THE REDUCED SYMMETRIC PRODUCT OF PROJECTIVE SPACES AND THE GENERALIZED WHITNEY THEOREM

BY
S. Feder

1. Statement of results

We give a simple way of computing the cohomology structure of the reduced symmetric product of a projective space (real and complex). This can then be used in the study of the embedding problem for these spaces. A comparison of the reduced product with the projective tangent bundle of the manifold yields relations between embeddings and immersions. In particular we get:
Theorem 5.2. The regular homotopy classes of embeddings $R P^{k} \subset R^{2 k}$ for k even and greater than 2 coincide with the isotopy classes of such embeddings and these in turn are in one-to-one correspondence with the integers.

There we must note that the condition $k>2$ is essential. Massey [7] has recently proved a conjecture of Whitney which claims that there are only two regular homotopy classes of embeddings $P^{2} \subset R^{4}$.
Previously the author and D. Handel [4] have independently found that $R P_{n} \subset R^{2 n-2}$ for $n=2^{8}+2$. More recently F. Nussbaum, using the results of this paper and obstruction theory for nonorientable bundles, has shown that if $n=2^{s}+2$ then $R P_{n} \subset R^{2 n-3}$.

2. Preliminaries

Let X be a topological space and Δ the diagonal of $X \times X$. A map $F: X \times$ $X-\Delta \rightarrow S^{n-1}$ is called equivariant if $F(x, y)=-F(y, x)$ for all $(x, y) \epsilon$ $X \times X-\Delta$. Any topological embedding $f: X \rightarrow R^{n}$ gives rise to such an equivariant map, namely define

$$
F(x, y)=(f(x)-f(y)) /\|f(x)-f(y)\| .
$$

Two isotopic embeddings give rise to equivariantly homotopic maps from $X \times X-\Delta$ to S^{n-1}.
For compact manifolds the following is a corollary to Haefliger [5]:
Theorem. A manifold M^{m} embeds in R^{n} if there exists an equivariant map $M \times M-\Delta \rightarrow S^{n-1}$ and $n \geq 3(m+1) / 2$. Moreover if $n \geq 3(n+1) / 2$ then the isotopy classes of such embeddings are in one-to-one correspondence with the equivariant homotopy classes of such maps.
The equivariant homotopy classes of maps from $M \times M-\Delta$ into S^{n-1} are further in one-to-one correspondence with homotopy classes of maps

[^0]$f: M^{*}=M \times M-\Delta / Z_{2} \rightarrow P^{n-1}$ for which $f^{*}(x)=u$ where x is the generator of $H^{*}\left(P^{n-1}, Z_{2}\right)$ and u is the class of the double covering $M \times M-\Delta \rightarrow$ M^{*}. These in turn are in one-to-one correspondence with non-zero sections of the bundle $n \zeta \rightarrow M^{*}$ where ζ is the line bundle associated to the double covering $M \times M-\Delta \rightarrow M^{*}$.

There is a similar theorem concerning immersions due to Haefliger and Hirsch [6] which can be restated as follows:

Theorem. A manifold M^{m} immerses in R^{n} if and only if there exists an equivariant map $\mathbf{S}\left(M^{m}\right) \rightarrow S^{n-1}$ and $n \geq(3 m+1) / 2$. Moreover, if $n>$ $(3 m+1) / 2$ then the regular homotopy classes of such immersions are in one-toone correspondence with equivariant homotopy classes of such maps.

Here $\mathbf{S}(M)$ denotes the tangent sphere bundle of M. Let $\mathbf{P}(M)$ be the projective tangent bundle of M and let η be the canonical line bundle over $\mathbf{P}(M)$. The problem can again be reduced to a question about section of $n \eta$.

The canonical embedding $\mathbf{P}(M) \subset M^{*}$ may be used to compare embedding and immersion results about M.

