ZEROS OF ¢’(s) AND THE RIEMANN HYPOTHESIS

BY
RoBERT SPIRA!

Abstract

It is shown that the Riemann hypothesis implies that the derivative of the
Riemann zeta function has no zeros in the open left half of the critical strip.
It is also shown, with no hypothesis, that, with the exception of a bounded
region where the zeros can be calculated, the closed left half plane contains
only real zeros of the derivative. It is further shown that the Riemann
hypothesis is equivalent to the condition that | {(s) | increases as Re s moves
left from 1/2 for Im s sufficiently large.

1. Introduction

1t was shown in [5] and [7] that {® (s), the k-th derivative of the Riemann
zeta function, has certain zero free regions. Write s = o 4 4. In [5], it was
shown that for k > 1, if ¢ > 2 + 7k/4, then {*®(s) 5 0; it was also proved
that for each & > 0, there is an 7, = ri(¢) such that {®(s) = 0for |s| > 7,
c < —eand |[t| > e. In [7], it was shown that there is an a; such that
¢®(s) has only real zeros for ¢ < o, and exactly one real zero in each open
interval (—1 — 2n,1 — 2n) for1 — 2n < o .

For k = 1, the results can be improved. First, in Titchmarsh [8, Theorem
11.5C] it was shown that there is a constant E, 2 < E < 3, so that the real
parts of zeros of {’(s) are densein [1, E], and that {’(s) # 0for ¢ > E. Second,
in Spira [6], it was proved that on the critical line ¢ = 1/2, ¢'(s) # 0 ex-
cept possibly at the points where {(s) = 0. Also, in [6] a conjecture was
made which implies both the Riemann hypothesis and that {’(s) = 0 for
0 < ¢ < 1/2. In this paper, it is shown that the Riemann hypothesis alone
implies that {(s) # 0for 0 < ¢ < 1/2, and also the situation in the closed left
half plane is settled up to the point of a feasible calculation. The method is to
show a modified form of the conjecture of [6], using the Riemann hypothesis
for results in the critical strip. Results are also given on the increase of
| £(s) | as o tends to — « from 1/2.

2. Results on the zeros of {/(s)

TuHEOREM 1. The Riemann hypothesis implies {'(s) # 0 for 0 < o < 1/2.
If | s| > 165, then {'(s) has only real zeros for ¢ < 0, and exactly one real zero
in each open inlerval (—1 — 2n,1 — 2n),n = 1,2, ««- .
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Proof. 1In the proof, and in Section 3 we reduce the region of uncertainty
even further.
In what follows take ¢ > 1/2, [ ¢| #% 0. The functional equation gives

—¢(1 — 8)/¢(1 — 8) = —log 2r — i tan (ws/2)
+ I'(s)/T(s) + §'(s)/8(s),
where we are using the Riemann hypothesis. Next, using [8, 2.12.7],
§'(8)/k(s) =log2r — 1 — 3y —1/(s — 1)
— (s + D/TGs + 1) + X, (1/(s = p) + 1/),

where the series runs over the complex roots of the zeta function and con-
verges absolutely, we obtain,

—¢(1—8)/¢(1— ) = —(1+ 3y + 1/(s — 1) + %= tan (7/2))
(3) + I'(s)/T(s) — 3T'(3s + 1)/T(3s + 1)
+ 2, (1/(s — p) + 1/p).

Since for a zero p = «a + 3, we have

Re<s1p+%> B e Ty R
using the Riemann hypothesis, we get
— Re{'(1 — )/8(1 —s) > Re (I/T)(s) — 3 Re (I'"/T)(3s + 1)
— (1 4+ v+ Rel/(s — 1) + 37 Re tan (ws/2)).
Now from [1, Eq. (3)], in the plane cut along the non-positive real axis,

Ps(fl’)
s + )4

(1)

(2)

(4)

(5) —(s)—logs——Z—S 12s2+ f(

where P3(x) is a function of period 1 which is equal to
x(22" — 3z + 1)/12
n [0, 1], and the log is principal. Asin [1], 6 | Ps(z) | < 1/8, so

P3(x) 1r° dx 1
(6) 6f G T 8h TFaF6Tsp’

the last inequality coming from [3, (6)]. Thus,
(1) Re(T/T)(s) 2 log|s| — 1/2]s| —1/12]s| — 1/6]s[,

and

Re (I"/T)(3s + 1) <log|3s+ 1|+ 1/|s+ 2]

(8) 2 3
+1/3|s+ 2"+ 4/3]|s + 2"
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Next,
(9)  Retan (ws/2) < |tan (ws/2) | < (1 + e ™) /(1 — ™).

by [3, (14)], and this last function is monotone decreasing with increasing
|t]. Also,

(10)  log(2|s[Y/|s+2|) =1log2-+log|s|— log |1+ 2/s|.

and

(11) log |1+ 2/s| <log(1+2/|s]) <2/|s|.
Finally,
(12) Rel/(s—1) < [1/(s—1) | < 1/(|s| = D).

Putting (7), (8), (9), (10), (11) and (12) in (4), we obtain for [s| > 1
(because of (12)),

—2Re ¢'(1 — 8)/¢(1 — 8)
>log|s|+1log2—2—v—2/s]|
(13) —w(l+e ™/ =™ +2/(|s| = 1)
~1/ls| = 1/6]s["=1/3]|s[
~1/|s+2|—1/3|s+2—4/3|s+ 2%

Using now | ¢| > 2, | s| = 164, we obtain easily that the left hand side of
(18) is >0. Thus, on the Riemann hypothesis, we have {’(s) # 0 for
0<0o<1/2 |t| = 164. Now the calculation of [5] showed that {’(s) = 0
for0 < o < 1/2, | t| < 200, (although only the region | ¢ | < 100 was reported
on), so we have shown the first part of the theorem. Further, since the
inequality |s| = 165 implies the inequality |1 — s| > 164, we have the
second result of the theorem for the closed left half-plane except for a strip of
width 4 centered on the negative real axis.

