# ON RELATORS AND DIAGRAMS FOR GROUPS WITH ONE DEFINING RELATION 

BY<br>C. M. Weinbaum<br>Introduction

For a group given by generators and defining relators, Van Kampen [3] described a suggestive representation for each relator (see [2, page 7], for definitions). A connected and simply connected plane complex was used, with a generator assigned to each oriented 1-cell, so that defining relators (or their inverses) corresponded to boundaries of 2 -cells and the relator corresponded to the boundary of the complex.

The plane configuration which will serve to represent relators in arbitrary presented groups is slightly more general. It is a finite, connected planar graph, together with an embedding of the graph in the Euclidean plane. These graphs were used implicitly by the author in [4] to give a new proof of the solution of the word problem for sixth groups. More extensive results on the word problem were obtained by Lyndon in [1] with the aid of these planar graphs. In Lyndon's terminology, these planar graphs are maps; when generators are assigned to their oriented edges in a suitable manner, they are referred to as diagrams.

In such a map, a face may have a boundary containing fewer vertices than edges. If there is such a face in a diagram for a relator in some presented group, then that face corresponds to a defining relator (usually assumed to be a cyclically reduced word) and some proper subword of that defining relator is a relator.

The known results in sixth groups [4, page 558] imply that no proper subword of any defining relator is a relator. As usual this statement refers to a particular presentation for the group and each defining relator is a cyclically reduced word. Our main result is that the same conclusion holds for each group with one defining relator. For the proof we find it convenient to replace a planar graph by an abstract structure, called a surface. This leads to abstract versions of maps and diagrams. The proofs of a key preliminary result (Theorem 1) and of the main result (Theorem 2) are based on a scheme used by Magnus to prove the Freiheitssatz (see [2]). But the basic tool in these proofs is a diagram. We close with a diagram-theoretic modification of the Magnus proof of the Freiheitssatz.

## 1. Surfaces and spheres

A surface is determined by a finite, non-empty set $S$, with an even number $2 e$ of elements, and by two permutations $f, g$ on $S$ such that $g$ is a product of $e$

Received February 2, 1970.
disjoint transpositions. We think of the surface as an ordered triple but we write it simply as $S f g$. Let $f g$ denote the composition of $f$ and $g$ with $f$ applied first. The oriented edges, vertices, edges, and faces are the elements of $S$ and the orbits of $f g, g, f$, respectively. The numbers of vertices, edges, and faces are denoted by $|f g|,|g|,|f|$, respectively. We write $f \doteq f_{1} \cdots f_{n}$ if $f_{1}, \cdots, f_{n}$ are the restrictions of $f$ to the orbits of $f$. Here $n=|f|$.

The edges and vertices which belong to a face $F$ are just the ones which have a non-empty intersection with $F$. Two faces are vertex disjoint (or edge disjoint) if no vertex (or no edge) belongs to both of them.

Remark 1. If two faces $F, G$ are vertex disjoint, then they are edge disjoint
Proof. If an edge $E$ belongs to $F$ and to $G$, then we must have $E=\{x, y\}$ with $x$ in $F, y$ in $G$. Then $x f^{-1}$ and $y$ are in the same vertex $V$ because $\left(x f^{-1}\right) f g=x g=y$. So $V$ belongs to $F$ and to $G$, a contradiction.

A face $F$ consisting of $n \geq 1$ oriented edges is said to be simple if $n$ distinct vertices belong to $F$.

Remark 2. No simple face $F$, consisting of $n \geq 3$ oriented edges, contains an edge.

Proof. If an edge $\{x, y\}$ is contained in such an $F$, then $x g=y$ and two cases arise. If $x f=y$, then $x f^{-1}$ and $y$ are distinct and (since $\left(x f^{-1}\right)(f g)=y$ ) are in the same vertex; if $x f \neq y$, then $y f^{-1}$ and $x$ are distinct and are in the same vertex. Either way, at most $n-1$ distinct vertices can belong to $F$ and so $F$ is not simple, a contradiction.

A surface $S f g$ is the union of surfaces $S_{i} f_{i} g_{i}, 1 \leq i \leq m$, if $S$ is the union of the $S_{i}$ and if, for each $i, f_{i}$ and $g_{i}$ are the restrictions of $f$ and $g$, respectively, to $S_{i}$. This is a disjoint union of surfaces if the $S_{i}$ are pairwise disjoint. The surface is connected if no proper subset of $S$ is closed under $f$ and $g$. It is then clear that each surface is uniquely a disjoint union of a finite number of connected surfaces. Finally, a sphere is a connected surface $S f g$ with Euler characteristic $|f g|-|g|+|f|$ equal to 2.

Lemma 1. Let $\operatorname{Sfg}$ be a sphere with $|f| \geq 2$. Let $a, b$ be distinct oriented edges belonging to different faces. Assume $a, b$ are in the same vertex. Suppose

$$
f \doteq\left(a_{1} \cdots a_{r}\right)\left(b_{1} \cdots b_{s}\right) v \quad \text { and } \quad f g \doteq\left(c_{1} \cdots c_{t} d_{1} \cdots d_{u}\right) w
$$

for some permutations $v, w$ and some oriented edges $a_{i}, b_{i}, c_{i}, d_{i}$ where $a=a_{r}$ $=c_{t}, b=b_{s}=d_{u}$. Then Spg is a sphere where $p=\left(a_{1} \cdots a_{r} b_{1} \cdots b_{s}\right) v$.

Proof. Observe that

$$
p=\left(a_{1} \cdots a_{r} b_{1} \cdots b_{s}\right)\left(b_{s} \cdots b_{1}\right)\left(a_{r} \cdots a_{1}\right) f=\left(a_{r} b_{s}\right) f=\left(c_{t} d_{u}\right) f
$$

So $p g=\left(c_{t} d_{u}\right)\left(c_{1} \cdots c_{t} d_{1} \cdots d_{u}\right) w$ and thus

$$
p g \doteq\left(c_{1} \cdots c_{t}\right)\left(d_{1} \cdots d_{u}\right) w
$$

Therefore $\boldsymbol{S p g}$ has Euler characteristic 2. It is connected because any subset $T$ (of $S$ ) which is closed under $p$ and $g$ must contain all or none of the $a_{i}, b_{i}$; so $T$ is closed under $f$ and $g$, and $T=S$ or $T$ is empty.

