
THE REDUCED SYMMETRIC PRODUCT OF PROJECTIVE
SPACES AND THE GENERALIZED WHITNEY THEOREM

1. Statement of results
We give a simple way of computing the cohomology structure of the

reduced symmetric product of a projective space (real and complex). This
can then be used in the study of the embedding problem for these spaces. A
comparison of the reduced product with the projective tangent bundle of
the manifold yields relations between embeddings and immersions. In
particular we get"

THEOREM 5.2. The regular homotopy classes of embeddings RP R for
k even and greater than 2 coincide with the isotopy classes of such embeddings and
these in turn are in one-to-one correspondence with the integers.

There we must note that the condition k > 2 is essential. Massey [7] has
recently proved a conjecture of Whitney which claims that there are only
two regular homotopy classes of embeddings P R.

Previously the author and D. Handel [4] have independently found that
RP,, R’- for n 2 + 2. More recently F. Nussbaum, using the results
of this paper and obstruction theory for nonorientable bundles, has shown
that if n 2 -t- 2 then RP R’-.

2. Preliminaries

Let X be topological spced A the diagonal of X )< X. A mp F X X
X A -- S"- is called equivariant if F(x, y) -F(y, x) for all (x, y) e

X X X A. Any topological embedding f" X -- R gives rise to such an
equivariant map, namely define

F(x, y) (f(x) f(y))/[lf(x) f(Y) J].
Two isotopic embeddings give rise to equivariantly homotopic maps from

X X X- Ato S-.
For compact manifolds the following is a corollary to Haefliger [5]"

THEOREM. A manifold M embeds in R if there exists an equivariant map
M X M- A--S’-andn >_ 3(m - 1)/2. Moreover ifn >_ 3(n+ 1)/2
then the isotopy classes of such embeddings are in one-to-one correspondence with
the equivariant homotopy classes of such maps.

The equivariant homotopy classes of maps from M X M h into S-1

are further in one-to-one correspondence with homotopy classes of maps
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f M* M X M A/Z p,-i for whichf* (x) u where x is the generator
of H*(P’-1, Z) and u is the class of the double covering M X M A --.
M*. These in turn are in one-to-one correspondence with non-zero sections
of the bundle n" --. M* where is the line bundle associated to the double
covering M X M i --. M*.
There is a similar theorem concerning immersions due to Haefliger and

Hirsch [6] which can be restated as follows:

THEOREM. A manifold M immerses in R if and only if there exists an
equivariant map S(M) --. S’- and n >__ 3m - 1)/2. Moreover, if n >
(3m -P 1)/2 then the regular homotopy classes of such immersions are in one-to-
one correspondence with equivariant homotopy classes of such maps.

Here S(M) denotes the tangent sphere bundle of M. Let P(M) be the
projective tangent bundle of M and let v be the canonical line bundle over
P(M). The problem can again be reduced to a question about section of

The canonical embedding P(M) c M* may be used to compare embedding
and immersion results about M.

In [3] the author has determined the cohomology of the reduced symmetric
product of real projective spaces. Using the basic idea of [3] we shall deter-
mine the structure of the reduced symmetric product of real and complex
projective spaces which will be denoted by RP, and CP,, respectively. To give
a unified treatment we shall use the symbol FP, where F will be the field of
either real or complex numbers. The reduced symmetric product is FP,*
FP,, X FP,, A/Z where Z. acts on FP, X FP by interchanging the
two coordinates.
FP* can be viewed as the set of unordered pairs of distinct points in FP,,

or the set of pairs of distinct lines through the origin in F+1. This gives us
the fibration

EP ---> FP* --. EG,+,

where FG,+I,. is the Grassmanian of (unoriented in the real case) 2-planes in
Fn+l.
The fiber is an open Moebius band for F R and is S X S A/Z in

the case F C. In either case the fiber has a real projective space RP,(d 1
if F R, d 2 if F C) as a deformation retract. Using this deformation
we can deform the total space onto a subspace, which we shall also denote
by FP*. We thus obtain a bundle v"

(1) RP,---* FP* FG,,+I,.

