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1. Introduction

Denote by I! u JJ the L-norm of the function u from R to the complex
numbers C, let Q and P- be polynomials in n variables with complex coefficients,
and form the corresponding differential operators Q(D) and P(D), where
D (1/i) O/Ox,. Consider the problem of deciding whether there exists a
constant C such that

(1,) !I Q (D)u I1 C -x I1Py(D)u I1, for all u

Here C (R") denotes the set of infinitely differentiable functions with compact
support. It is easy to see that for an arbitrary p (1

_
p

_
) the condition

(,) Q()

_
c- P() (e R)

is necessary for (1.1) to hold. To prove this one need only apply both mem-
bers of (1.1) to the function u(x) g(cx) exp (i(x, )), where g e C(R),
g (x) 1 in a neighborhood of the origin, and e is sufficiently small (we use
the notation (x, ) (xl - - x, ). If p 2 it is easily seen by means
of Parseval’s formula that (1.2) is also sufficient for (1.1) to hold. However,
if p 2, it is much harder to find necessary and sufficient conditions for (1.1)
to hold, and so far only very few special cases have been treated.

In this paper we study the case where Q and P are all monomials. Then
the inequality (1.1) can be written (for explanation of notation see Section 2)

(,3) II Du I1 - C ,,_ II Du I1 (u c(R)),

For the case p we obtain a necessary and sufficient condition in geometric
terms for the inequality (1.3) to hold (Theorem 1). This condition is close
to t being an interior point of the convex hull of A. A sufficient condition
close to ours was announced by Golovkin in [1] ( e int (ch (A)) in the case
where A is a simplex). In [2] Golovkin gives a proof of the same result in the
case of two dimensions.

Recently it was proved by II’in [4] that (1.3) holds for 1 < p < (C de-
pending on p) if and only if ch (A) (note that t e ch (A) is equivalent to
(1.2)). Since II’in’s proof is quite complicated (II’in treats also the case of
L-norms over certain subdomains of R), we give a short proof of this result
here. Our proof, like that of II’in, is based on an L-multiplier theorem of
Lizorkin [8].

Received September 8, 1969.

203



204 zN BOMAN

Finally we prove a result of de Leuuw and Mirkil [5] on the estimate (1.1)
in the case m 2, P elliptic, P. 1.
Our method of proving the inequalities in question is quite different from

those of the cited authors. The essential idea ia our method is the use of
convolutions with a sequence of smooth functions whose sum is equal to the
Dirac measure (for technical reasons we use a continuous parameter family
instead of a sequence). This technique has been used by Peetre ia works on
Besov spaces [11], [12] and on partial regularity of vector valued distributions

Some counter examples to L-estimates of the type (1.1) have been given by
Littman, McCarthy, and Rivire [7].

2. The case p : Statement of result
Let N be the set of non-negative integers. If

a (a, ,a)eN and

we write [’ " and D D D’, D (1/i) O/Ox. Let A
be a finite subset of N". Considering A as a subset of R" we can form the
convex hull of A, denoted ch (A). Using the metric in R" we can form the
interior of ch (A), denoted int (oh (A) ), or int (oh (A) ). If B is a subset
of a k-dimensional affine subspace L in R’, we denote by int (B) the interior
of B with respect to the induced metric in L. This concept does not depend
on the particular choice of L, since if B is contained in two different
dimensional affine subspaces L, then int (B) is empty.
The following result, which is our main theorem, asserts the equivalence of

an estimate (E) in L-norm and a certain geometric condition (G).

TIOa 1. Let N" and let A be a finite subset of N’. The following
conditions are equivalent"

(E) There exists a constant C such that

(G) There exists an integer k, 0

_
k

_
n, and a k-dimensional ane sub-

space L in R’*, which is parallel to a k-dimensional coordinate plane in R’*, such
that

e int (oh (L n A ).

