
A NOTE ON TOPOLOGICAL PONTRJAGIN CLASSES AND
THE HIRZEBRUCH INDEX FORMULA

BY

1. The topological Hirzebruch ormula
Let 1 (M) be the index of the closed, oriented, topological 4k-manifold M.

That is, I (M) is the signature of the bilinear form on H (M) determined by
the cup product pairing. In [13], J. Sehafer gives a sophisticated, but some-
what long and indirect proof of the following fact.

TaEOR. Let M and N be closed, oriented, topological 4k-manfolds such
that there ezsts an r-fold cooern# map r M N preserin# orientation. Then

(1) I (M) rI (N).

As Schafer remarks, an example of Wall [17, Cor. 5.4.1], shows that this
result does not extend to the case in which M and N are finite Poincar
complexes. Thus, it cannot be proved, for example, by direct cohomology
calculations.

Schafer’s proof begins with the observation that the theorem is an easy
consequence of the followin two hypotheses"

(2) Pontrjagin classes can be defined for topological microbundles.
(3) With respect to these classes the Hirzebruch Index Formula is valid.

More exactly, suppose that to each topological microbundle we can asso-
ciate (rational!) classes p() e Ha(B()) that are natural with respect to micro-
bundle maps. Set p (M) p (rM), where rM is the tangent microbundle of
M, and let

L(i) L(p (M), ..., p(i) ),

where L is the Hirzebruch polynomial [4, p. 12]. Then, L(M) is natural
with respect to tangential maps--in particular, with respect to covering maps.
If we now assume the Index Formula

(4) (L, (i), #) I (M),

where is the orientation class of M, then equation (1) follows from the
simple equalities"

(i (i ) u) (r*L (N ) ttM} (L, (N r, ttM} r< i, (N

In this paper, we give two separate proofs of (2) and (3). The first proof
(1, below) is probably the shortest and easiest proof of these facts, and it
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avoids almost all of the machinery of [13]. In the second proof (2), which is
more elementary and, therefore, longer, we construct topological Pontrjagin
classes so as to insure (3) by definition. The construction extends the original
definition of Pontrjagin classes for PL manifolds due to Thorn [15] and Milnor
[9] and is probably much like the method that Milnor had in mind for de-
fining Pontrjagin classes of PL microbundles (see [11, p. 6]). It follows easily
that the Pontrjagin classes defined in 1 are the same as those defined in
2 (see the corollary and remark in 2.1).

All our results apply to the PL case as well. Our arguments in 1, below,
depend, of course, on the recent important results of Kirby and Siebenmann
[6], [7]. In 2, we use only their topological transversality theorem [7].

Proof of (2). It suffices to produce universal examples of Pontrjagin classes
H (BO)H4(BTOP) that map to their well-known counterparts p e

under the homomorphism

H* (BTOP ---. H* (BO

induced by the natural map j" BO -- BTOP. That this homomorphism is
onto follows from Novikov’s proof that (smooth) Pontrjagin classes are
topological invariants [12]. This is enough for (2) and for our purposes, but
we point out that we can do better. Namely, we appeal to the work of
Kervaire-Milnor, Hirsch, and Cerf ([5], [21, and [1]) and the recent work of
Kirby and Siebenmann [6], which imply that the fibre TOP/O of

j" BO BTOP

has only finite homotopy groups. It follows immediately that

"*" H* H*3 (BTOP) (BO)

H (SO) to H4 (BTOP)is an isomorphism, so that we can ’extend" the p e

in exactly one way.

Proof of (3) Step 1. Let 12 and *2roP be the smooth and topological,
oriented cobordism rings, respectively, and let o* -- 2rop be the forgetful
homomorphism. We observe that (3) follows easily from the assertion"

(5) coker (" k __, 2ro) is finite, 0, 1, 2, ....
For suppose that (5) is true. Then, any homorphism

ro - Q, ]c O, 1, 2,

is determined by its values on (fok). Two such homomorphisms are given
by the Index

froe Z Q,
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and the Hirzebruch polynomial

which is now defined on [top, by (2). By the smooth Hirzebruch Index
Formula, these homorphisms coincide on q (ft). Thus, (3) follows.

