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O. Introduction
The general problem of "pasting together" given structures on a class of

objects to make a new global structure is well known in all branches of
topology, algebra and geometry. We approach this subject by means of a
"homology" (the final global structure) in such a way that a "Hurewicz
theorem" holds.

In [1] we have constructed corresponding to a given functor : --, Ens
and a distinguished subcategory c a homotopy functor of rel .
In the present paper this is dualized to the definition of a homology functor
H rel . The assertion of Theorem 4.3. which describes H is completely
dual to that of Satz 4 in [1] (which determines ). One of the advantages
of Theorem 4.3. is that it extends immediately to group valued functors. If
we start with a functor which is group valued then H is again a group
valued functor. Among the examples for the homology H we present the
singular homology H, as originating from r (Theorem 5.1.). This is of
course the main justification of the name "homology" for H. In Section 6
we list more examples for H including the "globalization" of a given local
structure and the completion process of a given semigroup to a group.
The key to all our constructions is again, as in [1] the concept of a semi-

functor. Therefore most theorems are concerned with semi-functors rather
than with functors. In Theorem 2.2. we give a representation of an arbitrary
semi-functor H FT-1 as the inverse of a functor T: --* followed by a
functor F --, Ens (in the sense of Theorem 2.1.). In [1] we proved that
every semi-functor H can be converted into a functor I] in a universal way
(see also theorem 3.1.). In Theorem 3.2. and Theorem 3.3. this fact is
dualised and extended.

It should be kept in. mind that all these theorems are only dual as far as
their statements are concerned; the proofs can not be dualised.
As for all theories of this kind one remark must be included: we have to

assume throughout this paper that all categories are small. This assures us
that everything is in accordance with Bernays-GSdel-von Neumann axiomatics
of set theory. However in all our applications (Theorems 5.1-6.5) it can
be easily proved directly that all our constructions are legitimate although
the different categories are far from being small. The present paper is
independent of [1]; only Theorem 3.1. is used without proof.
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1. Semi-functors

We denote as usual by "Ens" the category of sets and by "Enso" the category
of based sets. A relation p A --. B, A, B e Ens is a subset p c A B. The
empty set is not excluded. By R (A, B) we denote the set of all relations
p" A -- B ("relations from A to B"). If p R(A, B), r R(B, C), then
r o p e R (A, C) is defined by

top (a, c)[lbeB, (a, b) ep, (b,

For any map f Ens (A, B) there is a relation f e R (A, B) (denoted by the
same letter), the graph of f. In particular 1" A -- A, the graph of the
identity, is a member of R (A, A). Relations are partially ordered by in-
clusion"

p

_
rc=vp_ r; p, reR(A,B).

To each p e R (A, B) there exists the "inverse" relation fO R (B, A defined
To each p e R (A, B) there exists the "inverse" relation dp R (B, A defined
by dp (b, a) (a, b) e p}. The following assertion is immediate"

1.1. (a) d(rp) dpdr.
(b) dl 1.
(c) Assume peR(A, B), peR(B, A), rp 1, pr 1.; then

r dp and p dr. Moreover we have p e Ens (A, B) and r is its inverse.

1.2. DEFINITION. A semi-functor H" -- Ens where is an arbitrary
category is a function which assigns to every X e a set H (X) e Ens and to
every f e (X, Y) a relation H (f) such that the following conditions hold" If

X f...)Y ..g. )Z

are morphisms in one has

H (gf) >_ H (g)H (f), H (lx) _>

1.3. DEFINITION Let {x H (X) --. H’ (X), X } be a family
of transformations in Ens (H (X), H’ (X)) for two semi-functors H,
H: -- Ens. We call a semi-functor transformation if the following
naturality condition holds:

If f e (X, Y), then

(a, b) e H (f) (,x (a), ,r (b)) e H’ (f).

1.4 (cf. [1]). (a) If F -- Ens is a co (contra-) variant functor, then F
is a semi-functor.

(b) If F, F -- Ens are functors and , F --) F’ is a semi-functor trans-
formation then is a functor transformation.