If k n, the formula e int (oh (L n A ) should of course be interpreted

e int (ch (A) int (ch (A)),

and if k 0 it should be interpreted e A.
Example 1. As is well known, the inequality (we write D d/dx)

holds if and only if k _-< j

_
m.
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FIGURE 1

Example 2. The following estimate holds (see Figure 1):

(u c’ (2)).
Example 3. There is no estimate

(u, c (R) ),

since the point (1, 1 ) is not an interior point of ch (A), and is not an interior
point of any horizontal or vertical line segment with end-points in A (see
Figure 2).
The inequality (E) is closely related to the following statement.

(C) If f is a continuous function defined in R’* such that D’f is contiuous
for each a A, then Daf is continuous.

Here D"f may be interpreted for instance in the sense of the theory of distribu-
tions. By means of the Closed Graph Theorem orby more elementary methods
one easily proves that (C) implies

(E’) !I Dau ll --< C(., II D"u !I + II u I!) (u, c*
Thus we conclude in particular (Example 3) that there exists a function f de-
fined in R such that if, D f, D. f, D f, andDf are continuous, but DxDf is
discontinuous. A construction of such a function was given by Mitjagin [9].
On the other hand, if A has the property

a e A, . <- a implies . A,
then we also have the opposite implication (E’) (E) (C). (Here
/ =< a means that / -< ay for each j.) This statement is proved by standard
arguments.
A very simple example of a functionf of two variables such that f, D1 f, Df,
D f, and Df are continuous in a neighborhood of the origin, butD D2 f does
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FIGURE

not exist at the origin, can be given as follows

f(x,,x) x, x. log log (x+x) forO <x+x < 1/2,

o) 0.

More generally, let e Nn, and define the function f by
0 < < 1/2,

0.

It is easy to prove thatfhas the following properties (write a al % - an
for a e

(i) D’f exists and is continuous for each a such that a -< I/1 and a .
(ii) D](0) does not exist.

In these statements the mixed derivatives D’f and Df may be interpreted in
an elementary sense being defined by repeated differentiation in an arbitrary
order. Property (i) implies of course in particular that f belongs to C, the
space of k times continuously differentiable functions, for k i 1.
Denote by M the set of complex-valued measures in R with finite total

mass, and denote by _/the set of Fourier transforms of elements M.
Identify L1 with a subset of M. The set of Fourier transforms of functions in
L1 is denoted/1. The total mass of M is denoted IIM, and if h ,
M,we write II h II II I!. Similarly if h ], f L,, we write h ,
If a, e M, we can form the convolution , which is also an element of M.

We note also that if e M and u e L, we have the inequality

(2.1) [Iu*ul],--< tIlIM’iluli, (1 __< p_ oo).

The proof of Theorem 1 is based on the following lemma.
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LEMMA 1. There exists a constant C such that

(2.2) Q (D)u I[ - C jl II Pj(D)u 11.
if and only if there exist functions h e 3/ such that

(2.3) Q () - h()P().

The sufficiency of the condition is an immediate consequence of (2.1), and
the necessity is proved by a standard application of the Hahn-Banach Theorem
(see Lemma 1 in [5]).
We do not know whether (2.3) is also implied by

II Q (D)u I11 - E’ml II P (D)u Ill (ue C (R) ).

(The converse implication is obvious.) If this were proved, one would ob-
tain the analogue of Theorem 1 for p 1. This would generalize the result
of Ornstein [10].

3. SufFiciency of the condition (G)
We shall need the following lemma.

LEMMA 2. Assume that gl, "", g, are non-negative measurable functions
defined in R" and that

f inf_ t) dt <g(

Then there exist disjoint measurable sets G such that

Proof. Set

Then clearly

LI-IG R and fe g(t) dt < oo

H {t; e R, g(t) inf g(t)}.

(j 1, ,m).

U-i H. R and

but the sets H are not necessarily disjoint.

f. g(t) dt <

Define G inductively by

G1 Hi and G H.\(G1 u... u -1) (j--- 2, ..., m).

Then G, j 1, .-., m, have all the required properties.
In proving that (G) implies (E) we may assume that (G) is satisfied

with k n, i.e. that fl e int (ch (A)). To see this assume that
fle intk (oh (L n A)) and that k _-< n 1. If k 0 this means that fle A,
so that (E) is trivially satisfied. If 1

_
k _-< n 1, we may assume that L

is of the form

where K is the k-dimensional coordinate plane

{a; ak+l ,, 0} and , (0, ..., 0, v+l, "", ’.).
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Writing a (a’, a"), a’e N*, a"e N’-’ and

A’ {’; (’, ")A} c N,
we observe that ’, ’)e int (ch (L n A)) means the same as

’ int (oh (A’)) int (ch (A’)).