Step 2. Let MSO and MSTOP be the Thom spectra (cf. Williamson [18,
p. 23]) associated to SO and STOP, the identity components of 0 and TOP
(N.B., r0 (0) r0 (TOP) Z), and let i MSO MSTOP be the natural
map. We define the usual Thom homomorphisms 0o and 0oP and observe
that the diagram

o* Oo , MSO

OTOPero ... r,(MSTOP)

commutes. The proof of commutativity in the PL case is harder (cf. [18,
p. 26]) because the PL counterpart of q must be defined via Whitehead
Cl-triangulation theory.
Now we note that, by the usual argument, the isomorphism

H* (BSO , H* (BO H* (BTOP H* (BSTOP
implies that the homomorphism of homotopy groups

i, r, (MSO ---+ ’, (MSTOP

is a a-isomorphism, where e is the class of all finite groups. Moreover, that
o is an isomorphism is the classical result of Thom [16]. Thus,
0roe o i, o 00 is a e-isomorphism.
We conclude Step 2 with a simple algebraic observation. Let

A_fB

be a eommugative diagram of abelian groups. Then, there is induced an
exact sequence

(6) ker g -- cokerf --+ coker h.

If we set f q, g 0oe, and h 0oe o , then (6) becomes

(7) ker Oroe coker - coker h

and, since h is a e-isomorphism, it suffices to prove that ker 0roe is finite.
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Step 3. We assert that

O.op o ,,(MSTOP

is an isomorphism for all n, except possibly n 4, in which case it is a mono-
morphism.
For n >_ 5, this assertion follows in the same way as the corresponding

assertion about 0o, using the Kirby-Siebenmann transversality theorem [7]
in place of that of Thom. Their theorem is more restrictive than Thorn’s,
the restriction being that the submanifold produced must have dimension
>_ 5. Since potential cobordisms between 4-manifolds would have the right
dimension, we can use Kirby-Siebenmann transversality in Thorn’s argu-
ment to conclude that 0roe is a monomorphism, for n 4.
We leave the easy cases 0 _< n _< 3 to the reader.
Therefore, we have shown that ker 0roe is zero--hence finite--in all dimen-

sions, which completes the proof of (3).

Remarks. (a) For all n,

ker (’fi -- 2roe) 0.

The proof is just a repetition of Williamson’s argument ([18, Theorem 5.1])
in the topological case: We note that Stiefel-Whitney classes can be defined for
topological microbundles (using Thorn’s definition) just as in the linear bundle
case. The corresponding Stiefel-Whitney numbers are then defined for all
closed, oriented topological manifolds. But it is a classical result that these
numbers, together with Pontrjagin numbers, detect all smooth cobordism
classes. Since, by their definition, they must annihilate ker 9, it is zero.

(b) According to [6] and [7],

r,, (TOP/PL) O, n 3,

=Z, n=3,
whereas, according to [5], [2], and [1]

.,,(PL/O) O, n <_ 6.

Let us consider the diagram in Step 2 when n 4.

0 m(MSO)
i,

r(MSTOP)

-- TOP

0 o o
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We know that o m(MSO) Z. The above data imply that
coker i. Z., and, thus, that coker q 0 or Z. Moreover, we have a
commutative diagram

in which I 2 -- Z is an isomorphism onto. Thus,

oe o coker

From this it follows that if m (MSTOP) Z, then is an isomorphism
but Oop has cokernel Z. On the other hand, if m (MSTOP) Z Z.,
this gives no direct information about or

2. Another definition of topological Pontrjagin classes
2.1. We want to define Pontrjagin classes for topological microbundles so

that (3) holds. The point of this section is to show that it is sufficient to
define them for manifolds so that (3) holds. Actually, it will be convenient
to define Hirzebruch classes for manifolds, then bundles, and then solve for
Pontrjagin classes in terms of these, using the Hirzebruch polynomials L.
This is the point of view used by Thom [15] and Milnor [9] in constructing
Pontrjagin classes for PL manifolds.