(c) Let H --. Ens be a semi-functor and select for ech X e a subset
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S (X) H (X). For f (X, X,) we define

(s, s) eS(f) (s, s) H(f), s, eS(X,), i 1,2.

Then S is a semi-functor.

If we denote by @ 5"9 () the category of all semi-functors with transforma-
tions as in 1.3., and by { Y9 the subcategory of functors, then 1.4. (b) can be
rephrased as "ff is a full subcategory of @".

Similarly one can define @0 (), the category of all semi-functors H --+

Ens0. In [4] Mac Lane defines additive relations for an ubelian category.
However this notion can easily be extended to the category of groups. If one
replaces relations p A -+ B by dditive relations in this sense we obtain the
category @a () where now H --+ Grp (= category of groups) is a group-
valued semi-functor. As long as we work with a fixed , we will simply write

(, @a, instead of Y9 () ( (), @o (), ). By functor we mean
throughout this paper a covariant functor.

It should be mentioned that a semi-functor H is u bifunctor from the trivial
bictegory to the bicategory of sets and relations. Thus the concept of
semi-functor is not new.

2. Some constructions in

The im of this section is to construct new objects in g)from given ones.
Let T --+ be a covariant functor for two arbitrary categories and and
F --+ Ens a given semifunctor. We are going to construct a semi-functor
H FT- --+ Ens and a transformation F HT, (F, HT) such
that the pair (H, r/) is universal in the following sense"

For any other pair (H’, ,’), H’ --+ Ens, ’ (F, H’T) there exists a
unique transformation (H, H’) such that for the corresponding transforma-
tion HT ---+ H’T one has r r/ ,/’. Using this definition, the following
existence theorem holds"

2.1 THEOREM. Let F ( and T be given. Then there exists a
universal pair (H, ).

Proof. We will assume that for a semi-functor H and any two objects
L L. one has H (L) H (L) . Different objects can be mapped into
equivalent but never into equal objects. Because the category Ens is large
enough this assumption does not cause any difficulty.

We define for given X

H(X) [JR(L), T(L) X

and forgivenf (X, Y),eH(X),’ ell(Y), (’, ’) ell(f) =, fi Lx Lr
in 9 such that

T(f) f, eF(Lx), ’ F(L.), (, ’)f().
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If there is no L with T (L) X, we set H (X) 0. In this way we have
constructed a semi-functor; since for fixed L e , F (L) c HT (L), we also have
a transformation 7 F ----> HT. Now let 7’ F ---, H’T, H’ () such that
T (L) X and e F (L). Hence we can define

() 7’()H’T(L) H’(X).

By construction e (H, H’) and r 7 7’. Now take any (H, H’)
with the property r 7 7’ and let " H (X) be given. The object L with
T(L) X and i" e F(L) is unique. Hence (’) 7’(’) and therefore
=.

This completes the proof of Theorem 2.1.
Clearly H is nothing other than a left Kan extension of a semifunctor along a

functor.
There is an alternative formulation of Theorem 2.1. which for some purposes

seems to be more suitable"
Associated to the functor T --, there is a functor

gJ(T) g9(,) --*

defined by (C)(T)F FT, F e gJ(E), The relation between F and (H, 7)
gives rise to a functor R g9 (9) (E) which in fact turns out to be the left
adjoint of 9 (T). By Kan’s definition of left adjointness [4] there has to be
an isomorphism

X ()(R(F), F’) ()(f, (C)(T)F’)

which is natural in both variables. The result can be established by standard
arguments: Let e () (R (F), F’). Then there exists a transformation

r HT (T)R(F))

We set X (p) pry which on the other hand uniquely determines a transforma-
tion (by universality).

2.2. THEOREM. The functor (T) is provided with a left adjoint R.

In case F is a functor, H FT-1 can be considered as the composition of the
"inverse" of a functor T and a given functor. Even under these circumstances
H need not be a functor but only a semi-functor. It is interesting to observe
that there is a converse to this statement"

2.3. THEOREM. Every H e is isomorphic to a FT- where T and
F --* Ens are suitable covariant functors.

This is an immediate generalization of a well-known fact about Kan ex-
tensions and functors.