In [3] the author has determined the cohomology of the reduced symmetric product of real projective spaces. Using the basic idea of [3] we shall determine the structure of the reduced symmetric product of real and complex projective spaces which will be denoted by $R P_{n}$ and $C P_{n}$ respectively. To give a unified treatment we shall use the symbol $F P_{n}$ where F will be the field of either real or complex numbers. The reduced symmetric product is $F P_{n}{ }^{*}=$ $F P_{n} \times F P_{n}-\Delta / Z_{2}$ where Z_{2} acts on $F P_{n} \times F P_{n}-\Delta$ by interchanging the two coordinates.
$F P_{n}^{*}$ can be viewed as the set of unordered pairs of distinct points in $F P_{n}$ or the set of pairs of distinct lines through the origin in F^{n+1}. This gives us the fibration

$$
F P_{1}^{*} \rightarrow F P_{n}^{*} \rightarrow F G_{n+1,2}
$$

where $F G_{n+1,2}$ is the Grassmanian of (unoriented in the real case) 2-planes in F^{n+1}.
The fiber is an open Moebius band for $F=R$ and is $S^{2} \times S^{2}-\Delta / Z_{2}$ in the case $F=C$. In either case the fiber has a real projective space $R P_{d}(d=1$ if $F=R, d=2$ if $F=C$) as a deformation retract. Using this deformation we can deform the total space onto a subspace, which we shall also denote by $F P_{n}^{*}$. We thus obtain a bundle η_{F} :

$$
\begin{equation*}
R P_{d} \rightarrow F P_{n}^{*} \rightarrow F G_{n+1,2} \tag{1}
\end{equation*}
$$

The deformation can be interpreted in the following way: each pair of distinct lines in F^{n+1} defines a 2-plane in F^{n+1}; we move the two lines within this plane until they become mutually orthogonal. This gives an interpretation of the bundle (1) in terms of the canonical 2-plane bundle γ_{F} over
$F G_{n+1,2}$: we take the sphere bundle associated to γ_{F} and identify points which lie on pairs of mutually orthogonal lines. In the case when $F=C$ this amounts to taking the projectification of γ_{c} with fiber $C P_{1}=S^{2}$, which, as shall be seen later, has an associated R^{3}-bundle and then the projectification of this bundle (with respect to R) yields the bundle η_{C}.

This interpretation of $F P_{n}^{*}$ gives a particularly simple way of computing its cohomology.

Since η_{F} is a projectification of real vector bundle (of dimension 2 when $F=R$ and dimension 3 when $F=C$) a standard spectral sequence argument yields the cohomology of the total space. Namely, we have the following proposition and corollary (e.g. Bott [2]) :

Proposition 3.1. Let ξ be a real vector bundle over B. Then $H^{*}\left(\mathbf{P}(\xi), Z_{2}\right)$ is a free module over $H^{*}\left(B, Z_{2}\right)$ generated by $1, X_{\xi}, \cdots, X_{\xi}^{k-1}, k=\operatorname{dim} \xi$, where $X_{\xi} \in H^{1}\left(\mathbf{P}(\xi), Z_{2}\right)$ is equal to $w_{1}\left(S_{\xi}\right)$.
S_{ξ} is the canonical line bundle over $\mathbf{P}(\xi)$. We also have the following:
Corollary. There are unique classes $w_{i}(\xi) \in H^{i}\left(B, Z_{2}\right) i=0, \cdots$, dim $\xi=k, w_{0}=1$, such that the equation

$$
\sum_{i=0}^{k} x^{k-1} w_{i}(\xi)=0
$$

holds in $H^{*}\left(\mathbf{P}(\xi), Z_{2}\right)$. This is the defining relation of $\mathbf{P}(\xi)$ and $w_{i}(\xi)$ are the Stiefel-Whitney classes of the bundle ξ.

To complete our computations it suffices to find the cohomology of the Grassmanians (Borel [1]) and the stiefel-Whitney classes which correspond to η_{F}.