Hence by the special case of the theorem we have, writing D (D’, D),

!1D’a’v I C .,a, Ii D’’ II (re C (R)).
Tking v Du, u C (R) nd keeping x+, x fixed we obtain (E).
Te e C (R) such thnt (y) (- y), (y) 0 in neighborhood of

0, nd

(a.1) (e-) 1.

or (, ..., ) R and

()
Then in view of (3.1),

f ,() dt 1

if 0 for ech i. For fixed t the function ( e-t) is equal to ero in
neighborhood of O. Hence for ny aN,eN" nd teR, the

function -Ot() belongs to C(R), nd hence

We now study the t-dependenee of the norm I1 of this function. Since
for an arbitraryff(,), L we have 11(.")llz. I! (,)IIz.. we obtain

(3.2) CH% e"(’-"’)

Ce (t,a-a)

Next we prove that if a e int (eh (A) ), then

f. inf.,ae(’-) dt <(3.3)

In fact

inf.,a oxp (t, a a) exp (--sup.,a (t, a a)) exp (-Hz (t)),

where Hz (t) is the supporting function for the convex set

eh (A) a h ({.--
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But the assumption e int (ch (A) is equivalent to

0eint (ch ()),
and hence implies that

Hz(t)

_
c

for some c > 0. This proves (3.3).
Applying Lemma 2 with {g(t)}l {e(’a-")}.,a we conclude that there

exist disjoint sets G, c R such that

and

for each a e A. Define h () for 0 by

h.() fo - t() dt.

According to (3.2) we have

h, I1, <= C fo e("a-") dt < ,
Finally

Applying Lemma 1 we conclude that (E) holds.

4. Necessity of the condition (G)
In view of Lemma 1 it is enough to prove that the existence of h 21 such

that

(4.1)
implies (G). The idea of the proof is as follows. It is easy to see that
cannot be an exterior point of eh (A) if (E) holds. To see this one need only
take

ux (x) (x’x, ..., x’x),
where g e C (R"), g 0, and the real numbers r are chosen such that

(/, r) > sup,,a (a, r),
and the real parameter X -- -1-. (The same argument applies if one con-
siders, instead of (E), the corresponding inequality for an arbitrary fixed p,
1 _-< p <- .) Hence it is enough to study the ease where lies on the bound-
ary of eh (A). We will prove that in this ease (4.1) implies roughly that
a is linearly dependent on the ". As an illustration of this point we mention
the following example. Assume that for some h 21
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Replacing 1 by XI and by X-2, X > 0, we obtain

I $ hi (X., X-) ] + h2 (Xx, X-12).
Since h e, the functions h(X, x--l2) converge in certain weak topology
(see below) to constant functions as (Lemma 3). This gives a con-
tradiction.
We denote by C0 the set of continuous functions R C with compuct

support. The integral of e C0 with respect to the measure will be denoted
(, ). We shall use the following notion of convergence in M. If x e M
for each > 0, we say that x tends to e M as k if

limx (x, ) (, ) for every e Co.
This will be written

We use the same notation for the corresponding convergence of the Fourier
transforms, i.e.

sX.

This is actually an abuse of language, but there will be no confusion.