Proof. Take for 9 the category whose objects are the elements e H (X) for
some X e E and whose maps are triples (, ’, f), where f e E (X, Y) and
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(’, ’) e H (f). The composition of two morphisms

(, ’, f) (, ’), (’, ", ) (’, ")
is defined by (, t’, gf) (t, i’" ). The distinguished morphism (, , 1 --.
serves obviously as the identity. Under these circumstances 9 is a category
andT 9--

T() X, ell(X), T(L ’,f) f,

is a covariant functor. The functor F 9 -- Ens is trivial" assign to each
e 9 the set F () which consists of one element (namely " itself) and to each

(, ’, f) e 9 (, ’) the trivial map in Ens between the one-point-sets F (i’)
and F (’). We are now ready to compute FT-1 (X) for given X e . By
definition

FT-I(X) (JF(), T() X;
thus

FT- (X) (J,.(x) } H (X).

Furthermore for a given f e (X, Y) it is a simple matter to prove that

(, ’) FT-(f) = (, ’) H(f).

The only properties of the category Ens which were used in the proofs of the
results in this section are (1) the existence of "relations" in Ens and (2) some
cocompleteness properties (existence of sums). This indicates a proof of the
following result"

2.4. COROL,RY. The assertions of Theorems 2.1-2.3 are still true if Ens is
replaced by Ens0 or by Grp.

3. Relations between and
In [1] we proved the following theorem:

3.1 THEOREM. For any H , there exists a pair (I, ) such that:
(a) , S(H,/),/7 i.
(b) If (F, ) is another pair for which (a) is true, then there exists a unique

(I:I, F) such that qy .
This theorem allows a duali,ation"

3.2. THEOREM. For any H there exists a pair (t, such that:
() , (C) ([I, H), I .
(b) If (F, () is another pair for which a) is true, then there exists a unique

(F, I) such that .
We will prove the following generalization of Theorem 3.2:

3.3. THEOREM. Let C be a subcategory and H ( ). Then there exists
a pair (i, ) such that:
( ( (17i, H 1 ( (i c , the inclusion).
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(b) If (F, ) is another pair with property (a then there exists a unique
()(F, I) such that (/) on .

Proof. A "net" N Nx for given X e is a function which assigns to
each f e $ (X, Y) Y e a s N (f) e H (Y) such that the following condition
holds:

(N) If for fi (X, Y), i 1, 2 and r (Y1, Y.) rfl f, then

(sl, s2 e H (r).

Let g e (X, X’) be an arbitrary map and N Nx a given net, then
N’ g, N is defined by

N’(f’) N(f’g), f’ e(X’, Y), Y e .
The following proposition is immediate"

3.4. Npisanet;if

X g ;X’ g2 >X"
are given maps then (g= g), N g=, (g, N); (lx), N N.

Now we define/ (X) to be the set of all nets N Nx nd/ (g) (for
ge(X,X’))tobeg,. Then / is in and by

nx(N) N (lx), Z e g,
we obtain a morphism in @ (g)(/i, H). In fact, let g e (X, X’) be a map
and N’ g, N, then N’ (lx,) N (g) nd by (N) one has (N (lx), N (g)) e

().
Let (F, z) be a second pair and e F (X) f X -- Y e a morphism; then

N (f) z (F (f)’l) will be a well-defined net in H (X) and (’) N defines a
morphism e @ () (F,/-). The natumlity of is trivial. Let e (F,/)
be a second morphism with (i) z and for given e F (X) set N ().
It is immediate that N (f) z (F (f)), whence N N and follows.