Lemma 2. Let $F=\{a, b\}$ be a simple face of $a$ sphere Sfg with $a \neq b$ and $|f| \geq 2$. Suppose $f \doteq(a b) p$ for some permutation $p$. Then $g \doteq(a c)(b d) v$ for some permutation $v$ and for some oriented edges $c, d$ such that $a, b, c, d$ are distinct. Furthermore, $T p q$ is a sphere where $T=S-F$ and $q \doteq(c d) v$.

Proof. Let $c=a g$ and $d=b g$. Then $c \neq a, d \neq b$ because $g$ has no fixed points; $c \neq d$ because $a \neq b$ and $g$ is one-to-one. Also $d \neq a$ since $d=a$ implies $\{a, b\}$ is closed under $f$ and $g$ so that $S=\{a, b\}$, contrary to $|f| \geq 2$. Finally, $c \neq b$ since $c=b$ implies $d=b g=c g=a$, which again yields a contradiction. Thus $a, b, c, d$ are distinct and we have $g \doteq(a c)(b d) v$ for some permutation $v$.

Since $F$ is simple, it follows that $a$ and $b$ are in different vertices and $f g \doteq$ $\left(a d_{1} \cdots d_{s}\right)\left(b c_{1} \cdots c_{r}\right) w$ for some permutation $w$ and some oriented edges $d_{i}, c_{i}$. We note that $d_{1}=a f g=b g=d$ and $c_{1}=b f g=a g=c$.

We form a surface $S f k$ where $k=(a b)(c d) v$. Since $v$ and (ac)(bd) commute, we have $k=(a c)(b d) v(a c)(b d)(a b)(c d)=g(a d)(b c)$. So

$$
f k=f g(a d)(b c)=w\left(a d_{1} \cdots d_{s}\right)\left(b c_{1} \cdots c_{r}\right)(a d)(b c)
$$

Then $f k \doteq w(a)(b)\left(d_{1} \cdots d_{s}\right)\left(c_{1} \cdots c_{r}\right)$.
Therefore $S f k$ has Euler characteristic 4. It is a disjoint union of $T p q$ and a sphere $\langle\{a, b\},(a b),(a b)\rangle$. The latter expression is an ordered triple consisting of a set followed by two permutations on that set. It follows that Tpq has Euler characteristic 2.

To see that $T p q$ is connected, we consider any subset $U$ (of $T$ ) which is closed under $p$ amd $q$. $\quad U$ must contain either both $c$ and $d$ or neither $c$ nor $d$. Hence either $U \cup\{a, b\}$ or $U$ is closed under $f$ and $g$. It follows that either $U \mathbf{u}\{a, b\}=S$ or $U$ is empty i.e. either $U=T$ or $U$ is empty. Thus $T p q$ is a sphere and we are done.

Lemma 3. Let $F=\left\{a, b, e_{1}, \cdots, e_{t}\right\}$ be a simple face of a sphere $\operatorname{Sfg}$ where $a, b, e_{1}, \cdots, e_{t}$ are distinct oriented edges, $|f| \geq 2$, and $t \geq 1$. Suppose $f \doteq\left(a b e_{1} \cdots e_{t}\right) p$ for some permutation $p$. Then $g \doteq(a c)(b d) v$ for some permutation $v$ and for some oriented edges $c, d$ such that $a, b, c, d, e_{1}, \cdots, e_{t}$ are distinct. Furthermore, Skg is a sphere where $k \doteq(a b)\left(e_{1} \cdots e_{t}\right) p$ and one of its faces $\{a, b\}$ is simple.

Proof. Let $c=a g$ and $d=b g$. Since $\{a, c\}$ and $\{b, d\}$ are edges, neither of them is contained in $F$, by Remark 2. Hence each of the oriented edges $c, d$ is different from each oriented edge in $F$. Finally, $c \neq d$ because $a \neq b$ and $g$ is one-to-one. Thus $a, b, c, d, e_{1}, \cdots, e_{i}$ are distinct and we have $g \doteq$ $(a c)(b d) v$ for some permutation $v$.

Since $F$ is simple, we find $e_{t}$ and $b$ in different vertices. But $e_{t}$ and $c$ are in
the same vertex because $e_{t} f g=a g=c$. So $b$ and $c$ are in different vertices. Thus $f g \doteq\left(a_{1} \cdots a_{r} b\right)\left(c d_{1} \cdots d_{s}\right) w$ for some permutation $w$ and some oriented edges $a_{i}, d_{i}$ where $r, s \geq 1$. We note that $d_{s} f g=c$. So $d_{s} f=c g=a$. Hence $d_{s}=e_{t}$. Also $a_{1}=b f g=e_{1} g$. Then

$$
k=(a b)\left(e_{1} \cdots e_{t}\right)\left(e_{t} \cdots e_{1} b a\right)\left(a b e_{1} \cdots e_{t}\right) p=\left(b e_{t}\right) f
$$

So $k g=\left(b e_{t}\right) f g=\left(b e_{t}\right)\left(a_{1} \cdots a_{r} b\right)\left(c d_{1} \cdots d_{s}\right) w$. Thus

$$
k g \doteq\left(a_{1} \cdots a_{r} b c d_{1} \cdots d_{s}\right) w
$$

Therefore $S k g$ has Euler characteristic 2. To see that it is connected, we consider any subset $U$ (of $S$ ) which is closed unker $k$ and $g$. $U$ must contain either all or none of the $e_{i}$. Hence either $U \mathbf{u}\{a, b\}$ or $U$ is closed under $f$ and $g$. Then either $U$ is empty or $U=S$. Thus $S k g$ is indeed a sphere.
To see that $\{a, b\}$ is a simple face of $\operatorname{Skg}$, we observe that $e_{t}, a, b$ are in distinct orbits of $f g$ because $F$ is a simple face. Thus $a, b, c$ are in distinct orbits of $f g$ because $e_{t} f g=c$. Therefore $a$ is not equal to any $a_{i}$ or $d_{i}$. Then $a, b$ are in distinct orbits of $k g$ since $k g \doteq\left(a_{1} \cdots a_{r} b c d_{1} \cdots d_{s}\right) w$.