Accordingly, we assume that we are able to associate with every closed
topological manifold M" classes

H4l(M) e (M"), 0 <_ 4i < n + 1,

such that l0 (M) 1 and:

(A) The l are natural with respect to tangential maps (i.e., maps
f" M -N such that f*rN is stably equivalent to rM).

(B) If M admits a smoothing, then the l(M) are the usual Hirzebruch
classes L (M) associated with that smoothing.

(C) l,(M X N) +,=,/(M) l,(N).
(D) (l(M4*), u) I (M), when M** is oriented.

PROPOSITION 1. Let 5 be the class of topological microbundles with base
spaces that have the homotopy type of finite simplicial complexes. For every

H (B ()), i O, 1, 2, suvhe 5, there are defined unique classes l()
that lo ( 1, and"

Note that (A) and (D) are all that we need for the proof of the theorem, so that this
section is unnecessary for an alternate proof of the theorem.
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(E)

(F)
(G)
(H)

If f" B ( --+ B (7 is covered by a stable bundle map --, 7, then

f*l (7 l ( ), i 0,1,2, ....
,( ,) +,()(,).
li (rM) li (M), for all closed, topological manifolds M.
If admits the structure of a vector bundle a, then

l() L(p(a), ..., p(a)).

Proof. Step 1. Extend the definition of li(M) to all compact manifolds,
preserving properties (A)- (C).
To do this, let jM --* 2M be the inclusion of a manifold with non-empty

boundary into its double and define l(M) "*3 li (2M). Properties (A)
and (B) are easily checked.

If OM , let us use the convention that 2M M andj 1. Then,

l(M X N) (jM >< l)*/(2M X N)

(j X I)*(IM X jr)*l,(2M X 2N),

by naturality. Since 2M and 2N are closed, we may apply (C) to l (2M X 2N),
and, using the above equality, obtain (C) for l (M X N).

Step 2. Extend the definition to microbundles over compact manifolds so that
(E)- (H) are satisfied.
Let be such a microbundle. Once we find a compact manifoldE and a map

f B () -- E such that f’rE is stably equivalent to , then we shall define
l() *f l (E). This definition will be independent off and E, provided that
we can choose some such f to be a homotopy equivalence.
Assuming this done, properties (E)-(G) follow easily. For example,

property (F) is an immediate consequence of (C) and the equation r (M X N)
rM rN.
To prove (H), let be a microbundle that stably reduces to a vector bundle

a, let f B () -- E be a homotopy equivalence with a compact manifold E,
as above, such that f’rE is stably equivalent to , and let be a vector bundle
over E with f* stably equivalent to a. Then, fl is a stable reduction of rE,
and, by smoothing theory [10], E X R" is smoothable, n large, in such a way
that the smooth tangent vector bundle ro (E X R’) when restricted to E )< 0
is stably equivalent to .

Let V be any smooth, co-dimension-0 compact submanifold of 2E X R
containing E X 0 E. Then

l(E) I(V) E, by (A),

L(p(V),...,p(V))IE by (S),

L(pl (), ..., p()),
According to [6], each such M has the homotopy type of a finite simplicial complex.
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so that l () *f l(E) L(pl(a), ..., p(a)), by the naturality of the pj

with respect to vector-bundle maps. This proves (H).
We now construct f B () -- E. Let -r be a stable inverse for rB (),

and let -- @ . A theorem of Mazur and Hirsch [3], together with
Kister’s theorem [8], implies that, by adding a trivial line bundle to 7, if neces-
sary, we may assume that there is a topological disc bundle over B () with total
space E whose interior is a bundle equivalent to v.4 According to [10],
rE/B () is stably equivalent to

B(f) , B(f) - ,
which is stably equivalent to . Letf" B () --E be the zero-section inclusion.
This completes Step 2.

Step 3. Extend the definition to all microbundles in 5.
Choose such a microbundle , and let f B () - K be a homotopy equiva-

lence, with homotopy-inverse g, where K is a finite simplicial complex. We
may assume that K is a compact manifold, for if not, triangulate the Rq in
which K sits, so that K is a subcomplex and replace K by its second derived
neighborhood. Let g* and define l () f*l().

Properties (E)- (H) and uniqueness are easily verified.