This completes the proof of the theorem.
Theorem 3.1. can be generalized in the same way. One simply has to re-

place a given semi-functor H e () by Hi- where i is again the in-
clusion. Now the generalized form of Theorem 3.1. follows immediately.
When we start with the category Grp instead of Ens the assertion of Theorem

3.3. still holds. The reson is that the elements of/ (X) in Theorem 3.3. are
nets and nets can be multiplied: N o N (f) N1 (f) o N (f). In the same way
one has N-(f) N(f)-; hence /(X) inherits a group structure. If
g e (X, X’) and N, N e/ (X) then

, (N o N) (f’) N o N (f’g) N (f’) o N (f’) g, N o g, N.
In the same way one proves that F --/ is in @o(F,/), provided F and z
are in @o.
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We summarize this by stating the following:

3.5. COROLLAY. In Theorem 3.3 one can replace the category Ens by Ens0 or
by Grp.

The statement about Ens0 is trivial.
Denote by () the category of all semi-functors H which are defined

on some subcategory 9 . LetH e (1), H2 e (92) be given, i
Then a morphism o e (H2, H) (resp. b e (H1, H) is simply a transforma-
tion

e g(91) (H2 i, U) (resp. k e (9)(H1, H i))

This defines a category. There is an inclusion I () (). Now
Theorem 3.1. (in the generalized form) and Theorem 3.3. are equivalent to the
statements that I is provided with a left (resp. right) adjoint.

There is a generalization of Theorem 3.2. which will be useful in all up-
plications"
One can replace the single semi-functor H by a directed diagram $ (i.e.

a subcategory of with certain well-known properties). One can immediately
extend Theorem 3.3. o this case"

3.6. THEORI. There exists an g and to each S $ a transformation
ys g -- S in such that:

(a) For each a e $ (S, S’) one has ays
(b) If (F, {ps} is any family for which (a) holds, then there exists a unique
F -- g in () such that vs ’s in for allSe$.

Proof. Construct for each S e $ the corresponding (, s) as in Theorem 3.3.
To a given a e $ (S, S’) there corresponds a transformation e (, ’) with
s, as. Now we define:

g (X) inv lim S (X)

where {#} is a directed family and obtain a functor g e as well as a trans-
formation ys g - S for given S e $.

The verification of (a) and (b) is straightforward and left to the reader.
If we take for $ the trivial directed diagram (consisting of one single object

in ) we obviously get back Theorem 3.3.
Let be the category whose objects are directed diagrams $ in and with

inclusions $1 $2 of the corresponding subcategories as morphisms. Then
one has a functor J --, (the usual inclusion). Theorem 3.6. simply
means that there exists a right adjoint to J.

4. Hurewicz’s theorem
We start again with a category , a given subcategory and a functor

Ens. In [1] we constructed a functor as well as two morphisms
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such that hh’ 1. The last relation is called the "Hurewicz-theorem" while
h is the "Hurewicz-homomorphism". Furthermore the triple (, h, h’)
could be characterized by a universality condition (Satz 4 in [1]).
From the point of view of this paper, all this is the "coextension-case" of a

Hurewicz-theory. The "extension-case" is still missing and will be settled in
the course of this section.

Let e 0() be any functor, c $ a subcategory. We set H
(i c the inclusion functor), and by applying Theorem 3.3. we get a func-
for/ Ha as well as a transformation v Ha i i on . As is traditional
we denote by hr. By using property (b) in Theorem 3.3, we obtain a
transformation h --. Ha of functors such that on the following triangle
commutes:

4.1. DEFINITION. We call Ha the homology of the functor rel and
h --, Ha the Hurewicz-homomorphism.

4.2. THEOR. For an arbitrary e ( and subcategory there exists
a homologyfunctor Ha, a Hurewicz homomorphism h and a morphism h "He
on , such that

h’h 1.

4.3. THEOREM. Let e ( be a given functor and (i, , ) a triple,
(), e (, ), e (/,/ such that 1. Then there exists a

unique b -- Ha such that b h and hrb r on .
Proof. By property (b) in Theorem 3.3. there exists a transformation
/ --* Ha which is uniquely determined by the fact that h’ (b/) .