## 2. Verbal surfaces

Let $a, b, c, d$ be elements (of any sort). We call $a b c d$ an array. Similarly, $a_{1} \cdots a_{m}$ denotes an array of $m \geq 1$ elements. We need not require that $a_{1}, \cdots, a_{m}$ be distinct. If $A, B$ are, respectively, the arrays $a_{1} \cdots a_{m}$ and $b_{1} \cdots b_{n}$, then $A B$ is defined to be the array $a_{1} \cdots a_{m} b_{1} \cdots b_{n}$.
If $A, B$ are arrays, then $(A, B)$ denotes the set of all arrays $C$ such that either $C=A B$, or $C=B A$, or $C=X B Y$ and $A=X Y$ for some arrays $X, Y$. We think of the latter case as inserting $B$ into $A$. This can arise only if $A=a_{1} \cdots a_{m}$ where $m \geq 2$. For arrays $A_{1}, \cdots, A_{n}, n \geq 1$, we define the set $\left(A_{1}, \cdots, A_{n}\right)$ inductively. ( $A_{1}$ ) has one element $A_{1}$. ( $A_{1}$, $\cdots, A_{n}$ ) is the set of all arrays $V$ such that $V$ is in ( $U, A_{n}$ ) for some $U$ in $\left(A_{1}, \cdots, A_{n-1}\right)$.
Now let $p=\left(c_{1} \cdots c_{r}\right)$ be a cyclic permutation on the set consisting of $r \geq 1$ distinct elements $c_{1}, \cdots, c_{r}$. We say the array $c_{1} \cdots c_{r}$ represents $p$. If we denote this array by $C$, then exactly $r$ arrays ( $C$ and its cyclic permutations) can represent $p$.

Let $S f g$ be a surface with $f \doteq f_{1} \cdots f_{n}$ and $g \doteq g_{1} \cdots g_{e}$ for some cyclic permutations $f_{i}, g_{j}$. We call Sfg verbal if

$$
\left(A_{1}, \cdots, A_{n}\right) \cap\left(I_{1}, \cdots, I_{\varepsilon}\right)
$$

is not empty for some arrays $A_{i}, I_{j}$ representing $f_{i}, g_{j}$, respectively.
Remark 3. If $W$ is in $\left(A_{1}, \cdots, A_{r}, X\right)$ and if $X$ is in $(Y, Z)$ where $W, X, Y, Z$, and the $A_{i}$ are arrays, then $W$ is in

$$
\left(A_{1}, \cdots, A_{r}, Y, Z\right)
$$

Remark 4. If $C$ is a cyclic permutation of $A B$ where $A, B, C$ are arrays,
then $C$ is in $(X, Y)$ where either $Y=A$ and $X$ is a cyclic permutation of $B$ or $Y=B$ and $X$ is a cyclic permutation of $A$.

Remark 5. If $W$ is in $\left(A_{1}, \cdots, A_{r}, C\right)$ and $C$ is a cyclic permutation of $A B$, where $W, A, B, C$ and the $A_{i}$ are arrays, then $W$ is in

$$
\left(A_{1}, \cdots, A_{r}, X, Y\right)
$$

where $X, Y$ satisfy the conclusions of Remark 4.
Remark 6. Each connected verbal surface $S f g$ is a sphere.
Proof. We need some results in [4]. The terminology there is related to our present set-up as follows. Let $W$ be an array in

$$
\left(A_{1}, \cdots, A_{n}\right) \cap\left(I_{1}, \cdots, I_{e}\right)
$$

where $A_{1}, \cdots, A_{n}, I_{1}, \cdots, I_{e}$ represent the cycles of $f$ and $g$, respectively, and $n=|f| \geq 1, e=|g| \geq 1$. Then, as in [4], we have

$$
\begin{array}{ll}
1 \rightarrow W & \left(\text { insert } A_{1}, \cdots, A_{n}\right) \\
W \rightarrow 1 & \left(\text { delete } I_{\epsilon}, \cdots, I_{1}\right)
\end{array}
$$

So ( $S, f, g, \theta$ ) is a structure where $\theta$ is a cyclic permutation on the set $S$ and $\theta$ is represented by the array $W$. This structure is minimal (see definition in [4, page 561]) because $S f g$ is connected. The structure is cancelled (see definition in [4, page 560]) because $g$ has no fixed points.

By Theorem 6.1 in [4], ( $S, f, g$ ) is a spherical complex, in the terminology of [4]. This is equivalent to saying $S f g$ is a sphere because the notions of connectedness here and in [4] are equivalent (see definition in [4, page 561]).

Remark 7. Each verbal surface $S f g$ is a disjoint union of a finite number of spheres.

Proof. Let $W$ be in $\left(A_{1}, \cdots, A_{n}\right) \cap\left(I_{1}, \cdots, I_{e}\right)$ for some arrays $A_{i}$, $I_{j}$ representing, respectively, the cycles of $f$ and $g$ where $n=|f| \geq 1$ and $e=|g| \geq 1$. Let $T$ be any non-empty subset (of $S$ ) which is minimal with respect to the property that $T$ is closed under $f$ and $g$. Then $T$ is a union of faces $F_{1}, \cdots, F_{r}$ and also a union of edges $E_{1}, \cdots, E_{s}$ with $r, s \geq 1$. If the corresponding cycles of $f$ and $g$ are $f_{1}, \cdots, f_{r}$ and $g_{1}, \cdots, g_{s}$, respectively, then there exists some subsequence $B_{1}, \cdots, B_{r}$ of $A_{1}, \cdots, A_{n}$ and some subsequence $J_{1}, \cdots, J_{8}$ of $I_{1}, \cdots, I_{e}$ such that $B_{i}, J_{j}$ represent $f_{i}, g_{j}$ for all $i, j, 1 \leq i \leq r, 1 \leq j \leq s$.

We form an array $V$ (from $W$ ) by deleting all oriented edges in $S-T$. Then $V$ is in $\left(B_{1}, \cdots, B_{r}\right) \cap\left(J_{1}, \cdots, J_{s}\right)$. So $T p q$ is a connected verbal surface, where $p=f_{1} \cdots f_{r}$ and $q=g_{1} \cdots g_{s}$. The proof is completed by observing that $S$ is a disjoint union of a finite number of sets such as $T$ and that $T p q$ is a sphere by Remark 6.

Remark 8. Each sphere $S f g$, with $n=|f| \geqq 1$, is a verbal surface.