PROPOS1TION 2. Let STOP be the classifying space for stable microbundles in
H4 (STOP), i O, 1, 2, such that, for5 There exist unique classes l

any 5,
( f (),

where f B () -- STOP is a classifying map for .
Moreover, if j BO STOP is the natural map, then

.$

3 (l) L(pl, ...,p).

Proof. We recall that STOP is the direct limit of the sequence

STOP(l) i ;STOP(2) i.. i._ STOP(n) ...,
where STOP (n) is a countable CW complex classifying topological R"-
bundles (or microbundles). To make sure that the result is suitably nice, we
may replace i, i2, ia, etc., consecutively, by the inclusions of the correspond-
ing mapping cylinder, and then take the union. For n > m, the inclusion
STOP (n ) --> STOP determines an isomorphism

H (STOP) U" (STOP (n)).

Let u. be the universal R-bundle over STOP (n), and let u, be its restriction
to the k-skeleton STOP (n, ]c) of STOP (n). For 0

_
4i < n -k 1, let

l (n, k) l (u,, H (STOP (n, ] ).

For these results to apply, we need B() to be a polyhedron, or at least to have the
homotopy type of one. As stated before, it does, by [6].
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Note that for k > m, the inclusion BTOP (n, ]c) ---. BTOP (n) determines an
isomorphism

H (BTOP (n)) H’ (BTOP (n, ) ).

Thus, l(n, k) determines a unique class in H4 (BTOP), when n >> 4i and
k > 4i. By naturality, it is independent of k and n. This is l.
The last statement follows easily from (H). This completes the proof of

Proposition 2.

COROLLARY.
tively

Define pO, H4(BTOP) by the equalities (solved consecu-

L(pOe, P’) l, i 0,1,2, ....
Then, if j BO -. BTOP is the natural map, we have

* TOP
3 P P.

Remarks. (a) Using the fact proved in 1 that j* is an isomorphism, we see
that the two definitions coincide.

(b) If we are willing to give up the uniqueness statements in the above
results, then the proofs may be easily modified so as to avoid dependence on
[6]. The most serious point is in the proof of Proposition 2, where we make
tacit use of the finite generation of H (BTOP).

2.2. Hirzebruch classes for closed, topological manifolds. The definition of
topological Hirzebruch classes given below will differ only in certain technical
respects from Milnor’s definition of Hirzebruch classes for PL manifolds [9].
Moreover, the verification of properties (A)-(D) is essentially the same in
both the topological and the P5 cases. Therefore, we shall first verify (A)-
(D) in the PL case and then indicate what modifications are needed for the
topological case.
Note that we can restrict ourselves to orientable manifolds, because, for

non-orientable M’, we can take the orientation covering /r -- M and
define , (M) (*)- (, ()).

Let us now recall some key facts about Milnor’s definition. Let M be a
closed, PL, oriented, n-manifold, and let f M --. Ss- be a map. Then,
there is associated with f an integer I (f), depending only on the homotopy
class of f. I (f) can be defined as follows: Let 0 e Ss- be a basepoint.
Approximate f by a PL map also called f, and, by Williamson’s transversality
theorem [18], homotop f so that it is transversal to 0, still calling the resulting
map f. Thenf-1 (0) is a closed 4i-manifold, with orientation induced by those
of M" and S"-4, so that I (f-1 (0)) is defined. This if I (f). (Milnor did not
have Williamson’s theorem available in [9] and used a slightly different method.
We use this one because it generalizes to the topological case, whereas Milnor’s
does not.)
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Milnor then shows, using a theorem of Serre, that for 8i + 2 _< n, there are
classes l (M’) H4 (M") characterized by the following fact’ for every map
f" M" -- S"-4,(8) (/, (M’) u f* (vs-,,), t) I (f),

where v.-, is the orientation cohomology class of S-*.
For 8i + 2 > n, le q 8i + 2 n and define

restriction l(M X Sq) M X O.
Property (B) is verified in [9]. We leave the easy check that l0 (M) 1

to the reader.