4. The bundles η_{F} and the cohomology of FP_{n}^{*}

Whenever a homomorphism $h: G \rightarrow H$ between two Lie groups is given we can associate a principal H-bundle to a principal G-bundle using this homomorphism. More precisely if $E \rightarrow X$ is a principal G-bundle it is induced by a map

$$
X \xrightarrow{E} B_{G},
$$

composing this map with the map

$$
B_{G} \xrightarrow{h_{*}} B_{H}
$$

we obtain the map

$$
X \xrightarrow{h_{*} \circ E} B_{H}
$$

which induces the desired principal H-bundle.
The bundle η_{F} is the projectification of an O_{2} (when $F=R$) or an O_{3} (when $F=C$) bundle ξ_{F}. In order to get at the cohomology of $F P_{n}^{*}$ we must calculate the Stiefel-Whitney classes of this bundle ξ_{F}.

From the description of η_{F} it is clear that ξ_{R} is associated to the canonical 2-plane bundle ξ_{R} over $R G_{n+1,2}$ via the homomorphism

$$
h^{R}: O(2) \rightarrow O(2)
$$

with kernel

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

(i.e. the center of $O(2)$). This map induces the identity homomorphism on $H^{0}\left(O(2), Z_{2}\right)$ and the trivial map on $H^{1}\left(O(2), Z_{2}\right)$. It follows from the spectral sequence for $H^{*}\left(B O(2), Z_{2}\right)$ that $w_{1}\left(\xi_{R}\right)=w_{1}\left(\gamma_{R}\right)$ and $w_{2}\left(\xi_{R}\right)=0$.

In the case of η_{C} we have a similar phenomenon. The bundle ξ_{C} is obtained from γ_{C} via the homomorphism

$$
h^{c}: U(2) \rightarrow S O(3) \rightarrow O(3)
$$

whose kernel is the center of $U(2)$. This homomorphism leads to the fibration

$$
K(Z, 2)=B S O(2) \rightarrow B U(2) \rightarrow B S O(3)
$$

which yields $w_{1}\left(\xi_{c}\right)=0, w_{2}\left(\xi_{c}\right)=\rho c_{1}\left(\gamma_{c}\right)$ and $w_{3}\left(\xi_{c}\right)=0$ where ρ denotes reduction $\bmod 2$.

The cohomology of the Grassmanian has been determined by Borel [1] and is given by

$$
H^{*}\left(F G_{n+1,2}, Z_{2}\right)=S\left(x_{1}, \cdots x_{n-1}\right) \otimes S\left(x_{n}, x_{n+1}\right) / S^{+}\left(x_{1}, \cdots, x_{n+1}\right)
$$

where $S\left(x_{1}, \cdots, x_{r}\right)$ is the algebra of symmetric polynomials over x_{1}, \cdots, x_{r} (all the generators are of dimension 1 if $F=R$ and of dimension 2 if $F=C$) and $S^{+}\left(x_{1}, \cdots, x_{r}\right)$ is the ideal of elements of positive degree.

One can easily obtain a description of this ring which is more suitable for computations. Namely we have (cf. [3])

Proposition 4.1. $H^{*}\left(F G_{n+1,2}, Z_{2}\right)$ is a ring on two generators x, y (dim $x=d, \operatorname{dim} y=2 d$) with the only relations:

$$
a_{n}=\sum_{i=0}\binom{n-i}{i} x^{n-2 i} y^{i}=0 \quad \text { and } \quad a_{n+1}=\sum_{i=0}\binom{n+1-i}{i} x^{n+1-2 i} y^{i}=0
$$

The Steenrod algebra structure is given by

$$
S q^{1} y=x y \text { if } F=R \quad \text { and } \quad S q^{2} y=x y \text { if } F=C
$$

The elements x and y are the characteristic classes.
The proposition easily yields the following corollaries which are useful for calculations:

Corollary 4.1. $\quad x^{2 i} y^{n-1-i} \neq 0$ if and only if $i=2^{s}-1$
Proof. We prove this assertion by induction on n. It is clearly true for $n=2$ (the smallest possible value for n). Suppose that the statement is true
for $n=k$. That means that the system $a_{k}=0, a_{k+1}=0$ yields our proposition. The system for $n=k+1$ can be taken to be $a_{k+1}=0, y a_{k}=0$ (cf. (3)) so in the top dimension we get all the previous equations multiplied by y and the equation $x^{k-1} a_{k+1}=0$. This last equation is

$$
\begin{equation*}
0=\binom{k+1}{0} x^{2 k}+\binom{k}{1} x^{2 k-2} y+\cdots+\binom{k+1-j}{j} x^{2 k-2 j} y^{d}+\cdots \tag{*}
\end{equation*}
$$

By the induction hypothesis the other equations yield

$$
x^{2 k-2 j} y^{j-1} y=0
$$

unless $k-j=2^{s}-1$ for some s. The coefficients of the remaining terms in (*) are

$$
\binom{k+1-j}{j}
$$

where $k-j=2^{s}-1$
or

$$
\binom{2^{2}}{j}
$$

and $2^{s}+j=k+1$. This can be non-zero only when $j=2^{s}$ or $k+1=2^{8+1}$ in which case the added equation reads

$$
x^{2 k}+y^{i}=0 \quad \text { and } \quad k=2^{s+1}-1
$$

which concludes the induction.
It follows from Corollary 4.1 that the height of y is maximal.
Corollary 4.2. The height of x does not change for $2^{r-1} \leq n \leq 2^{r}-1$ and is equal to $2^{r}-2$.

Proof. Since $a_{n}=0, a_{n+1}=0 \Rightarrow a_{n+1}=0, a_{n+2}=0$ the height of a increases with n. For $n=2^{r}-1$

$$
a_{n}=\sum\binom{n-i}{i} x^{n-2 i} y^{i}=x^{n}=0 .
$$

Since this is the first relation we conclude the height of x is $n-1=2^{r}-2$. On the other hand for $n=2^{r-1}$, Corollary 4.1 states that $\mathrm{a}^{2 n-2}=x^{2\left(2^{r-1}-1\right)} \neq 0$ thus the height of x is again $2^{r}-2$ as was claimed.

To obtain a complete description of $H^{*}\left(F P_{n}^{*}, Z_{2}\right)$ we now apply Proposition 3.1 and get

Theorem 4.3. $H^{*}\left(F P_{n}^{*}, Z_{2}\right)$ as a module over $H^{*}\left(F G_{n+1,2}, Z_{2}\right)$ is generated by $1, u, \cdots, u^{d}, \operatorname{dim} u=1(d=1$ if $F=R, d=2$ if $F=C)$. The rina structure is given by the relation:

$$
u^{2}=u x \text { if } F=R \text { and } u^{3}=u x \text { when } F=C
$$

5. Applications

We can apply the results of the previous section to obtain the classification (first up to isotopy) of embeddings of $R P_{k}$ in $R^{2 k}$ when k is even and greater than 2.

Such embeddings are classified by the homotopy classes of non-zero sections of the bundle

where ζ is the line bundle associated to the double covering

$$
P^{k} \times P^{k}-\Delta \rightarrow P^{k} \times P^{k}-\Delta / Z_{2}
$$

Since $G_{k+1,2}$ is non-orientable and the first Stiefel-Whitney class of its tangent bundle is the same as $w_{1}\left(\eta_{R}\right)=w_{1}\left(\xi_{R}\right)=x$ the manifold $R P_{k}^{*}$ is a ($2 k-1$)-dimensional orientable manifold. Moreover $2 k \zeta$ is an orientable bundle, we have thus

$$
H^{2 k-1}\left(R P_{k}^{*}, \pi_{2 k-1}\left(S^{2 k-1}\right)\right)=H^{2 k-1}\left(R P_{k}^{*} ; Z\right) \cong Z
$$

Since each element of $H^{*}\left(R P_{k}^{*} ; Z\right)$ can be realized as an obstruction to a homotopy between two different cross-sections of $2 k \zeta$, we have

Proposition 5.1. The isotopy classes of embeddings $R P^{k} \subset R^{2 k}$ for k even $(k>2)$ are in one-to-one correspondence with the integers.

