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1. Statement of results

We give a simple way of computing the cohomology structure of the
reduced symmetric product of a projective space (real and complex). This
can then be used in the study of the embedding problem for these spaces. A
comparison of the reduced product with the projective tangent bundle of
the manifold yields relations between embeddings and immersions. In
particular we get:

TuEoREM 5.2. The regular homotopy classes of embeddings RP* < R* for
k even and greater than 2 coincide with the isotopy classes of such embeddings and
these in turn are in one-to-one correspondence with the integers.

There we must note that the condition & > 2 is essential. Massey [7] has
recently proved a conjecture of Whitney which claims that there are only
two regular homotopy classes of embeddings P* < R*.

Previously the author and D. Handel [4] have independently found that
RP, € R *forn = 2° + 2. More recently F. Nussbaum, using the results
of this paper and obstruction theory for nonorientable bundles, has shown
that if n = 2° + 2 then RP, C R™.

2. Preliminaries
Let X be a topological space and A the diagonalof X X X. AmapF : X X
X — A — 8" 'is called equivariant if F(x, y) = —F(y, x) for all (z, y) e
X X X — A. Any topological embedding f : X — R" gives rise to such an
equivariant map, namely define

F(z, y) = (f@ — f)/1f@ — fwl.

Two isotopic embeddings give rise to equivariantly homotopic maps from
X XX — AtoS"

For compact manifolds the following is a corollary to Haefliger [5]:

TueorEM. A manifold M™ embeds in R™ if there exists an equivariant map
MXM—A— S8 andn > 3(m <+ 1)/2. Moreover if n > 3(n + 1)/2
then the isotopy classes of such embeddings are in one-to-one correspondence with
the equivariant homotopy classes of such maps.

The equivariant homotopy classes of maps from M X M — A into S™™
are further in one-to-one correspondence with homotopy classes of maps
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fiM*=M XM — AJZy— P for which f*(2) = u where z is the generator
of H*(P™, Z,) and u is the class of the double covering M X M — A —
M*. These in turn are in one-to-one correspondence with non-zero sections
of the bundle nf — M™ where { is the line bundle associated to the double
covering M X M — A — M*,

There is a similar theorem concerning immersions due to Haefliger and
Hirsch [6] which can be restated as follows:

TarorEM. A manifold M™ immerses in R" if and only if there exists an
equivariant map S(M™) — S and n > (3m + 1)/2. Moreover, if n >
(8m + 1) /2 then the regular homotopy classes of such immersions are in one-to-
one correspondence with equivariant homotopy classes of such maps.

Here S(M) denotes the tangent sphere bundle of M. Let P(M) be the
projective tangent bundle of M and let n be the canonical line bundle over
P(M). The problem can again be reduced to a question about section of
ny.

The canonical embedding P(M) < M* may be used to compare embedding
and immersion results about M.

In [3] the author has determined the cohomology of the reduced symmetric
product of real projective spaces. Using the basic idea of [3] we shall deter-
mine the structure of the reduced symmetric product of real and complex
projective spaces which will be denoted by RP, and CP, respectively. To give
a unified treatment we shall use the symbol FP, where F will be the field of
either real or complex numbers. The reduced symmetric product is FP,* =
FP, X FP, — A/Z; where Z, acts on FP, X FP, — A by interchanging the
two coordinates.

FP} can be viewed as the set of unordered pairs of distinct points in FP,
or the set of pairs of distinet lines through the origin in F**'. This gives us
the fibration

FPY — FPy — FGpi1z

thfe F@Gpy, is the Grassmanian of (unoriented in the real case) 2-planes in
F*.

The fiber is an open Moebius band for F = R and is 8> X §* — A/Z; in
the case F = C. Ineither case the fiber has a real projective space RPy(d = 1
if F=R,d=2if F = () as a deformation retract. Using this deformation
we can deform the total space onto a subspace, which we shall also denote
by FP:. We thus obtain a bundle 5, :

(1) RP; — FP} — FGpy1s -

The deformation can be interpreted in the following way: each pair of
distinet lines in F™** defines a 2-plane in F™*'; we move the two lines within
this plane until they become mutually orthogonal. This gives an inter-
pretation of the bundle (1) in terms of the canonical 2-plane bundle v» over
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FG,1,2 : we take the sphere bundle associated to v and identify points which
lie on pairs of mutually orthogonal lines. In the case when F = C this
amounts to taking the projectification of v¢ with fiber CP; = §°, which, as
shall be seen later, has an associated R*-bundle and then the projectification
of this bundle (with respect to R) yields the bundle 5¢ .