For this strip, we apply the method of [7]. We have by the functional
equation

—{'(1 — 8)/2(2m)™" = ¢(s)I"(s) cos (ms/2)
+ T(s){cos (ms/2) ({'(s) — (log 2m){(s))
— sin (7s/2) ((7/2)$(s))}
= f(s) + g(9),

where f(s) is defined by ¢(s)I’(s) cos (ws/2). Next, we apply Rouché’s
theorem to the rectangle with vertices 2n 4= 2¢, 2n + 2 &= 2. Thus,

F(s) + g(s)

(14)
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will have exactly the same number of zeros inside the rectangle as f(s), pro-
vided [f(s) | > | g(s) | on the boundary. Dividing |f(s) | > |g(s) | by
| £(s)T(s) cos (ws/2) | and applying the triangle inequality, we will have
| f(s) | > | g(s) | on the boundary provided

(15) | (r/T)(s) | > | (§'/8)(s) | + log 2r + (x/2) | tan (ws/2) |.

Now for ¢ > 1,
/6 (8) = = 2 na A(n) /0’

where A(n) = log p if n is a power of a prime p*, k& > 1, and A(n) = 0 other-
wise. Hence, for ¢ > 2

{ (s) < Z log n

n=2 N7

log 2

__2—|—(or —-1)10g2
N (¢ — 1)22°

Also, on the boundary
[tan (ws/2) | < (¢ 4+ 1)/(e7*" — 1) < 1.005.
Thus, using (7), we have that (15) will hold on the boundary provided
log|s|>1/2|s|+ 1/12| s>+ 1/6 | s |* + log 2 + 1.005 =/2
+ (2 + (" = 1) log 2)/(c — 1)

which holds for ¢ > 32. Now from (17), we see that the right hand side of
(7) is > 0, so I'(s) has no zeros in the rectangle with vertices 2n =+ 27,
2n + 2 + 2¢. Thus, there is exactly one zero of {’(s) in the reflected rec-
tangle corresponding to the zero of cos (ws/2). As in [7], this zero must lie
on the real axis, since non-real zeros occur in conjugate pairs. Thus, the
theorem is proved, for the strip of width 4 and indeed for ¢ < —31.

3. Feasibility of the calculation

It is possible to reduce further the region where {’(s) may be zero. Indeed,
from

(17)

[¢'(1 = 8)/2(2m)™ | = [f(s) + g(s) | = [f(s) | — | g(s) |
we will have (1 — s) = 0if |f(s) | > |g(s) |. For example, using (17),
foroe > 3,|t| > 2, it suffices to take | s | > 38. Hence {’(s) == 0for [¢| > 2,
o < —2, |s| = 89. Thus, the region of uncertainty naturally falls into
three pieces:

I. -81<0<0,-2<t<Z2,
I o< —2,t>2|s] <39,
III. —2<5<0,2<¢< 165.
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For region III, the ordinary Euler Maclaurin formula could easily be used
[4]. This formula can also be used in the neighborhood of the origin. How-
ever, when ¢ lies in the more negative regions, the formula becomes difficult
to apply. Using the differentiated functional equation (14) is impractical
because of the size of I' and IV. However, in the form (1), it becomes reason-
able if one uses the asymptotic series for I'V/T' whose first few terms are given
by (5). For s near the origin one can perform a number of translations using

(T'/T)(s) = (T/T)(s + 1) — 1/s

to get rapid convergence. For {’(s) and {(s) in (1), one would again use the
Euler-Maclaurin formula. Thus, the calculation is feasible.

Finally, the author remarks that the theory for the location of zeros of
E®(s), the k-th derivative of the Riemann E-function, is much simpler.
By a theorem of Laguerre [9, p. 266], if the Riemann hypothesis is true, then
all zeros of E%(s) are real.

4. Results on |{(s)]
In Spira [6], it was conjectured that
Re (§7/8)(s) < —%log |t + §log2r + O(1/]t]),
0<oc< 4|t >,
and from (13) above, we have that the Riemann hypothesis implies
Re (5'/¢)(s) < —%log|t|+ K + 0(1/]¢t]),
0<o<%|t|> 164,

(18)

(19)

where
K=1+4+v/2++ 1001 7/2 — % log 2

which is (18), except for a larger constant.
As remarked after (13) we have

(20) Re¢'(1 —8)/¢(1 —s) <0, |t]=>2,0621,]s|> 164
and on the Riemann hypothesis also for ¥ < ¢ < 1. Since
Re {'/¢(s) = 8/da log | £(s) |.

we have for the regions indicated that log | ¢(s) |, and hence | {(s) | is an
increasing function of ¢ as ¢ moves leftward, using the Riemann hypothesis
in the critical strip. It is also clear that if | {(s) | so increases in the critical
strip, then the Riemann hypothesis holds.

The results obtained do not appear to be easily extendable to {*(s) for
k > 1. However, they do appear to go over to the Dirichlet L-functions.
In these cases, the inequality is assisted by a term log %, and it may be that the
inequality (19) will be provable for the entire left half of the critical strip for
k sufficiently large (where we consider L(s) /s instead of L(s) incase L(0) = 0).
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The problem reduces to estimating L’(0)/L(0) as a function of k (see [2,
p. 507)).
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