.
Since this happens for each fixed k and since m(T,) — 1, we get that
m (lim, sup B,) = 1.

Let I denote a base interval in a column in T’y which has at least two intervals.
Thus z € I implies 7(z) ¢ I. Let f denote the characteristic function of I.
We shall define an increasing sequence of positive integers

kl,l,k1,27"° 7k1,a1’k2,1, k2,2,°" ’kZ,aQ,"' ,kn,l,kn,2’ te ,kn,an,kn+l,1, te

such that the average of f along the sequence oscillates for a.e. .

In order to define kn,1, kn,,, = ** Kn,a, We consider the column T,,4. The
interval I chosen above is scattered in T, as certain intervalsin certain columns
in T,. Now T,. was formed from T,s which is a copy of 7. Thus some
intervalsin T, 4 are contained in I and some are not. Let p, be the number of
intervals in 7', 4 not contained in I.

Let d, = 1= a; and choose ja 1 so that

An/jny < 1/n.
Proceed to choose jn,s, 2 < 7 = pa + 2, inductively so that
(dn + Jaa + oo+ Jni)/fnin < 1/n, 1<¢=p.+ 1
Let K, be the height of T, 4 ; hence we can write
Tos = na, Ing, -+, Inx,)-
There are p, intervals in 7', 4 that are not contained in I and we list these as
Ly, 1215 pa.

Let z € I,,;, and let ¢; be the smallest positive integer such that 7 (¢) e I,s < I.
If 4, = K., then take z such that r(z) e I,,;. This is possible since we shall
have Ts = Sy, (Tn,+) where r, is chosen below. Hence most of I, x, is mapped
to I.;. By definition of 7 on Ty 4, t; is well defined and satisfies t; < K,,
1=1=pa.
Choose u, so that
Un Kn > kn-—l,a,,_l

and let jo = 1. Define

knj= 7+ ua)Kn + &, JWSj=hn



ON MIXING AND PARTIAL MIXING 67

and
Bnj = (G + wa)Ba + 0, 20051 5s < § S 2icfi, 2=51Z pa.
We also define

Fog= G+ ua)Kn+ 1, D227 <j=< D Paf
knj= (G4 ua)Kn, 205 <i= 205

Leta, = > 2 %j;and b, = an + 4. Let T,4have width w,. Choose 7, s0
large that b, wa/m» < 27". Let C, denote the subcolumn (1 — b,/72)Tn s of
T,., chosen so that Cp n I, is an interval with the same left endpoint as
I... In the following we consider only z ¢ Cr. Thus if z eI, : then
" n@) elni, 1 S5 < ba,1 <75 K.

Now f is the characteristic function of the chosen interval I and f, is the v
Cesaro average along the sequence

kl,l, Tty kl,a19k2,1, e kn,l, e kn,a,.-
Let £ € I..;,. The choice of j; guarantees that
4.9) fHilg) >1—1/n

forv=d,+j1. Ingeneral,letzel,,;;,1 <1 = p.. Thechoiceofji, -,
guarantees that (4.9) holdsforv = dn + 51+ -+ + Ji.

Now consider x e I,,; © I. Recall that x ¢ I implies 7 (z) ¢ I. Hence the
choice of j,,+1 guarantees that

(4'10) fv(m) < l/n
forv=dn +j1+ --+ + Jp.41. Lastly, the choice of j, > guarantees that for
0= dup1 = D imai = dn + 22575

we have (4.9) satisfied for z ¢ I,,; € I and (4.10) satisfied for = e I.,s & I.
The choice of r, implies m (B, — E,) < 2™"m(B,), where B, = T, and

E. = C.. We have already shown that m(lim sup B,) = 1; hence

m(lim sup E,) = 1. If x e lim sup E,, then the above construction implies

limsup fo(x) = 1 and lim inf f,(z) = 0.
Thus f, () does not converge a.e.
5. Partial mixing
Let = be partially mixing for some a > 0. We define an invariant a(r) as
a(r) = sup {a : 7 is partially mixing for a}.

It follows at once that r is partially mixing for @(r). Thus 7 is mixing if and
only if a(r) = 1.
Given a ¢ (0, 1), we shall construct 7 so that &(r) = a. The construction is
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a slight modification of the construction in §3. At the nth stage, we have an
M-tower T,. We decompose T, into disjoint copies 1Tn2= o T. and
Unj = 0 — an)/nTn, 1 < j < n The method is to mix 17,2 and
unmix U,,;. Thenmix T,z with U,,;and unmix U,2. ThenmixiThz2, Una
and U, , and unmix U, s, ete. Since m (U, ;) < 1/n, the perturbation due
to U,,;is small. 'We proceed to describe the construction as follows.

Let T; be an M-tower, and let (a.), (¢.) and (y,) be sequences of positive
numbers such that o, is rational and lim, a, = a, &, | 0and D i, < .
At the nt stage, we have an M-tower T, , and let 17,2 = an Tn and U, ; =
(1 — an)/nTn,1 <j< nasabove. Let Vo = Thoand V3 = U,1. Let
1T0i = Vi,4 <1 <9, corresponding to 8; = 8 = ¢, and 9 = 9,/n. Now let
Vo = 1Thgand V3 = Uns. Let 3Ths = Vi, 4 < 72 <9, corresponding to
81 = 8 = e, andn = n,/n. Proceeding inductively,letk < n,andlet Vo = 1Tu e
and Vs = Upp1. LetsaTns = Vi, 4 <1< 9, corresponding to 8y = 8 = &,
and 7 = n,/n. Let Toya = aThy.

At the nth stage, we repeat the construction in §3 n times. This requires
choosing positive integers 7,1 and pax, 1 < k < n where ., and pni are
utilized in forming ,T,; ,4 < ¢ < 9, corresponding to §; = & = &, and n = 9/n.
Thus the amount of measure added at the ntt stage is less than ny,./n = 1..
Hence the total measure added is finite. Thus we may consider X = Usa
T, =1[0,1) and 7 = lim, 7, .

Utilizing the same technique as in §4, we can choose the parameters 7,k
and pnx, 1 < k < n, so that

lim inf m(+" n J) > lim inf (1 — €,)

= am(I)m(J)

anm(Dm(J)

m(Th) 2na/

(5.1)

where I and J are intervals in T'; for some I. Since these intervals generate
@, (5.1) implies 7 is partially mixing for . On the other hand, we can guaran-
tee 7 is not partially mixing for a + &, € > 0, by simply choosing 7, = n,
1<Ek<n.

Added in proof. U. Krengel has shown examples as in §4 hold for general
mixing transformations.
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