Proof. In the terminology of [4], ( $S, f, g$ ) is a spherical complex with $n$ boundaries. By Theorem 6.3 in [4], there exists a minimal, cancelled structure $(S, f, g, \theta)$. Therefore, there is an array $W$, representing $\theta$, and there are arrays $A_{1}, \cdots, A_{n}, I_{1}, \cdots, I_{e}$ representing the cycles of $f$ and $g$, respectively, with $|g|=e$, such that

$$
\begin{array}{ll}
1 \rightarrow W & \left(\text { insert } A_{1}, \cdots, A_{n}\right) \\
W \rightarrow 1 & \text { (delete } \left.I_{e}, \cdots, I_{1}\right)
\end{array}
$$

Hence $W$ is in $\left(A_{1}, \cdots, A_{n}\right) \cap\left(I_{1}, \cdots, I_{\theta}\right)$ and so $\mathbb{S f g}$ is verbal.
Lemma 4. Let Sfg be a sphere with $|f| \geq 1$. Let $a, b$ be distinct oriented edges in the same face and in the same vertex. Suppose

$$
f \doteq\left(a_{1} \cdots a_{r} b_{1} \cdots b_{s}\right) v \quad \text { and } \quad f g \doteq\left(c_{1} \cdots c_{t} d_{1} \cdots d_{u}\right) w
$$

for some permutations $v, w$ and some oriented edges $a_{i}, b_{i}, c_{i}, d_{i}$ where $a=$ $a_{r}=c_{i}, b=b_{s}=d_{u}$ and $r, s, t, u \geq 1$. Let

$$
p \doteq\left(a_{1} \cdots a_{r}\right)\left(b_{1} \cdots b_{s}\right) v
$$

Then Spg is a disjoint union of two spheres where $\left\{a_{1}, \cdots, a_{r}\right\}$ is a face of one of these spheres, and $\left\{b_{1}, \cdots, b_{s}\right\}$ is a face of the other.

Proof. Observe that

$$
p=\left(a_{1} \cdots a_{r}\right)\left(b_{1} \cdots b_{s}\right)\left(b_{s} \cdots b_{1} a_{r} \cdots a_{1}\right) f=\left(a_{r} b_{s}\right) f
$$

So $p g=\left(a_{1} b_{s}\right)\left(c_{1} \cdots c_{t} d_{1} \cdots d_{s}\right) w$ and thus

$$
p g \doteq\left(c_{1} \cdots c_{r}\right)\left(d_{1} \cdots d_{s}\right) w
$$

Therefore Spg has Euler characteristic 4.
To see that $S p g$ is verbal, we suppose that arrays $A_{1}, \cdots, A_{n}$ represent the cycles of $f$. One of these arrays is a cyclic permutation $C$ of $A B$ where $A=a_{1} \cdots a_{r}, B=b_{1} \cdots b_{s}$. So $A$ and $B$ represent two cycles of $p$. By Remark $4, C$ is in ( $X, Y$ ) where $X, Y$ are arrays representing these same two cycles of $p$. We form a sequence $D_{1}, \cdots, D_{n+1}$ of arrays from $A_{1}, \cdots, A_{n}$ by replacing $C$ (in the latter sequence) by two successive terms $X, Y$. Then any array in ( $A_{1}, \cdots, A_{n}$ ) will also be in ( $D_{1}, \cdots, D_{n+1}$ ) and, furthermore, $D_{1}, \cdots, D_{n+1}$ represent the cycles of $p$. It follows that $S p g$ is verbal because $S f g$ is verbal.

By Remark 7, $S p g$ is a disjoint union of two spheres. The oriented edges $a, b$ must be in different spheres because $f, p$ disagree only on $a$ and on $b$. This completes the proof.

## 3. Maps and diagrams

A labelled sphere, over a free group $F$ with a given set of free generators, is determined by a sphere $S f g$ and a function $L$ which assigns a label $x L$ to each
$x$ in $S$, where $x L$ is a generator (of $F$ ) or its inverse. It is required that if $x g=y$ then $x L$ and $y L$ are inverses of each other.
$A \operatorname{map} M$ is determined by a sphere $S f g$ and one face $H$ of that sphere. If, in addition, $S f g$ and some $L$ determine a labelled sphere, over some $F$, then we say that $M$ and $L$ determine a diagram over $F$. In this context, the faces of the map (or of the diagram) are all the orbits of $f$, except $H$; the vertices, edges, and oriented edges of the map (or of the diagram) are those of Sfg.

We now establish notation which will be used repeatedly. We follow essentially the pattern in [2, pages 254 and 256]. G denotes a group given by two or more generators and by one defining relation $R=1$ where $R$ is a nonempty cyclically reduced word involving all the generators. Since subscripts on generators will serve another purpose, we denote the generators by $b, c, \cdots, t$. By this, we mean, for instance, $b, t$ or $b, c, t$ or $b, c, d, t$ if there are exactly 2,3 , or 4 generators, respectively. We now assume that the generator $b$ has a zero exponent sum in the word $R$. Then $N$ denotes the smallest normal subgroup (of $G$ ) containing all the generators (of $G$ ) except $b$. We use the powers of $b$ ( $b^{i}$, for any integer $i$ ) as a Schreier system of coset representatives for $N$ (in $G$ ) to get a Reidemeister-Schreier rewriting process.

We use the symbols $c_{i}, \cdots, t_{i}$ to denote the elements $b^{i} c b^{-i}, \cdots, b^{i} t b^{-i}$, respectively, where $i$ is any integer. The rewriting process changes a word $X$ into a word $X^{\prime}$. Here $X$ is a word in the generators $b, c, \cdots, t$ and $X$ defines an element of $N . \quad X^{\prime}$ is a word in the symbols $c_{i}, \cdots, t_{i}$. The rewriting process changes $X$ in the following way. If $p$ denotes a particular symbol in $X$ and $p$ occurs among $c, c^{-1}, \cdots, t, t^{-1}$, then $p$ is replaced by $p_{k}$ (e.g. $c$ is replaced by $c_{k}, t^{-1}$ is replaced by $t_{k}^{-1}$ ) where $k$ is the $b$-exponent sum of the initial segment of $X$ preceding $p$. The process is completed by discarding any $b$ symbols in $X$.

Let $P_{i}=\left(b^{i} R b^{-i}\right)^{\prime}$ for each integer $i$. Then each $P_{i}$ is a cyclically reduced word (see problem 2, page 98, in [2]). The Reidemeister-Schreier method leads to a presentation for $N$ :

$$
N=\left\langle\cdots, c_{-1}, c_{0}, c_{1}, \cdots, t_{-1}, t_{0}, t_{1}, \cdots ; \cdots, P_{-1}, P_{0}, P_{1}, \cdots\right\rangle
$$

Since $R$ involves $c, \cdots, t, P_{0}$ involves some $c_{i}, \cdots$, some $t_{j}$. Therefore $P_{r}$ involves $c_{i+r}, \cdots, t_{j+r}$. It follows that each generator in the presentation for $N$ appears in at least one defining relator in this presentation. In contrast to [2, p. 257], we choose to define $N_{i}$ as the group having one defining relator $P_{i}$ and having, as generators, the generators involved in $P_{i}$, for each integer $i$.