To complete the proof of Theorem 4.3. one merely has to prove the relation
] h. To this end consider the following commutative diagram:



The transformation h -- Ha was uniquely determined by the fact that
hh 1 on . However @) is also a transformation with the same property.
Thus one has @) h.

4.4. COROLLARY. In Theorems 4.2, 4.3. one can replace the category Ens by
the category of groups.

This follows immediately from Corollary 3.5.
As in Theorem 3.6, everything carries over to the case of a directed system
of subcategories of instead of a single category . The precise

formulation of the related theorems (4.2., 4.3.) is immediate and left to the
reader.
At the end of this section it seems to be helpful to indicate a direct construc-

tion of the functor Ha and of the transformations h, h’" let X e be any object;
an element N e Ha(X) is a function which assigns to each f X -, L e an ele-
ment N (f) e (L) in such a way that for any e (L, L.) and f X -- L in

with i f f, one has

(N) ( (1)N (f N (fi.

Let g X -- Y be a morphism in . Then Ha (g) Ha (X) - Ha (Y) is de-
fined by

(Ha(g)Y)(f) Y(fg), f e(X,L),Le .
Let a e (X) be given. Then we define a N e Ha (X) by N(f) ((f)a.
The transformation h Ha is defined by h (a) N,.

If L e is a given object and N e Ha (L) then N(lx) e (L) is defined. For
obvious reasons N is uniquely determined by N (lx) a. We set h’ (N) a.
The relation h’h 1 is immediate.

Remarl. This theory works only if is in fact a functor rather than merely
a semi-functor. The definition of h depends strongly upon this assumption.
However there seems to be no reason not to use from now on the name "hom-
ology" for any ") in the sense of Theorem 3.3. (and denote it also by Ha)
where e 3 () is now any semi-functor which is defined on .

5. Homology
We denote by the homotopy category of based topological spaces which

are simply connected and of the homotopy type of CW-complex. Many of
our assumptions are perhaps unnecessary although they are very convenient.
The functor with which we start is the homotopy functor --* {graded
groups}. The distinguished subcategory is the category whose objects are
Eilenberg-MacLane spaces K (G, n) (n > 1 and a mapf" K (G, n) K (G’, n’
is contained in if n n’.

In Section 4 we constructed the homology functor Ha of rel .
We denote by H, --, graded groups} the singular homology functor, and

by h ---) H, the ordinary Hurewicz homomorphism which splits on by a
map h H, -, .
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5.1. THEOREM. There exists an isomorphism H, ---, H, such that qh h
and h’ h’ on .
The rest of this section is devoted to a proof of this theorem. We state the

following proposition which, according to Theorem 4.3, is equivalent to
Theorem 5.1"

5.2. Let g -- graded groups} be any functor together with transforma-
tions r --/, and )’" --, r on , such that )’] 1 on . Then there
exists a unique "/ -- H, such that ) h and h’, b ’ on

Let x0 e X e g be a point. Then we can replace/. (X) by the cokernel of
/, (i) where i {x0} c X is the inclusion. Since X is simply connected, this
is independent of the choice of x0 and so we can assume without loss of gen-
erality that

5.3. (x0) /0} for all n.
Thus we will use reduced homology. We divide the construction of into

three parts.
Casel. X Le. We define %bx." AT(X)--,H(X)ashh’.
Case 2. X is (n 1)-connected. We kill the higher homotopy groups of

X and obtain an inclusion j X c K (G, n) L e 9 where H, (j) is an iso-
morphism. Now we can define

bx H j b
Case 3. X an arbitrary object in g. Let us start with some preliminary

considerations.

5.4. Let X e ig be an arbitrary object in [. Without loss of generality we
assume that X is a CW-complex; by attaching m-cells (2 _< m _< n 1) to X
successively we get a space X’ X and an inclusion i X c X’ with the fol-
lowing properties"

(x’) {0}, < n,. (Z’ H. (Z’ ),

H (i) is a monomorphism.