Verification of property (A) (naturality). It suffices to check this for
8i + 2 _< n. We shall use (8). Thus, suppose that g M --+ Nq is a map

q sn-4iwith g rN stably equivalent to rM, and let f M --+ be any map.
It suffices to show that

(9) (N u f* I (f).

Suppose first that g is an imbedding with trivial normal microbundle.
precisely, let

GM X R’-q Nq

More

be an orientation-preserving PL imbedding onto a neighborhood of g(M’)
such that G[ M" X 0 g. We define a map h N Sq-* so that the follow-
ing diagram commutes-

(10)

M" X R-f

/
sn-4

(70
q--4i

Here, ,r Rq-n
"-+ Sq-n Rq-n

tJ 0o is an origin preserving degree-one map
that sends the interior of the unit ball nq-n piecewise-linearly onto Sq-"

and the rest of Rq-" to oo. is the standard degree-one map sending 0 X 6
to 0 and S"-’ X oo u X Sq-" to . The map h is uniquely defined by the
diagram on image G. Define it elsewhere to be constantly . It has two
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nice properties. First, by an arbitrarily small adjustment exterior to
q--4iG (M X 1/2Dq-n) it can be made PL. Secondly, it is transversal to 0

n--4iif and only iffis transversal to 0 and thenf- (0) is sent homeomorphically
to h- (0) by g such that induced orientations are preseved. Thus, assuming
thatf is transversal to 0, let V (f) f- (0), V (h) h- (0), and letj" V (f)
M and j2 V (h) --> Nq be the inclusions. Then,

(g*l(Nq) u f* (-,,), } (g*l(Nq), j.(,(]))}

(N ), ))

(1, (Nq),/2, (,()))

I(h)

I(f),

the first equality coming from Poincar duality.
If g M" -- Nq is not an imbedding with trivial normal microbundle, let

g Mn--> Nq X S

be an imbedding approximating the composition

io g" M" " N
q X Sp

where i0 Nq - Nq ) Sp sends x to (x, 0) and p is large. By the results of
[10] and [11], g’ (M") has a trivial normal microbundle in Nq ) Sp. This is
where we use the condition that g (and hence g) is stably tangential. There-
fore, applying the result already proved to g and i0, we have

(g’)*l, (Nq X S) l (M’) and "* So l (N X l, (N

so that
, .,

S * Sg (1,(Nq)) g ol(Nq X (g’) 1,(Nq X 1,(M"),

as desired.

Verification of property (C) (the product formula). Given M and N,
dosed and oriented, we must show that

l, (M" X N" ’+_, l (M" X 1. (N" ).

We remark first that it is sufficient to verify this for 8i + 2 _< min (m, n),
since, for larger i, we simply look at (M X S) (N" X Sq), p and q large.
We impose this restriction on i, and we now look at the Ktinneth formula for
stable cohomotopy tensored with Q (= cohomology)"

(11 r+"-’’ (M X N) +.=+.-,, r (M) @ ,r (N’).

Note that ,r (M) 0, r > m, and r (N) 0, s > n, so that we may sup-
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pose that r >_ m- 4i and s >_ n- 4i.
min (m, n), these imply

Together with the inequality 8i + 2 _<

m_< 2r- 2, n_< 2s- 2, m+n_< 2(re+n-4i) 2,

which allow us, by a theorem of Serre [14], to represent classes in
m+n--4 NO (M X ), ro (Mm) and o (Nn),

up to a rational multiple, by maps

M X N Sm+n-4i, M - S and

respectively.
Now, choose any f M X N" -- S+’-4i. The above remarks, together

with (11 imply that, for some ), e Q, ), # 0, the class off in +-4(M X N")
is obtained from maps fr M S and g8 N -- S in the following way"
Let

f (R) g M X N -- S’+’-ibe the composition

(12) M

where is the collapsing map onto S X S/(S" X ) u ( X S); then

Since the association f I (f) dermines a homomorphism +’- Q, we
have

But, when both f and g8 are transversal to 0, so is f (R) go moreover, we al-
ways have (f (R) g.)-I (0) f7 (0) g7 (0). Therefore, by the multiplicativ-
ity of I,

(13) I (f) I (f,)I (gs).