Finally, let $H=\left\{a_{1}, \cdots, a_{r}\right\}$ be a face of a labelled sphere Sfg over a free group $F$. Suppose $f \doteq\left(a_{1} \cdots a_{r}\right) p$ for some permutation $p$. Let $L$ be the label function. We say that a non-empty word $W$ (in the generators of $F$ ) corresponds to $H$ or $H$ corresponds to $W$ if the word $a_{1} L \cdots a_{r} L$ is, as it stands, $W$ or some cyclic permutation of $W$.

Theorem 1. Let $M$ be a diagram over the free group with free generators $c_{i}, \cdots, t_{i}$ for $i$ ranging over the integers. Suppose $M$ is determined by a face $H$
on a labelled sphere Sfg with label function $L$ and $|f| \geq 2$. Assume each face of $M$ corresponds to a relator in $N_{i}$, for some integer $i$ depending on the face. Assume a word $W$ not freeiy equal to 1 corresponds to $H$. The word $W$ and the relators corresponding to the faces of $M$ need not be freely reduced or cyclically reduced. Then there exists a diagram $M^{\prime}$, over the same free group, determined by the face $H^{\prime}$ on a labelled sphere $T p q$ with label function $L^{\prime}$ and with $|p| \geq 2$ such that:
(1) $T \subseteq S, L^{\prime}=L$ on $T$, and $H^{\prime} \subseteq H$.
(2) Each face of $M^{\prime}$ corresponds to a cyclically reduced relator in some $N_{i}$, where $i$ depends on the face.
(3) If two different faces (of $M^{\prime}$ ) correspond to relators in the same $N_{i}$, then the two faces are vertex disjoint.
(4) Each face of $M^{\prime}$ is simple.
(5) The cyclically reduced form of $W$ corresponds to $H^{\prime}$.
$N o t e$. The following two lemmas will be needed in the proof of Theorem 1 which requires an induction argument. Therefore, during the proof of Theorem 1, we assume that the conclusions of Theorem 1 are true when the induction hypothesis is valid. It is under these circumstances that Lemma 6 will be used. This note is intended to quiet the fear of using circular reasoning when invoking Lemma 6 (and thereby invoking its predecessor Lemma 5). This fear is raised because these lemmas assume that the conclusions of Theorem 1 hold for some diagram.

Lemma 5. Let $M^{\prime}$ be a diagram over the free group with free generators $c_{i}, \cdots, t_{i}$ for $i$ ranging over the integers. Let $x$ denote one of these generators. Suppose $M^{\prime}$ is determined by a face $H^{\prime}$ on a labelled sphere Tpq. Assume the conclusions of Theorem 1 are satisfied by $M^{\prime}$. Let $I$ be the set of all integers $i$ such that some relator in $N_{i}$ corresponds to some face of $M^{\prime}$. If $x$ is involved in $P_{j}$ for a unique integer $j$ in $I$, then the label for some oriented edge $b$ in $H^{\prime}$ is $x$ or $x^{-1}$.

Proof. For such an $x$ and such a $j$, we conclude that each non-empty cyclically reduced relator in $N_{j}$ involves $x$ (by the Freiheitssatz). Let $F$ be a face (of $M^{\prime}$ ) corresponding to a non-empty cyclically reduced relator in $N_{j}$. Call this relator $Y$. Then $Y$ involves $x$. Suppose an oriented edge a, in $F$, has the label $x^{-1}$ (or $x$ ). Let $b=a q$. Then $x$ (or $x^{-1}$ ) is the label for $b$. Now no $P_{i}$, for $i$ in $I$ and $i \neq j$, involves $x$. Also any face (of $M^{\prime}$ ), different from $F$ and corresponding to a relator in $N_{j}$, has no vertex in common with $F$, and hence no edge in common with $F$ (by Remark 1). So $b$ is not in any face ( of $M^{\prime}$ ) different from $F$. Since $F$ is simple, $b$ is not in $F$ if $F$ contains at least three oriented edges (by Remark 2). Finally, if $F$ contains exactly two oriented edges, then $b$ is not in $F$ because, otherwise, $F$ would be equal to $\{a, b\}$ and the non cyclically reduced word $x x^{-1}$ would correspond to $F$. Therefore, $b$ is in $H^{\prime}$ and we are done.

Lemma 6. If the assumptions of LEMMA 5 hold and if $H^{\prime}$ corresponds to a word $W$ in the generators of $N_{k}$, for some integer $k$, then $I=\{k\}$.

Proof. Let $r, s$ be, respectively, the minimum and maximum integers in $I$. Let $m, n$ be, respectively, the minimum and maximum subscripts on $a, c$ involved in $P_{0}$. If $x=c_{r+m}$ and $y=c_{s+n}$, then the unique $P_{i}$ (as $i$ ranges over $I$ ) which involves $x$ is $P_{r}$. Similarly, if $P_{i}$ involves $y$ and $i$ is in $I$, then $i=s$. Thus $x$ and $y$ are involved in $W$ by Lemma 5.

If $k \neq r$ then $x$ is not involved in $P_{k}$; hence a is not involved in $W$, a contradiction. Therefore $k=r$. Similarly $k=s$ (using $y$ ).

Proof of Theorem 1. Use induction on the number $|f|+|g|$ which is $\geqq 3$. If $|f|+|g|=3$ then since $|g|=1, S$ must have precisely two elements. Then we can use $M^{\prime}=M$. In this case, each of the two faces of Sfg will correspond to a cyclically reduced word of length 1 . Now suppose $|f|+|g|>3$.

We now consider 5 cases:
$0 . M$ satisfies (2), (3), (4), (5).

1. $M$ does not satisfy (3).
2. $M$ does not satisfy (4).
3. $M$ satisfies (4), but not (2).
4. $M$ satisfies (2), (3), (4), but not (5).

Case 0 . We use $M^{\prime}=M$.
Case 1. If property (3) does not hold for $S f g$, we suppose that relators $X, Y$ in some $N_{i}$ correspond to two different faces containing oriented edges $a, b$, respectively, and that $a, b$ are in the same vertex, as in Lemma 1. By Lemma 1 there is a sphere $S p g$ with the face $H$ which, together, determine a diagram $M^{\prime \prime}$, if we keep the labels from $M$. Then there is a face (of $M^{\prime \prime}$ ) corresponding to a relator $Z=U V$ in $N_{i}$ where $U, V$ are, respectively, cyclic permutations of $X$ and $Y$. We note that $W$ still corresponds to the face $H$ of the labelled sphere $S p g$ and $|p|<|f|$. We find a suitable diagram $M^{\prime}$ by applying the induction assumption to $M^{\prime \prime}$.