5.5. The cokernel K of H (i) is a free group with generators {’}. To each
there is related a I: e H,_I (X_I) (X_ is the space obtained after the ap-

plication of the first n 3 steps of our killing process) of order
5.6. If we set H (X’) G and if i" e K is given then

G C C’,

where C is the smallest subgroup of G which contains i’. Furthermore C is
finitely generated (and clearly free abelian).

5.7. In X’ we can kill the higher homotopy groups r+ (X’), and ob-
tain a space K(G, n) as well as an inclusion j X c K(G, n), and H, (j) is
again a monomorphism.
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Statements 5.4. and 5.7. are immediate consequences of well-known theorems
on the killing of homotopy (resp. homology) groups. In the course of our
killing process (from X to Xn-1 and finally in a last step from X,_I to X) the
homology H, (X) will be affected for the first time during the last step. By
attaching cells of a dimension less than n to the space X one does not change
Hn. Observe that by Hurewicz’s theorem H,_I(X,_I) is isomorphic to
r,-l(Xn-1). The elements of cokernel H,(i) correspond to elements
: e H_I (Xn_l) which are of finite order p p. To each such there cor-
responds a unique n-cell r in X’ (which kills ). Since there do not exist m-
cells a in X’, m > n, such that a r: lies on their boundaries, assertion 5.5.
follows.
Now let * e K, 2m i’k, where {’} is a subset of a basis of K. Then C

is the group generated by the 1, "", k. The direct sum decomposition
G C @ C’ follows from the construction of C as a subgroup of K (which is in
fact a direct summand of G).
We will now continue with the proof of 5.2."
Let 5 e/ (X) be any element and 51 , (i)5. We know already how to

define b (51) e/, (X’). We claim that b (1) e im H. (i). Because H, (i) is a
moaomorphism this would give us the right to define’

z. () U (i)-1 (51).

Therefore the construction of will be complete as soon as we know the follow-
ing fact"

5.8. b(51) e im H. (i).

Proof. We have the map j’: X’ K(G, n).
(a) im H. (i).

Let us assume that

From the direct sum decomposition of G in 5.6 we obtain a group C, c e C,
(51) c d- c’, a projection G --. C and a map

, K(G, n) K(C, n).

Since C is finitely generated by elements 1, , we can define p pl pk

(p p,) and consider the map p, K(C, n) ---, K(C, n) which corresponds
to the multiplication by p in C. Now it is easy to see that p, , j’i O" due
to a well-known argument (concerning the relation of homology to cohomol-
ogy) im H" (, j’i; C) is a subgroup of H" (X; C) which is isomorphic to a C-
module generated by the elements 1, where is of order p. Thus all
elements of this group are of an order which divides p; consequently
p.im H (v,j’i; C) O. On the other hand one has

p.im H (, j’i; C) im H (p, , j’i; C).

This proves p, , j’i O.
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We know by construction that 0 H. (7, j’) (al) c e C.
free group we have

Because C is a

H, (p, , j’)b(51) bH, (p, 7, j’)5 H (p, 7, j’i) (5) O.

However this is impossible because p, 7, j’i 0 and (by 5.3), . (0)5 0.
This defines the transformation completely. The verification of its properties
( h,, ’b h’, on 9, as well as the uniqueness of k) is immediate and left
to the reader. This completes the proof of Theorem 5.1.

6. Examples
In this section we give some examples which are typical for the results which

we have achieved in the preceding paragraphs. Proofs are mostly immediate
and therefore omitted.
Our definition of homology covers all conceivable kinds of "globali,ation"

of a given local structure.
To give an idea how this works, let us go back to the explicit construction of

Ha at the end of section 4. Let X be a topological space, 1I {U} an open
covering (which contains together with U1, ..., U. also their intersection
[’lil U) and i" a vector bundle over X which is trivial on each U e 1I. Let

t/U be the trivial bundle on U and i U X the inclusion. The sys-
tem i" {i’v} behaves like a "net" N if one defines Nr (iv) ’v. The condi-
tion (N) in Section 4 now simply states that i’ and tv, fit together on their
intersection U n U’.