This interpretation of FP} gives a particularly simple way of computing its
cohomology.

Since 5r is a projectification of real vector bundle (of dimension 2 when
F = R and dimension 3 when F = () a standard spectral sequence argument
yields the cohomology of the total space. Namely, we have the following
proposition and corollary (e.g. Bott [2]):

ProPOSITION 3.1. Let £ be a real vector bundle over B. Then H*(P(§), Z»)
is @ free module over H*(B, Z,) generated by 1, X¢, --+, X, k = dim ¢,
where X ¢ H'(P(%), Z,) s equal to wi(Se).

S; is the canonical line bundle over P(£). We also have the following:

CoRrOLLARY. There are unique classes wi(£) e H'(B, Z) ¢ = 0, -+, dim
£ =k, wy = 1, such that the equation

D e wi(E) = 0

holds in H*(P(£), Z;). This is the defining relation of P(£) and w.(§) are the
Stiefel-Whitney classes of the bundle &.

To complete our computations it suffices to find the cohomology of the
Grassmanians (Borel [1]) and the stiefel-Whitney classes which correspond
to nr .

4. The bundles 7, and the cohomology of FP}

Whenever a homomorphism 4 : G — H between two Lie groups is given
we can associate a principal H-bundle to a principal G-bundle using this
homomorphism. More precisely if £ — X is a principal G-bundle it is in-
duced by a map

X —L) Bq 5
composing this map with the map
BG -—-——hj—) BH
we obtain the map
hxoE
X—— 5By
which induces the desired principal H-bundle.

The bundle 55 is the projectification of an O, (when F = R) or an O; (when
F = C) bundle £r. In order to get at the cohomology of FPj we must cal-
culate the Stiefel-Whitney classes of this bundle £ .
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From the description of #r it is clear that £z is associated to the canonical
2-plane bundle £ over RGy4a,2 via the homomorphism

B®:0(2) = 0(2)

{0 o2

(i.e. the center of O(2)). This map induces the identity homomorphism on
H'(0(2), Z,) and the trivial map on H'(0(2), Z;). It follows from the
spectral sequence for H*(BO(2), Z,) that wi(£z) = wi(vz) and wy(£z) = O.

In the case of n¢ we have a similar phenomenon. The bundle &, is obtained
from v¢ via the homomorphism

RS 2 U(2) — SO(3) — 0(3)

whose kernel is the center of U(2). This homomorphism leads to the fibra-
tion

with kernel

K(Z,2) = BSO(2) — BU(2) — BS0O(3)

which yields wi(¢¢) = 0, we(£c) = per(ve) and ws(£¢) = 0 where p denotes
reduction mod 2.

The cohomology of the Grassmanian has been determined by Borel [1] and
is given by

H*(FGn+1'2 ) Z2) = S(xl y xn—l) ® S(xn ) xﬂ+1)/s+(xl y *T xn+1)
where S(xy, -+ - , @) is the algebra of symmetric polynomials overz,, --- , 2,
(all the generators are of dimension 1 if F = R and of dimension 2 if F = C)
and ST(z;, -+, x,) is the ideal of elements of positive degree.

One can easily obtain a description of this ring which is more suitable for
computations. Namely we have (cf. [3])

ProroSITION 4.1. H*(FGpis, Z2) is a ring on two generators x, y (dim
z = d, dim y = 2d) with the only relations:

a, = Z (n:i)xn—ﬂyi —_ 0 and Uny1 = Z (n+il—i)x'n+1—2iyo' —_ 0

1=0 70
The Steenrod algebra structure is given by
S¢y =2y if F=R and S¢y = ay if F = C.