Of course, note that the summand I (f,)I (g,) 0 unless r is of the form m 4j
and n is of the form n 4k, j /c i. We now compute

fT-(vs-) X g.-a (vs-,),
so that

X( (’+_-, l (M) X l (N)) u f* (vs+-,,),)
:+_, (f_,) (._,) X (f).

Thus, by the fact that (8) characterizes l, we have, (U ) E./_ (i) t. (N).
This completes the verification.
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Modifications for the topological case. The association f -- I (f) in the
topological case is defined just as in the PL case, for maps f M" - S"-4,
i # 1, using Kirby-Siebenmann transversality [7] in place of Williamson’s
when i > 1 and Hopf’s theorem to get tranversality when i 0. This pro-
cedure allows us to define l0, l, 18, as before, to show that l0 1, and to
prove properties (A) (naturality), (B), and (D), for them as in the PL case.
However, Kirby-Siebenmann transversality does not apply to mapsM
and so we cannot get 11 this way. In this case, we use the following trick"
given f" M -. S-4, n >_ 10, we let r M X CP --M be the first coordinate
projection and define

I (f I (fr) I((fr)-l(O)).
HThen 11 (M") e (M") is defined to be the unique class satisfying

(11 (M) u f* (vs,-,), u) I (f).

Notice that if f is transversal to 0, then so isf, and (fr)-I (0) f-x (0) X CP,
so that, because I (CP) 1,

(11 (i") u f* (us.-,), u) I (f-’ (0) X CP4) I (f-1 (0)).

Thus, this definition of I (f) and 11 is a generalization of the PL and smooth
cases. This proves (B) for ll.
To prove (A) (naturality) for 11, we augment diagram (10) as follows:

(14)

M X CP g X 1 Nq X CP

Here, g is supposed to be any stably tangential map, but, as in the argument
for naturality in the PL case, we may assume that g is an imbedding with trivial
normal microbundle. The map h is defined as in the PL case, except that
here we do not have to worry about making it PL. Note that when fr is
homotoped to be transversal to 0 S"-4, this produces a homotopy between
h and a map transversal to 0 Sq-. Also note that when f is transversal
to 0, so is hr, and g X 1 sends (f)-i (0) V (f) homeomorphically onto
(h)-I (0) V (h). Let

jl" V(f)--*M" X CP and j." V(h)--*NqX CP

Ube the inclusions, and let fl e (CP4) be the canonical generator. Then,
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(*z, (..v) u .f*,,.-,, ,,,) ( (g x t )* (z, (N) X ) u (f-)*,,,.-,,

(l (N) X , j, (()))

(lt (N) X t) u (h)**s,-,,

I (V (h)), by definition of ll,

I(V(f)), since V(h) ’ V(f),

Since this last equality, if valid for all f M" --, S"-4, determines 11 (M), we
must have

g (N) 11 (M)

This completes the proof of naturality for
To prove (C) (the product formula), we proceed exactly as in the PL case

until we reach the point (cf. (13)) where we show that

(15) z(f, (R) ,)

Of course, when fi and ga can be made transversal to 0, we obtain (15) as
before. If one or the other cannot be made transversal to 0 (that is, if
r m 4 or s n 4), then we must modify the argument to obtain (15).
The conclusion of the argument then is a copy of the PL case.
To prove (15), first observe that if f M -- Sm-4 is any map, and if

MmX (P--M
is the projection, then

(16) I(f) I(frM)

and, similarly, if g N" --, S"-" is another map,

(17)

When f and f (R) g can be made transversal to 0, these equalities follow from
the relations

(frM)-I (0) 1-1 (0) X

(f @ g) (r. X rr)-1 (0) t((f @ g)-i (0) X fiR’ X OR’),
where t" M X N" X CP X (P4-- M X CP X N X (P is the orientation-
preserving (!) homeomorphism that switches factors. Otherwise, the rela
tions are true by definition.

Since, by definition (12),

(f (R) e) (. ) (f.) (R) (g),
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and since bothf andg can be made transversal to 0, we have, using (16)
and (17),

(R) o) I((f (R) (R)

(o),

which proves (15) and completes the proof of the product formula.
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