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0. Introduction
This paper computes the homotopy type of those closed, connected, orient-

able, topological (p - q)-manifolds which admit a degree 1 mapping from
S" Sq for p, q _> 1. The principal result is

THEOREM 2. Let M be a closed, connected, orientable, topological (p q)-
manifold. If M admits a degree 1 mapping f" S X S ---* M, then either M
has the homotopy type of S+, or f is a homotopy equivalence.

This theorem is analogous to the following results, which appear in [2, 2.6
and 2.7, pp. 216-217].

:PROPOSITION. Let M be a closed, orientable, topological or piecewise linear
n-manifold, n >_ 5. If there is a degree 1 map S M, then M is isomorphic
to S.
THEOriES. Let M be an unbounded, orientable, differentiable or piecewise

linear n-manifold, n

_
5. If there is a proper degree 1 map R ----> M, then M

is isomorphic to Rn.
1. The degree of a map

If M and N are connected, orientable n-manifolds, then

H: (M, Oi H: (N, ON) Z,

where Z denotes the infinite cyclic group. (H* denotes the integral singular
cohomology based on cochains with compact support.) If and N are the
preferred free generators of the groups above, then the degree of a proper map

f" (M, OM (N, ON

is the integer k satisfying
f* (uN)

The proof of Theorem 2 requires repeated use of the following fundamental
lemma, proved in [2, 2.9 and 2.11, pp. 216-217].

IEMMA 1. If f" (M, OM) ----> (N, ON) is a proper mapping of degree 1
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between connected, orientable n-manifolds, then
( f ’ (M (N is an epimorphism, and
(b) f, H, (M, OM H, (N, ON) is a split epimorphism.

2. The main theorem
It is convenient to write the principal result in the following form, where

l<m<n-m.

THEOREM 2. Let M be a closed, connected, orientable n-manifold and

f.S,xsn-,.._.M

be a mapping of degree 1. Then either M has the homotopy type of S’, or f is a
homotopy equivalence.

Remark 3. Both of the possibilities in the conclusion of Theorem 2 ac-
tually occur. In S X S collapse S X sl and s X S to a point; then
the quotient map is a degree one map S S -- S".

Proof of Theorem 2. If m n m 1, the proof follows easily from the
classification theorem for closed, connected 2-manifolds. So assume that
n>3.

Consider first the case of 2

_
m < n m. Sincel(S S-m) 0,

it follows from Lemma 1 that r (M) 0. Moreover, the same result shows
that Hk (M) 0 except possibly for/ 0, m, n m, and n. Now Poincarti
Duality and the universal coefficient theorem for cohomology give

Ho(M) H(M) Z
and

H, (M) H (M) Hom (H_ (M), Z) H_(M)

(since H_m_ (M) is free abelian by Lemma 1), where H, is the integral
singular homology. Furthermore, because Z is indecomposable, Lemma 1
implies that H(M) 0 or H(M) Z.

If H(M) 0, the absolute Hurewicz isomorphism theorem [3, 7.5.5,
p. 398] implies that the Hurewicz homomorphism

,(M) ----> H,(M)

is an isomorphism. Let tM e H (M) and n eH (S) be the preferred genera-
tors, and select a map g S --M representing the class -1 (tM). The defini-
tion of shows that [g] g, (); hence g is a mapping of degree 1.
Thus

g, H,(S) H,(M)

is an epimorphism and hence is an isomorphism, for every epimorphism
Z --, Z is an isomorphism. It follows that g" S --, M is a homotopy equiv-
alence [3, 7.6.25, p. 406].
When H(M) Z, f, H, (Sm X S-) --* H, (M) is an epimorphism by
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Lemma 1, and so f. is an isomorphism as above. Thus f is a homotopy
equivalence.

If m n m >_ 2, then Hm (Sm X S) Z Z. Hence the possibilities
forH(M) given by Lemma 1 are 0, Z, and Z Z. IfH(M) 0 or Z W Z,
the arguments above show that M S or that f is a homotopy equivalence,
respectively. So it suffices to prove that H(M) Z. Assume to the con-
trary that Hm (M) H (M) Z, and let a generate H (M). Then a u a

can be shown to generate H2m (M), and hence f* (a u a) must generate
H2 (S X Sin). However, f* (a u a) is an even integer.
When m 1, M is not necessarily simply connected. But if 1 (M) 0,

then M S as before. Suppose therefore that I(M) 0. Since
(M) H(M), it follows that (M) Z and hence that

f’(S X S-1)-- 1 (M)

is an isomorphism.
prove that

In order that f be a homotopy equivalence it suffices to

f" (S X S-) -- (M)is an isomorphism for ] _> 2. In order to argue as above it is necessary to
pass to the universal covering spaces of S X S- and M by means of

THEOnEM 4. Let N and M be compact, connected, orientable n-manifolds,
and let f" N M be a mapping of degree 1 which induces an isomorphism

f r (N r (M ).

If q I -- M is the universal covering space of M and P is the fibered product
(i.e., the pullback) of f and q, then"

(a) The induced covering projection p’P N is the universal covering
space of N.

(b) There is a proper map ]" P -- M of degree I such that q] fp.

Applying Theorem 4 to f" S X .n--1 M gives a commutative diagram

in which _r is the universal covering space of M and] is a proper map of degree
1. Now H_I (/r) 0, lest J be contractible and M be a space of type
(Z, 1 ). Thus H_ (2r) Z, and hence ]. H. (R X S"-) -- H. (.r) is an
isomorphism, as before. Therefore ]" r (R X Sn-) -- v (/r) is an iso-
morphism for ] _> 1, and it follows that f (S S"-) - (M) is an
isomorphism for ] >_ 2, completing the proof of Theorem 2.
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Proof of Theorem 4. (a) It can be shown easily that P is path connected.
That (P) 0 follows from the fact that (M) 0.

(b) When the geometric degree [2, p. 372] of f is 1, any map ] induced by f
is readily shown to have geometric degree 1. In any case there is a map
g" N -- M homotopic to f and having geometric degree 1 [2, Theorem 4.1].
Lift a homotopy from g to f to a map H P X I -- 21); the desired map ] is
defined by ](x) H (x, 1 ). Since (x) H (x, 0) has geometric degree 1
by a previous comment, the fact that] is a proper map of degree i follows from
the fact that H is a proper homotopy from to ].
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