Case 2. Assume $M$ does not satisfy (4) so some particular face of $M$ corresponding to a relator in $N_{i}$ is not simple. We suppose that the assumptions and all notation in the statement of Lemma 4 hold for Sfg . We mean this to include the representation of

$$
f \doteq\left(a_{1} \cdots a_{r} b_{1} \cdots b_{s}\right) v
$$

the definition of the permutation $p$, and the conditions on the oriented edges $a, b$ in the above-mentioned particular face. Thus $S p g$ is a disjoint union of two spheres (taken in some order). We make these labelled spheres by keeping the labels from $M$.

Suppose $H$ and $A=\left\{a_{1}, \cdots, a_{r}\right\}$ are faces of the first sphere and $B=$
$\left\{b_{1}, \cdots, b_{s}\right\}$ is a face of the second sphere. Let a word $U$ be chosen to correspond to the face ( of $M$ ) containing $a, b$ in such a way that $U$ is of the form $X Y$ where $X, Y$ correspond to the faces $A, B$, respectively, of $S p g$. This implies that $U$ is a relator in $N_{i}$ and that $X$ and $Y$ are words in the generators of $N_{i}$.

We apply the induction assumption to the diagram $M_{1}$ determined by the face $B$ on the second sphere. We thereby get a diagram $M_{1}^{\prime}$ determined by a face $H_{1}^{\prime}$ on some third sphere. Here $H_{1}^{\prime}$ corresponds to the cyclically reduced form $Z$ of the word $Y$. By applying Lemma 6 to $M_{1}^{\prime}$ and $H_{1}^{\prime}$, we conclude that each face of $M_{1}^{\prime}$ corresponds to a cyclically reduced relator in $N_{i}$ (because $Z$ is a word in the generators of $N_{i}$ ).

We observe that all but one (namely $B$ ) of the faces of the third labelled sphere correspond to relators in $N_{i}$. It follows from Theorem 6.4 in [4] that the face $B$ also corresponds to a relator in $N_{i}$, i.e. $Z$ is a relator in $N_{i}$. Therefore $Y$ is a relator in $N_{i}$ and so is $X$.

Now we apply the induction assumption to the diagram $M^{\prime \prime}$ determined by the face $H$ on the first sphere to get a suitable diagram $M^{\prime}$.

Case 3. Assume $M$ satisfies (4) but not (2) so each face of $M$ is simple and some face $H^{\prime \prime}$ of $M$ corresponds to a noncyclically reduced word. We consider two cases. When $H^{\prime \prime}$ contains more than two oriented edges, we form the sphere $S k g$ as in Lemma 3 (assuming that the oriented edges $a, b$ in the statement of Lemma 3 have labels which are inverse generators). We keep the labels of $M$ to make $S k g$ a labelled sphere. Going from $S f g$ to $S k g$ we lose one vertex and gain one simple face $\{a, b\}$.

We apply Lemma 2 to the face $\{a, b\}$ on the sphere $S k g$ to get a sphere $T p q$ with face $H$. We use the restrictions of $L$ to $T$ as a label function for $T p q$. Since $1+|q|=|g|$ and $1+|p|=|f|$, we can use the induction assumption on the diagram determined by the face $H$ on the labelled sphere $T p q$ to get a suitable diagram $M^{\prime}$.

In the second case, $H^{\prime \prime}=\{a, b\}$ is a simple face and $a L, b L$ are inverse generators. We again apply Lemma 2 to a face $H^{\prime \prime}$ on the sphere $\operatorname{Sfg}$ to get a labelled sphere $T p g$, as above. We find a suitable $M^{\prime}$ as before.

Case 4. Assume $M$ satisfies (2), (3), (4) but not (5) so $W$ is not cyclically reduced. Then the cyclic word $W$ contains some subword consisting of a generator and its inverse. Since $W$ is not freely equal to 1 , the length of $W$ is at least 3. Suppose $f \doteq\left(a b c_{1} \cdots c_{r}\right) p$ for some oriented edges $a, b, c_{i}$, $1 \leq i \leq r$ and some permutation $p$ such that

$$
H=\left\{a, b, c_{1}, \cdots, c_{r}\right\}
$$

and $a L, b L$ are a generator and its inverse.
Subcase A. Assume $b$ and $c_{r}$ are in different vertices. Say

$$
f g \doteq\left(d_{1} \cdots d_{s}\right)\left(e_{1} \cdots e_{t}\right) w
$$

for some oriented edges $d_{i}, e_{i}$ and some permutation $w$ where $d_{s}=b, e_{t}=c_{r}$ and $s, t \geq 1$. Let $k \doteq(a b)\left(c_{1} \cdots c_{r}\right) p$. We claim that $S k g$ is a sphere. In fact, $k=\left(b c_{r}\right) f$ and so

$$
k g \doteq\left(d_{1} \cdots d_{s} e_{1} \cdots e_{i}\right) w
$$

Thus Skg had Euler characteristic 2. To see that $S k g$ is a verbal surface, we may use the argument involving $S p g$ in the proof of Lemma 4. Therefore, by Remark 7, $S k g$ is a sphere. We can now apply Lemma 2 to the face $\{a, b\}$ on the sphere $S k g$ and find a suitable diagram $M^{\prime}$ as in Case 3.

Subcase B. Assume $b$ and $c_{r}$ are in the same vertex. Say

$$
f g \doteq\left(d_{1} \cdots d_{s} e_{1} \cdots e_{t}\right) w
$$

for some oriented edges $d_{i}, e_{i}$ and some permutation $w$ where $d_{s}=b, e_{t}=c_{r}$ and $s, t \geq 1$. Let $k \doteq(a b)\left(c_{1} \cdots c_{r}\right) p$. We claim that $S k g$ has Euler characteristic 4. In fact, $k=\left(b c_{r}\right) f$ and so

$$
k g \doteq\left(d_{1} \cdots d_{s}\right)\left(e_{1} \cdots e_{t}\right) w
$$

Skg is a verbal surface, as in Subcase A. Therefore, by Remark 7, Skg is a disjoint union of 2 spheres. One of these spheres (call it $T p q$ ) has a face $H^{\prime \prime}=\left\{c_{1}, \cdots, c_{r}\right\}$ and the other sphere has a face $\{a, b\}$. These two faces are on different connected pieces of $S k g$ because $S f g$ is connected and $f, k$ differ only on $b$ and on $c_{r}$. By restricting $L$ to $T$, we make $T p q$ into a labelled sphere. We can now apply the induction assumption to the diagram $M^{\prime \prime}$ determined by $H^{\prime \prime}$ and $T p q$ to get a suitable diagram $M^{\prime}$. This completes the proof of Theorem 1.