LMM 3. Let h (R), let r, ..., rq (q n) be real numbers all dif-
ferent from zero, and define the meagre for X > 0 by

x () h (Y’5, "’", Y’q, q+l, n).
Then

(4.2)

where # is a measure with support in the hyperplane

or equivalently, f ( depends only on

Proof. If e Co we have

Assume thatr >0whenl_i kandthatr<0whenk <i_ q. Letx
be the characteristic function for the origin in R. Then it is esily seen that

Rlimx. ox (x) o (0, O, xq+,, x) II-, x (x,) (xe

Denote the function in the fight member by 9. Clearly 9 is a -measurable
function for any e M. Since the functions ex are uniformly bounded, it
follows from a general form of the Lebesgue Dominated Convergence Theorem
that

limx (/, 9x) (, xI,).
This proves (4.2) with defined by

(tt,) (gx,9) fore,Co.
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If is equal to zero in the plane

L {x; xl x 0},

then is identically zero, hence the support of g is contained in L.
To prove that (E) implies (G) we use induction with respect to the dimen-

sion n. If n 1, the statement is easily seen to be true, for in this case ch (A)
is an interval [a0, al], where a0 and a are non-negative integers. In fact, by a
remark in the beginning of Section 4 it is sufficient to consider the case where
t is a boundary point of ch (A), and this case is of course trivial when n 1.
We now assume that we have proved that (E) implies (G) when the

number of variables x, ..., x is less than or equal to n 1. We have to
prove the same statement when m n. Thus assume that (E) holds. By
Lemma 1 this is equivalent to the existence of h e such that

(4.3) ,h().

Again we may assume that is a boundary point of ch (A), or equivalently,
that there exists a non-zero vector r (r, , r.), r real numbers, such that

(, r) sup, (a, r).

Now replace by, > 0, in (4.3). Let A0 be the set of a e A such that
(a, r) (, r). Setting

h.x (i, "",

we obtain after division by

(4.4) ,oh.() W "",

where the otted terms contain negative powers of . We may renumber
the coordinates so that r 0 for i i q, and r 0 for q < i n. Then
by Lemma 3 there exist functions g e, which depend only on q+x, ..., ,
such that

Take an arbitrary e C; (R) and multiply (4.4) by (). Since ()
is the Fourier transform of a function in C0, we obtain from (4.4) by letting
tend to infinity

A0

However, since is rbitmry, this clearly implies that

(4.6) 0g(+,, "", ).

Now, since the monoMs re linearly independent over the ring
of continuous functions in +, ..., , it follows from (4.6) that there exists
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a subset A c A0 such that

and that
(/1, "",q) (o/1,’",o/q) for eacho/eA,

But by the induction assumption this implies that

(q-{-1, "’, n) and (O/q.t_l, O/v,); O/ A}
satisfy (G) with n q instead of n (note that q => 1 ). It is obvious that this
implies that and A--and hence and A--satisfy (G).

5. The case < p <
In this section we will prove the following result, which seems to have been

first proved by II’in [4].

THEOREM 2. Let e N", let A be a finite subset of N’*, and let 1 < p < .
There exists a constant C (depending on p) such that

(5.1) [I Du [l, <= C ,. ]1D"u ll (u e C (R") )

if and only if ch (A).

That the condition e ch (A) is necessary for (5.1) to hold has already been
proved twice--see the beginning of Section 4 and the introduction.
The most essential part of the proof of the sufficiency of the condition

/ e ch (A) is contained in the estimate (5.3) of Lizorkin. A more general
theorem containing the result of Lizorkin has been proved by other methods
by Littman, McCarthy, and Rivire [6]. These results are all closely con-
nected with the well-known multiplier theorem of Mihlin (see e.g. [3, Theorem
2.5]); they can actually be considered as extensions of the latter theorem.
To formulate Li,orkin’s theorem in a convenient way one must use the

language of distribution theory. As customary we denote by $ (R") the class
of tempered distributions in R" as defined by Schwartz in [13].

THEOREM 3 (Lizorkin [8]). Let T be a distribution in $’ (R’*) whose Fourier
transform ( is a bounded function which is n times continuously differentiable
in the set

G { (1, "",); 0foralli}.
Assume that

for all e G and for all "y (1, %,) such that , 0 or 1 for all i.

for each p, 1 p there exists a constant C such that
Then

(5.3) I1 T u ]I - C11 u (u c (R) ).

The set of Fourier transforms (in the distribution sense) of distributions
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T e $’ (R") satisfying (5.3) for a given p is generally denoted M. It is known
(see [3, p. 100]) thatM Mifp-1 + q-1 1 and that M c Mr if
1 -< p =< r -< 2, and furthermore that M1 M (= the space of Fourier
transforms of measures with finite total mass), and that M. L. It
follows that for 1 =< p =< o we have M c L.