The deformation can be interpreted in the following way" each pair of
distinct lines in F+1 defines a 2-plane in F+; we move the two lines within
this plane until they become mutually orthogonal. This gives an inter-
pretation of the bundle (1) in terms of the canonical 2-plane bundle , over
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FG,+I, we take the sphere bundle associated to ’v and identify points which
lie on pairs of mutually orthogonal lines. In the case when F C this
amounts to taking the projectification of ’c with fiber CPI S, which, as
shall be seen later, has an associated RS-bundle and then the projectification
of this bundle (with respect to R) yields the bundle

This interpretation of FP*n gives a particularly simple way of computing its
cohomology.

Since is a projectification of real vector bundle (of dimension 2 when
F R and dimension 3 when F C) a standard spectral sequence argument
yields the cohomology of the total space. Namely, we have the following
proposition and corollary (e.g. Bott [2]):

PROPOSITION 3.1. Let be a real vector bundle over B. Then H*(P(), Z)
is a free module over H*(B, Z) generated by 1, X, X
where X e HI(P(), Z) is equal to

S is the canonical line bundle over P(). We also have the following:

COROLLAR:. There are unique classes w() e H(B, Z) i O, dim
k, Wo 1, such that the equation

k--1Z: -0 0

holds in H*(P(), Z). This is the defining relation of P() and w() are the
Stiefel-Whitney classes of the bundle .
To complete our computations it suffices to find the cohomology of the

Grassmanians (Borel [1]) and the stiefel-Whitney classes which correspond
to .

4. The bundles e and the cohomology of FP*
Whenever a homomorphism h" G H between two Lie groups is given

we can associate a principal H-bundle to a principal G-bundle using this
homomorphism. More precisely if E --* X is a principal G-bundle it is in-
duced by a map

EX Bo,

composing this map with the map

we obtain the map

X h,oE B.
which induces the desired principal H-bundle.
The bundle yv is the projectification of an 0. (when F R) or an 08 (when

F C) bundle v. In order to get at the cohomology of FP* we must cal-
culate the Stiefel-Whitney classes of this bundle
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From the description of it is clear that is associated to the canonical
2-plane bundle over RG,,+I, via the homomorphism

h 0(2) -, 0(2)
with kernel

(i.e. the center of 0(2)). This map induces the identity homomorphism on
H(O(2), Z.) and the trivial map on H1(0(2), Z.). It follows from the
spectral sequence for H*(BO(2), Z) that wl() w(,) and w.(f) 0.

In the case of vc we have a similar phenomenon. The bundle c is obtained
from /c via the homomorphism

he: U(2) --. So(a) -- 0(3)

whose kernel is the center of U(2). This homomorphism leads to the fibra-
tion

K(Z, 2) BSO(2) SV(2) -- BSO(3)

which yields w(c) 0, w.(c) pc(vc) and w(c) 0 where p denotes
reduction mod 2.
The cohomology of the Grassmanian has been determined by Borel [1] and

is given by

H*(FG,+I,., Z.) S(x x,,_) (R) S(x, x,+)/S+(xl x,+)

where S(x, xr) is the algebra of symmetric polynomials over x, xr
(all the generators are of dimension 1 if F R and of dimension 2 if F C)
and S+(x, x) is the ideal of elements of positive degree.
One can easily obtain a description of this ring which is more suitable for

computations. Namely we have (cf. [3])

PROPOSITION 4.1. H*(FG,+I., Z) is a ring on two generators x, y (dim
x d, dim y 2d) with the only relations"

a Z (’-(’)x-2Y 0 and a,,+ Z (’+- )x’+-Uy 0
i’-O

The Steenrod algebra structure is given by

Sqy xy if F R and Sqy xy if F C.