In order to prove our main result, we need a final reference to [4] and a final lemma.

Remark 9. For each relator $W$ in a group given by generators and nonempty cyclically reduced defining relators such that each generator appears in at least one defining relator, there exists a labelled sphere with two or more faces such that $W$ corresponds to one face and each of the other faces corresponds to a defining relator or its inverse.

Proof. Use Theorem 6.2 in [4] and note that each spherical complex is a sphere.

Lemma 7. Let $W$ be a word in the generators of $N_{k}$ for some integer $k$. If $W$ is a relator in $N$, then $W$ is a relator in $N_{k}$. (This implies that the smallest subgroup of $N$, containing the generators involved in $P_{k}$, is isomorphic to $N_{k}$, for each integer $k$.)

Proof. We can assume that W is non-empty and cyclically reduced. By Remark 9, W corresponds to one face $H^{\prime}$ of some labelled sphere $T p q$ (with at least two faces) such that defining relators of $N$ correspond to the other faces. Thus $H^{\prime}$ and $T p q$ determine a diagram $M^{\prime}$. By Theorem 1,
we can assume that $T p q$ satisfies the conclusions of Theorem 1. By Lemma 6, each face of $T p q$ (except $H^{\prime}$ ) corresponds to $P_{k}$ or to $P_{k}^{-1}$. It follows from Theorem 6.4 in [4] that $W$ is a relator in $N_{k}$.

## 4. Main result

Theorem 2. Let $G$ be a group given by one or more generators and one defining relator $R$, which is a non-empty cyclically reduced word involving all the generators. Then no proper subword of $R$ is a relator.

Proof. We use induction on the length of $R$. When the length is 1 , the theorem is true. To avoid a trivial situation, we can assume that there are at least 2 generators. Let $U$ be a proper subword of $R$. Assume $U$ is a relator. Since $R$ can be replaced by any of its cyclic permutations when describing $G$, we can assume that $R$ is a product $U V$ which is cyclically reduced, as it stands.

Case 1. Suppose some generator, say b, has a zero exponent sum in $R$. We now use the notation in Section 3. So we have a normal subgroup $N$, a presentation for $N$ using generators $c_{i}, \cdots, t_{i}$ as $i$ ranges over the integers, and a rewriting process $X \rightarrow X^{\prime}$. In particular, $U \rightarrow U^{\prime}$ and $U^{\prime}$ is a relator in $N$.

Since $U$ is non-empty and freely reduced as a word in the generators of $G$, the same is true for $U^{\prime}$ as a word in the generators of $N$ (see problem 2, page 98, in [2]). Furthermore, $R^{\prime}$ and $U^{\prime} V^{\prime}$ are identical words in the generators of $N$ (by property (vi), page 92, in [2]). Thus $U^{\prime}$ is a proper subword of $R^{\prime}=P_{0}$.

Now consider the word $W^{\prime}$ which is the cyclically reduced form of the word $U^{\prime}$. By Remark 9 , there exists a diagram $M$ determined by a face $H$ on a labelled sphere Sfg such that $H$ corresponds to $W^{\prime}$ and each face of $M$ corresponds to $P_{i}$ or $P_{i}^{-1}$ for some integer $i$ depending on the face.

We apply Theorem 1 to $M$ to get a diagram $M^{\prime}$, determined by the face $H$ on a labelled sphere $T p q$ such that $W^{\prime}$ corresponds to $H$. By Lemma 7, $W^{\prime}$ is a relator in $N_{0}$. Hence, so is $U^{\prime}$. This gives a contradiction because the induction assumption can be applied to the group $N_{0}$ with one defining relator $P_{0}=R^{\prime}=U^{\prime} V^{\prime}$.

Case 2. Suppose each of the generators $b, c, \cdots, t$ has a non-zero exponent sum in $R$. Let $b, t$ have exponent sums $m, n$ respectively. Instead of $G=$ $b, c, \cdots, t ; R(b, c, \cdots, t)$ we now consider

$$
E=\left\langle x, c, \cdots, t ; R\left(x^{n}, c, \cdots, t\right)\right\rangle
$$

$G$ can be mapped homomorphically into $E$ by the mapping $b \rightarrow x^{n}, c \rightarrow c, \cdots$, $t \rightarrow t$. Since we are assuming that $U$, written functionally as

$$
U(b, c, \cdots, t)
$$

is a relator in $G$, we find that the word

$$
U\left(x^{n}, c, \cdots, t\right)
$$

is a relator in $E$ and it is a proper subword of

$$
R\left(x^{n}, c, \cdots, t\right)
$$

We apply Tietze transformations to $E$ to get a presentation in which the single defining relator $R\left(x^{n}, c, \cdots, y x^{-m}\right)$ has a zero exponent sum in the generator $x$.

$$
\begin{aligned}
& E=\left\langle x, c, \cdots, t, y ; R\left(x^{n}, c, \cdots, t\right), y=t x^{m}\right\rangle \\
& E=\left\langle x, c, \cdots, t, y ; R\left(x^{n}, c, \cdots, t\right), t=y x^{-m}\right\rangle \\
& E=\left\langle x, c, \cdots, y ; R\left(x^{n}, c, \cdots, y x^{-m}\right)\right\rangle
\end{aligned}
$$

Again the word

$$
U\left(x^{n}, c, \cdots, y x^{-m}\right)
$$

is a relator in $E$ and it is a proper subword of $R\left(x^{n}, c, \cdots, y x^{-m}\right)$. Since the latter word has a zero exponent sum in $x$, we can use $x$ (just as we used $b$ in Section 3) to go to the normal subgroup $N($ in $E)$ generated by $c, \cdots, y$.

$$
N=\left\langle\cdots, c_{-1}, c_{0}, c_{1}, \cdots, y_{-1}, y_{0}, y_{1}, \cdots ; \cdots, P_{-1}^{\prime}, P_{0}^{\prime}, P_{1}^{\prime}, \cdots\right\rangle
$$

Here we have a rewriting process $X \rightarrow X^{\prime}$ which comes from the Schreier representatives $x^{k}, k$ an integer, for $N$ in $E$. So

$$
P_{i}^{\prime}=\left(x^{i} R\left(x^{n}, c, \cdots, y x^{-m}\right) x^{-i}\right)^{\prime}
$$

Since the $x$-symbols in $R\left(x^{n}, c, \cdots, y x^{-m}\right)$ will contribute no symbols to $P_{0}^{\prime}$, the latter word has smaller length than $R(b, c, \cdots, t)$.