The elements x and y are the characteristic classes.
The proposition easily yields the following corollaries which are useful for
calculations:

COROLLARY 4.1. 2% " % 0df and only if i = 2° — 1

Proof. We prove this assertion by induction on n. It is clearly true for
n = 2 (the smallest possible value for n). Suppose that the statement is true
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for n = k. That means that the system ax = 0, ary1 = 0 yields our proposi-
tion. The system for n = k + 1 can be taken to be azyy = 0, yar = 0 (cf.
(3)) so in the top dimension we get all the previous equations multiplied by y
and the equation z* 'a;;; = 0. This last equation is
(*) 0 — (k-&-l)xﬂc + (I;)x2k—2y + . + <k+;:—j)x2k—2iyd + cenl

By the induction hypothesis the other equations yield

ka—2jyj—ly = 0
unless ¥ — j = 2° — 1 for some s. The coefficients of the remaining terms in
(*) are
57)
wherek —j = 2" — 1
or
)
and 2° 4+ j = k + 1. This can be non-zero only whenj = 2°ork + 1 = 2°*
in which case the added equation reads
@+ y =0 and k=21 -1,

which concludes the induction.

It follows from Corollary 4.1 that the height of ¥ is maximal.

COROLLARY 4.2. The height of x does not change for 27 < n < 2" — 1
and s equal to 2" — 2.

Proof. Since a, = 0, @41 = 0 = Gyy1 = 0, @iz = 0 the height of a in-
creases with n. Forn = 2" — 1

a, = Z (n-i—i)xn—h'yi —_ xn — 0.

Since this is the first relation we conclude the height of zisn — 1 = !2' — 2.
On the other hand for n = 2", Corollary 4.1 states that 2> = ** ™ = ¢
thus the height of x is again 2" — 2 as was claimed.

To obtain a complete description of H*(FP%, Z,) we now apply Proposition
3.1 and get

TuroreM 4.3. H*(FP}, Z,) as a module over H*(FGpy12 , Z2) 1s generated
bylu, -+ ,u',dimu =1(d =14F=R,d=24 F = C). The ring
structure is giwen by the relation:

Ww=urif F=R and u*® = wz when F = C.
5. Applications

We can apply the results of the previous section to obtain the classification
(first up to isotopy) of embeddings of RP; in R*™ when k is even and greater
than 2.
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Such embeddings are classified by the homotopy classes of non-zero sections
of the bundle
2kt

!
RP{

where { is the line bundle associated to the double covering
PPX P — AP X P —A/Z,.

Since Gri12 is non-orientable and the first Stiefel-Whitney class of its
tangent bundle is the same as wi(nz) = wi(¢z) = = the manifold RP} is a
(2k — 1)-dimensional orientable manifold. Moreover 2k{ is an orientable bun-
dle, we have thus

H* Y (RP}, mua(8* ™)) = H*Y(RP}; Z) = Z.

Since each element of H*(RPy; Z) can be realized as an obstruction to a
homotopy between two different cross-sections of 2k¢, we have

ProPOSITION 5.1.  The isotopy classes of embeddings RP* < R™ for k even
(k > 2) are in one-to-one correspondence with the integers.

To compare these isotopy classes of embeddings with regular homotopy
classes we must study the inclusion map P(7) C RP;. Viewing r(RP;) as
pairs of lines in R*** which are close to each other we see that P(7) is orientable

SO
K H* Y (RP}, Z) - H*'(P(1),2) = Z

is just multiplication by 2. This means that if two embeddings are regularly
homotopic they are already isotopic. This together with Proposition 5.1
yields:

THEOREM 5.2. The regular homotopy classes of embeddings RP* < R™ for
k even and greater than 2 coincide with the isotopy classes of such embeddings and
these in turn are in one-to-one correspondence with the integers.

D. Handel [4] has computed the cohomology of RP; and proved the follow-
ing embedding theorem:

Ifn = 2" + 2 (s > 2) then RP" C B
The following holds for complex projective spaces:

ProrosiTioN 5.3." Ifn # 2°and n > 3 then CP, embeds in R** ™.
Indeed, there is only one obstruction to a non-zero section of

1 This proposition has been known; we include it here to give an example which may
serve for other computations.
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(4n — 2)¢
l*
CP,
Since dim CPy = 4n — 2, the obstruction is x(4n — 2){)—the Euler class.

The Euler class of an even multiple of a line bundle { has the property that

2x(mg) = x((m — 2)¢)x(2¢) and if the mod 2 reduction of x((m — 2)¢) is
zero then x((m — 2)¢) = 2-¢ and

x(mg) = 2-x(2¢)-¢c = 0.

Thus if ™2 = 0 then x(m¢) = 0

In CP} we have u* = 0if &k >
follows from the fact that 2"~ =
whenever n # 2",

2" — 1 where 27 < n < 2" — 1 (this

0 and ¥** = uz’) so x((4n — 2)¢) = 0
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