For 0 Nn, set

Then

In order to prove Theorem 2 we need only show that g+)/ M, whenever
a e A and e ch (A), or more generally, that g eM whenever 0 e ch (A).

It is clear that g is infinitely differentiable in all of G.

LEMMA 4. Assume that e ch (A and hat g () g () is defined by (5.4).
NThen for each " e there exists a constant C such that

(5.5) Dg () <= C] - 5 - ( G).

Proof. We first prove (5.5) for I/I 0, i.e. that g () is bounded. Since
e ch (A) there exist non-negative real numbers t such that t 1 and

.a t’ot O.

By the arithmetic-geometric inequality we then obtain

This proves that g () is bounded.
Next we estimate the derivatives of g (). Set

F() Z..
Using the trivial estimate

(5.6)

we get fork > 0

D, <-
(5.7)

Dg () can be written as a sum of terms of the form

where 1 k [y[ + 1. We will prove by induction over y that each of
those terms can be estimated by the right hand side of (5.2). For k 1
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and 13’! 0 this has already been proved. From (5.6) and (5.7) we get

]D(’F()-*)i <= (D,’)F()
_-< c! I- 1

Combining his estimate with the induction ssumpion we obtain he de-
sired estimate.
By combining Theorem 3 nd Lemm 4 we see th # eM for eeh

# eh (A) nd 1 < p < . The proof of Theorem 2 is complete.

6. The case P elliptic and P2 1

In this section we use the methods of Section 3 to give a short proof of a
result of de Leuuw and Mirkil [5].

Trmoa 4. Assume that P is elliptic and that the degree of Q is strictly
lower than that of P. Then for each p, 1

(6.1) Q (D)u ]] _-< C (]] P (D)u I[ -t- u II) (ue C (R")).

In the same article de Leuuw and Mirkil showed that if P is elliptic and Q
and P have the same degree, then the homogeneous parts of highest degree in
Q and P must be proportional in order that (6.1) be valid for p . This
together with Theorem 4 easily gives a characterization of he operators Q
satisfying (6.1) for a given elliptic operator P and p

Proof of Theorem 4. Write P P0 q- P1, where P0 is the homogeneous
part of highest degree d, and the degree of P1 is < d. The fact that P is
elliptic means that P0 () 0 for each non-zero real . We will prove that
for any e > 0 there exists a constant C, such that

(6.2) ]I Q (D)u ll - ell P0 (D)u II -t- cll u Ilp (u e C (R’)).

Using (6.2) we easily prove (6.1) as follows. Writing P0 P P and
using Minkowski’s inequality we obtain

(6.3) ]]Q (D)u I! =< eli P (D)u

The same inequality for P (D)u instead of Q (D)u can be written

If c < 1, the result follows from (6.3) and (6.4).
We will prove (6.2) by constructing hi and h in L such that

(6.5) Q() P0()h,() + 1.h().

We may clearly assume that Q is a homogeneous polynomial of degree e > 0.
Take an infinitely differentiable function defined for

_
0 such that
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q (t) 0 for > A and for 0 -< < a, a > 0, and such that

Set

P0(f)
and h(f) Q(f)

Then (6.5) holds and hi e L1 since for each > 0,

P0()
eC( c

and

Since 0 < e < d we conclude that h I]1 is finite for j 1, 2. By choosing b
large enough we can make hi I11 as small as we please. This completes
the proof.

It seems worth pointing out that the same method can be used to prove that
a given function is an Lrtransform in a somewhat more general tuation,
as follows.

TEo 5. Asme that k () is an infinitely differentiable function defined
in R’, and that k () is positive-homogenes of degree r < 0 (r real) tside
some compact set. Then k

Proof. The assumption means that there exists an A such that

(6.6) k(t) tk() forR, [] > A, > 1.

Let denote the same function as in the proof of Theorem 4, and set

g() ()

If b is large enough, k () satisfies (6.6) for all such that the integrand is
derent from ero, and hence the proof of Theorem 4 shows that g
Since k g e C, it follows that k e L.
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