Since the word $\left(U\left(x^{n}, c, \cdots, y x^{-m}\right)\right)^{\prime}$ is a word in the generators of $N_{0}$ and this word is a relator in $N$, we conclude that this word is a relator in $N_{0}$, by Lemma 7. Furthermore, it is a proper subword of $P_{0}$. By applying the induction assumption to the group $N_{0}$ which has $P_{0}$ as its single defining relator, we get a contradiction.

## 5. A new proof of the Freiheitssatz

Theorem 3. (The Freiheitssatz). Let $G$ be a group given by one or more generators and one defining relation $R=1$, where $R$ is a non-empty cyclically reduced word involving all the generators. Let $W$ be a non-empty cyclically reduced word in the generators. If $W=1$ in $G$, then $W$ involves all the generators.

Proof. We use induction on the length of $R$. When the length is 1 , the theorem is true. To avoid a trivial situation, we can assume that there are at least 2 generators. We shall show that a typical generator (to be called $t$ ) is involved in $W$.

Case 1. The generators of $G$ are $b, t$ and $t$ has a non-zero exponent sum in $R$. For a brief proof, see [2, page 253].

Case 2. The generators of $G$ are $b, t$ and $t$ has a zero exponent sum in $R$. Form the normal subgroup $N$ (of $G$ ) generated by $t$, the rewriting process $X \rightarrow X^{\prime}$, and the presentation for $N$ as in Section 3. Here $t$ takes the place of $b$ in section 3. Then $W^{\prime}$ is a cyclically reduced word in the generators of $N$ and $W^{\prime}$ is a relator.

By the induction assumption, we are allowed to apply the Freiheitssatz to each group $N_{j}$ which has a single defining relator $P_{j}$ whose length is smaller than the length of $R$. If we regard the assumptions of Lemma 5 as applying to the subgroup $N$ of our present group $G$, then the proof of Lemma 5 still holds since the application of the Freiheitssatz will be permissible. It follows that Theorem 1 is also valid when applied to the present $N$ and $G$.

By Remark 9, there exists a diagram $M$ determined by a face $H$ on a labelled sphere Sfg such that $H$ corresponds to $W^{\prime}$ and each face of $M$ corresponds to some $P_{i}$ or $P_{i}^{-1}$. We apply Theorem 1 to $M$ to get a diagram $M^{\prime}$, determined by a face $H^{\prime}$ on a labelled sphere $T p q$, such that $W^{\prime}$ corresponds to $H^{\prime}$.

Let $m, n$ be the minimum and maximum subscripts on $b$ 's appearing in $R^{\prime}=P_{0}$. Then $m<n$, otherwise $R=t^{m} b^{k} t^{-m}$ for some integer $k$, a contradiction. Let $I$ be the set of integers $i$ such that $P_{i}$ or $P_{i}^{-1}$ corresponds to some face of $M^{\prime}$. Suppose $r, s$ are, respectively, the minimum and maximum integers in I , so that $r \leq s$. Since $r+m<s+n$, either $r+m$ or $s+n$ is different from zero. Assume $r+m \neq 0$. (The other case is similar.)

By applying Lemma 5 to $M^{\prime}$ and $x=b_{r+m}$, we conclude that $W^{\prime}$ involves $x$. Suppose $W^{\prime}=C b_{r+m}^{e} D$ for some words $C, D$ in the generators of $N$, with $e= \pm 1$. Then $W=A b^{e} B$ for some words $A, B$ in the generators of $G$. It is understood that $b^{e}$ is replaced by $b_{r+m}^{e}$ during the rewriting process. Therefore, $t$ must have an exponent sum $r+m$ in the word $A$. Thus $A$ and hence $W$ involve $t$.

Case 3. $G$ has 3 or more generators and the exponent sum (in $R$ ) of some generator different from $t$ (say $b$ ) is zero. We follow the steps in Case 2, except that the use of $t$ there is replaced by the use of $b$ here. We find $M^{\prime}, I$, $r, s$ as before and let $m$ be the minimum subscript on $t$ 's appearing in $R^{\prime}=$ $P_{0}$. Here $r+m$ may be zero. Once again $W^{\prime}$ involves the generator $x=$ $t_{r+m}$. In the present case, we conclude that $W$ involves $t$.

Case 4. G has 3 or more generators and the exponent sum on each generator in $R$, other than $t$, is different from zero. In this case, $W$ will be renamed $V$. Let $m, n$ be the exponent sums of $b, c$, respectively in the word $R$. We form the group $E$ :

$$
E=\left\langle x, c, \cdots, t ; R\left(x^{n}, c, \cdots, t\right)\right\rangle
$$

We note again that $G$ can be mapped homomorphically into $E$ by the mapping $b \rightarrow x^{n}, c \rightarrow c, \cdots, t \rightarrow t$. Then since $V(b, c, \cdots, t)$ is a relator in $G$, we have that

$$
Y=V\left(x^{n}, y x^{-m}, \cdots, t\right)
$$

is a relator in $E$. By Tietze transformations we arrive at another presentation for $E$ :

$$
E=\left\langle x, y, \cdots, t ; R\left(x^{n}, y x^{-m}, \cdots, t\right)\right\rangle
$$

(This is accomplished by interchanging the roles of $c$ and $t$ in the Tietze transformations of Case 2 of Theorem 2.)

Let $N$ be the smallest normal subgroup (of $E$ ) containing $y, \cdots, t$. We now follow the steps in Case 2 (of Theorem 3), except that $G, t, W$ are replaced by the present $E, x, Y$, respectively. We find $M^{\prime}, I, r, s$, as before and let $k$ be the minimum subscript on $t$ 's appearing in

$$
P_{0}=\left(R\left(x^{n}, y x^{-m}, \cdots, t\right)\right)^{\prime}
$$

Here $r+k$ may be zero. Again $Y^{\prime}$ involves $t_{r+k}$. Hence $Y$ involves $t$. Therefore $V$ involves $t$.

## References

1. R. C. Lyndon, On Dehn's algorithm, Math. Ann., vol. 166 (1966), pp. 208-228.
2. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
3. E. R. Van Kampen, On some lemmas in the theory of groups, Amer. J. Math., vol. 55 (1933), pp. 268-273.
4. C. M. Weinbaum, Visualizing the word problem with an application to sixth groups, Pacific J. Math., vol. 16 (1966), pp. 557-578.

University of Hawail
Honolulu. Hawait