In this way we can interpret 1I as a category with inclusions as mappings
(in fact we have to go over to the dual category to remain within the frame of
our theory). The category is the category whose objects are all unions
of objects in 9 (e.g. X itself is an object in ). The trivial vector bundles on
each U, 11 define in an obvious way a semi-functor on 9. The functor H(R)
gives us the desired global bundle structure on X (resp. each subspace of X in
).

This would indicate what we mean by a "globalization of a local structure".
Let X be a topological space and Xa the category of all open subspaces with

inclusions as morphisms. By {9} we denote the directed diagram of all
full subcategories of X (the dual of X) with the following property:

(,) To each x e X there exists an object U, 9, x e U.

Let (Y) be the class of all trivial n-dimensional vector bundles over Y e .
Clearly --, Ens0 becomes a semifunctor, where the product bundle serves
as a base point. One has"

6.1. THEOREM. Ha(X) is the family of all n-dimensional (locally trivial)
vector bundles over X.

Remark. In this example (X) is surely not set. However all construc-
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tions which lead to Ha go through immediately (although Ha (X) is again only
a class). On the other hand the reader may be inclined to bring the preceding
construction in accordance with all set-theoretical requirements by working
with a suitable "universe" which contains all vector bundles in (X) (and
consequently in Ha (X)). This example breaks down as soon as one uses iso-
morphism classes of bundles instead of bundles, because all trivial bundles are
isomorphic.
As a second example in this direction we consider differentiable structures:
Let M be a given (topological) manifold and * the category of all open

submanifolds A c M with inclusions as mappings. Let * c * be the full
t*subcategory whose objects are those A e which are homeomorphic to Rn.

Let H (L), L e *, be the set of all charts on L. A chart is an equivalence class
P--1{L} of homeomorphisms L L R’; two q, are equivalent if L L is

differentiable. If i A B is a map in 9", then H (i)/.} {,/AI. This
determines a semi-functor H : - Ens ( is dual to *), where we set
H(A) 0ifA (thedualtog*).
By applying Theorem 3.1 we obtain a functor/ - Ens such that

/ H . By adding to H (A) a new abstract element we get a func-
for -- Ens0. We are now in a position to compute Ha

6.2. TEOaE. Ha (M’) consists of the basepoint M" and the set of all dif-
ferentiable structures on M’.

Concerning all set-theoretical difficulties we refer to the preceding remark.

6.3. Let - Ens be any functor such that for every object L e 9,
) (L) carries a group structure which is natural with respect to the morphisms
in . Then Ha (X) also carries a natural group structure (now for any
X e and with respect to arbitrary maps in) which converts Ha into a func-
for which maps into the category of groups.

Proof. The values of a net are in (L) for given L e . Thus, nets can be
multiplied and Ha (X) inherits a group-structure which is easily seen to be
natural.

By Sgrp we denote the category of semigroups with unit.

6.4. THEOREm. Let q) Sgrp -- Sgrp be the identity functor and Sgrp
the subcategory of groups. Then Ha Sgrp -- Grp is the "completion functor"
in the sense of [3, p. 103].

A similar assertion holds for semi-rings.

Let be a category with the notion of a homotopy and T -. the pro-
jection [2]. If F o-Ens is any semifunctor, we observe, that (FT-)- is a
functor from n into Ens (the bar means the functor which corresponds to
FT- in the sense of Theorem 3.1 ).
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6.5. THEOREM. Let .$ be the category of Kan-complexes and
F Z, ( G) the functor which assigns to each object the group of cycles (with
coecients in G). Then one has

(FT-1)- H( G).

Let 0 be the homotopy category of based topological spaces (with homotopy
classes of base point preserving continuous maps as morphisms) and s the
S-category in the sense of Spanier and Whitehead (see [5] or [6]). Then there
exists a functor a !0 --* which assigns to each X !0 the pair (X, 0)
Let

r !0 --* {graded groups}

be the functor of the Hurewicz homotopy groups.

6.6. THEOREM. The functor ’s (ra-1)- (bar in the sense of Theorem 3.1.)
is the functor of the stable homotopy groups.
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