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1. Introduction

This paper continues the study of purity and regularity started in [4] and
[5]. As a biproduct we show that certain results which we obtained for one
type of purity are in fact valid for many types.

Unless otherwise noted we use the notation and conventions of Mitchell [6]
for categories and those of Bourbaki [2] for rings and modules. Subcategories
are always full; rings are always associative and have 1, but are not necessarily
commutative; and modules are always unital.
For any object A of a category A, and for any set I, we denote by Ax the

coproduct (if it exists) of I copies of A.

2. Homotopic purity
Let A be any abelian category and E E (A) be the additive category of

short exact sequences over A. We introduce the equivalence relation of
homotopy into E by defining (fl, f2, fs f 0 by a (and f g iff f g 0)
iff, given the commutative diagram, in E

A 0 --+ A1 a asAs A3-0

B )B3--0B O-’oB /

any one of the following three equivalent conditions holds"

(1)
(2)
(3)

there exists a e [A., B1] with a a f
there exist a e [As, B1] and a. e [As, Ba] with f / a + as a
there exists as e [As, B] with/ as fs.

This equivalence relation, defined on each [A, B] of E is compatible with
the category structure of E and hence defines a quotient category E’ and a
binary relation 0 on the objects of E"

A 0 B = [A, B]’ [A, BI, 0.

Now 0 in turn defines a polarity situation in the sense of Birkhoff [1], whose
notation we use to define for any subclass G of E the subcategory

G* (EeEJGgEforallGeG)
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The objects of O* are called G-pure exact sequences (generated by G). When
no confusion can arise we sometimes omit the G. (Clearly ((J G)* G.)
We refer to [4] for the notions of pure projectivity, projective generation,

existence of enough pure projectives, etc.
We write P’yM to indicate that P is pure in M (i.e. 0 --. P --> M --> M/P --> 0

is pure exact) for some (understood) purity.

3. Examples
(1) If G consists of all split exact sequences, then G* consists of all short

exact sequences. Dually:

(2) If G consists of all short exact sequences then G* consists of all the
split exact sequences.

These are the two extreme cases.
Let (fl, f,) f a -. be a map in the category k of maps of k, i.e.

f, a fill. We call f homotopic to 0 by a and write f -- 0 or just f 0, iff
there exists a with aa fl. This introduces again an equivalence relation
compatible with the category structure of k.
Any map a factors as a me with m monic and e epic. Hence f" a -+ is

homotopic to 0 iff there exists a with am f. These two notions of homotopy
are clearly compatible. If we let c cok m and associate to a the short exact
sequence

then each class C of maps of k defines in this way a class of associated short
exact sequences G G (C) which in turn defines G-purity.

For the following examples let & be the category of unitary left A-modules
over an arbitrary associative ring A with 1. Proofs follow from more general
results given later.

(3) We have shown in [4] that the class C (J[A, A], with the union
taken over all finite sets I and J, defines the tensor product purity of Cohn [3]
i.e. PM iff N (R) P -- N (R) M is monic for all right A-modules N.

(4) If C (J[A, A] with the union taken over all finite sets J then
P/M iff KM P KP for all (or equivalently all finitely generated) right
ideals K of A.

(5) If C (J[A, A] with the union taken over all finite sets I, then PM
iff whenever a finite system of equations a x p e P is solvable in M it is
solvable in P.

(6) If C [A, A] then P’),M iff aM n P aP for all a e A.

4. (I, J) purity
Let P be a submodule of M in the category/t of left A-modules. The

purity defined by the set [A, A] where I and J are arbitrary non-empty sets
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is called (I, J) purity and we write Pr M. Note that this purity is pro-
jectively generated, as defined in [4].

For arbitrary non-empty classes I and :[ the purity defined by the class
[.J[A, A] with the union taken over all (I, J) in I X :[ is called (I, ) purity
and we write PI / M.
We call a module (J, I) presented iff there exists an exact sequence A -.

A -- N .- O.

THEOREM 4.1. The following statements are equivalent.
(1) P M.
(2) (Relative solvability of equations) Every system of linear equations
a x pi P, indexed by I, in a set of unknowns indexed by J, and having

constant terms in P is solvable in P whenever it is solvable in M.
(3) N (R) P -- N (R) M is monic for all (J, I) presented right A-modules N.

Proof. (1) :, (2). Such a system of equations with a solution in M is
equivalent to the existence of the commutative diagram:

P- ;M.

(1) (2). 8ine P M here exists cr [, P] wih aa j’ nd he
images of ghe bs elements of .4 under is he desired solugion in P.

(2) (1). Conversely if we have a solution in P we can define by send-
ing base elements to elements of the solution, to makef 0 by .

(1) :, (3). This equivalence follows by chasing the following commutative
diagram, with exact rows and columns:

O-- A" (R) P-- A (R) M

O-- A (R) P--- A (R) M

N(R)P--)N(R)M.

COROLLARY. There is an obvious analogue for (I, j) purity, which we leave
for the reader’s formulation.

Remark. It is now clear that we can define (I, J) purity with respect to
an object A of an arbitrary abelian category A. If A is a progenerator then
we have a projectively generated purity, with enough projectives, etc.

5. Regularity

We return now the general situation where A is an arbitrary abelian category.
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THEOREM 5.1. Let E F

_
G be objects of A. Then for any purity we have

(1) E,F and F,G E’G,
(2) E’G E,F.

For projectively generated purity we have also
(3) F,G F/E’G/E,
(4) E,G and F/E,G/E F,G.

Proof. We consider the commutative diagrams naturally induced by the
given inclusions, and apply Theorem 4.3 of [4]. For example to show part
(4) we use the commutative diagram, with exact rows"

0 ---) E -- G G/E 0

0 -- F G G/F ---> O.

Henceforth, unless otherwise specified, we restrict ourselves to projectively
generated purities.

COROLLR:. Under the natural correspondence between subobjects of G/E
and subobjects of G containing E, pure subobjects correspond to pure subobjects.

PROPOmTmN 5.2. If P and Q are subobjects of an object M then

(P Q)’M and (P u Q),M both P’M and Q’M.

Proof. Observe that the proof of Proposition 8.3 of [4] carries through in
this case.

An object R of A will be called regular iff every short exact sequence with
middle term R is pure exact.

THEOREM 5.3. If 0 R -- S -- T -+ 0 is a short exact sequence in A then S
is a regular object iff both R and T are regular and R’S.. For any subobject V of S we have (V R)/R,T and hence (V R),S
since R’S. Also (V R)S since (V R)S since (V n R)R. Hence
V’S.. Given in Theorem 6.2 of [4].

6. Finitary purity
In this section we return to the category of left A-modules. If both I and J

are finite sets, or if the classes I and are classes of finite sets then we call
the resulting purity finitary. Most (but not all) of our earlier examples were
finitary. In this section we shall consider only finitary purity.

THEORE 6.1. For any finitary purity ", if P "M for all k K, a directed
set, then dir lim P /dir lira M.

Proof. Any map f" a -* t where a e [A, A] and e [P, M] can be factored
through some/, e [P,, M,] for suitable k e K, since both I and J are finite.
The existence of the homotopy is then immediate.
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COROLLARY. Finitary purity is an inductive property.

THEOREm 6.2. If R ,K R, K any index set, then R is regular iff each
R is regular.

Proof. The proof given in [4] for Theorem 8.5 goes through in this more
general situation. The crucial direct limit argument holds since we have
finitary purity.

Finally we observe that for any finitary purity we can define a regular
socle, which is a torsion socle, as in [4].
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