The elements x and y are the characteristic classes.
The proposition easily yields the following corollaries which are useful for

calculations:

Coaoav 4.1. xy’-- 0 if and only if i 2 1

Proof. We prove this assertio by induction on n. It is clearly true for
n 2 (the smallest possible value for n). Suppose that the statement is true
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for n k. That means that the system ak 0, ak+l 0 yields our proposi-
tion. The system for n k 1 can be taken to be ak+l O, yak 0 (cf.
(3)) so in the top dimension we get all the previous equations multiplied by y
and the equation k-1x ak+l 0. This last equation is

[k+l--j\ 2k-2 d0 ( 0+l)x + + + +
By the induction hypothesis the other equations yield

2k--23. 3"--1x y y=O

unless k j 2 1 for some s.
(*) are

where 1
or

and2 +j ] + 1.
in which case the added equation reads

xk y 0 and

The coefficients of the remaining terms in

This can be non-zero only when j 2 or k - 1 2’+1

which concludes the induction.

It follows from Corollary 4.1 that the height of y is maximal.

COROLLARY 4.2. The height of x does not change for 2r-1 <_ n <_ 2 1
and is equal to 2 2.

Proof. Since a. 0, a.+l 0 --, a.+l 0, a+. 0 the height of a in-
creases withn. Forn 2- 1

a,= - x y =x =0.

Since this is the first relation we conclude the height of x is n 1 2 2.
On the other hand for n 2-1, Corollary 4.1 states that a2-2 x(2r--1) 0
thus the height of x is again 2" 2 as was claimed.

To obtain a complete description of H*(FP*, Z) we now apply Proposition
3.1 and get

THEOREM 4.3. H (FP,, Z.) as a module over H*(FG,,+I. Z) is generated
by l, u, u, dim u 1 (d l if F R, d 2if F C). The rina
structure is given by the relation"

u ux if F R and u ux when F C.

5. App[ioios
We can apply the results of the previous section to obtain the classification

(first up to isotopy) of embeddings of RP in R2k when k is even and greater
than 2.
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Such embeddings are classified by the homotopy classes of non-zero sections
of the bundle

2

RP
where is the line bundle associated to the double covering

P X P A---, P X P
Since G+I. is non-orientable and the first Stiefel-Whitney class of its

tangent bundle is the same as wl(yR) w(R) x the manifold RP is a
(2k- 1)-dimensional orientable manifold. Moreover 2k is an orientable bun-
dle, we have thus

H-(RP, _(S2-) H (RP;Z) --- Z.

Since each element of H*(RP; Z) can be realized as an obstruction to a
homotopy between two different cross-sections of 2k’, we have

PROPOSITION 5.1. The isotopy classes of embeddings RP c R for k even
(k > 2) are in one-to-one correspondence with the integers.

To compare these isotopy classes of embeddings with regular homotopy
classes we must study the inclusion map P(r) c RP. Viewing r(RP) as
pairs of lines in R+ which are close to each other we see that P(r) is orientable
so

2k-1 $ Z) Z* H (RP, Z) ---, H-l(P(r),

is just multiplication by 2. This means that if two embeddings are regularly
homotopic they are already isotopic. This together with Proposition 5.1
yields"

THEOREM 5.2. The regular homotopy classes of embeddings RP R for
k even and greater than 2 coincide with the isotopy classes of such embeddings and
these in turn are in one-to-one correspondence with the integers.

D. Handel [4] has computed the cohomology of RP* and proved the follow-
ing embedding theorem"

Ifn 2a2(s> 2) thenRPR-.
The following holds for complex projective spaces"

IROPOSITION 5.3.1 If n 2 and n > 3 then CP,, embeds in R4’-.

Indeed, there is only one obstruction to a non-zero section of

This proposition has been known; we include it here to give an example which may
serve for other computations.
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(4n- 2)"

CP*
Since dim CP* 4n 2, the obstructioa is x(4n 2))--the Euler class.
The Euler class of an even multiple of a line bundle has the property that

2x(m) x((m- 2)i’)x(2) and if the mod 2 reduction of x((m- 2)) is
zero then x (m 2) ) 2. c and

x(m) 2.x(2).c 0.

Thus if u- 0 then x(m) 0.
In CP* we have u* 0 if k _> 2+ 1 where 2- _

n

_
2 1 (this

follows from the fact that ff- 0 and u’+ ux) so x((4n 2)) 0
whenever n 2.
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