To compare these isotopy classes of embeddings with regular homotopy classes we must study the inclusion map $\mathbf{P}(\tau) \subset R P_{k}^{*}$. Viewing $\tau\left(R P_{k}\right)$ as pairs of lines in R^{k+1} which are close to each other we see that $\mathbf{P}(\tau)$ is orientable so

$$
\iota^{*}: H^{2 k-1}\left(R P_{k}^{*}, Z\right) \rightarrow H^{2 k-1}(\mathbf{P}(\tau), Z) \cong Z
$$

is just multiplication by 2 . This means that if two embeddings are regularly homotopic they are already isotopic. This together with Proposition 5.1 yields:

Theorem 5.2. The regular homotopy classes of embeddings $R P^{k} \subset R^{2 k}$ for k even and greater than 2 coincide with the isotopy classes of such embeddings and these in turn are in one-to-one correspondence with the integers.
D. Handel [4] has computed the cohomology of $R P_{k}^{*}$ and proved the following embedding theorem:

If $n=2^{s}+2(s>2)$ then $R P^{n} \subset R^{2 n-2}$.
The following holds for complex projective spaces:
Proposition 5.3. ${ }^{1}$ If $n \neq 2^{i}$ and $n>3$ then $C P_{n}$ embeds in $R^{4 n-2}$.
Indeed, there is only one obstruction to a non-zero section of

[^1]

Since $\operatorname{dim} C P_{n}^{*}=4 n-2$, the obstruction is $\left.\chi(4 n-2) \zeta\right)$-the Euler class.
The Euler class of an even multiple of a line bundle ζ has the property that $2 \chi(m \zeta)=\chi((m-2) \zeta) \chi(2 \zeta)$ and if the $\bmod 2$ reduction of $\chi((m-2) \zeta)$ is zero then $\chi((m-2) \zeta)=2 \cdot c$ and

$$
\chi(m \zeta)=2 \cdot \chi(2 \zeta) \cdot c=0
$$

Thus if $u^{m-2}=0$ then $\chi(m \zeta)=0$.
In $C P_{n}^{*}$ we have $u^{k}=0$ if $k \geq 2^{r+1}-1$ where $2^{r-1} \leq n \leq 2^{r}-1$ (this follows from the fact that $x^{2 r-1}=0$ and $\left.u^{28+1}=u x^{8}\right)$ so $\chi((4 n-2) \zeta)=0$ whenever $n \neq 2^{i}$.

Bibliography

1. A. Borel, La cohomologie mod 2 de certains spaces homogenes, Comm. Mat. Helv. vol. 27 (1953), pp. 165-96.
2. R. Вотт, Lectures on $K(X)$, Harvard, 1964.
3. S. Feder, The reduced symmetric product of a projective space and the embedding problems, Bol. Soc. Mat. Mexicana, vol. 12 (1967), pp. 76-80.
4. D. Handel, An embedding theorem for real projective spaces, Topology, vol. 7 (1968), pp. 125-130.
5. A. Haefliger, Plongements differentiables de varietes dans varietes, Comm. Mat. Helv., vol. 36 (1961), pp. 47-82.
6. A. Haefliger and M. Hirsch, Immersions in the stable range, Ann. of Math, vol. 75 (1962), pp. 231-241
7. W. S. MAssey, Proof of a conjecture of Whitney, Pacific J. Math. vol. 31 (1969). nn. 133142.

University of Illinois at Chicago Circle
Chicago, Illinois

[^0]: Received February 4, 1970.

[^1]: ${ }^{1}$ This proposition has been known; we include it here to give an example which may serve for other computations.

