ON THE BEHAVIOUR OF LINEAR MAPPINGS ON ABSOLUTELY
CONVEX SETS AND A. GROTHENDIECK'S COMPLETION
OF LOCALLY CONVEX SPACES

BY
W. RoELCKE

The first point of this note is a simple proof of Theorem 2 which states a
continuity property of linear maps with respect to absolutely convex sets
and is essentially due to D. J. H. Garling [4]. In Theorem 4 the approxima-
tion theorem 16.8 of Kelley-Namioka’s book [7] is sharpened by dropping the
closedness assumption on the absolutely convex set on which the linear forms
are to be approximated. This result is used in Theorem 5 to extend Grothen-
dieck’s well-known discussion of the completion and the completeness of the
dual X’ of a locally convex space X by admitting on X’ topologies ¢ of
uniform convergence on classes N of absolutely convex subsets of X whose
members need not be bounded nor closed. Finally, V. Ptak’s and H. S.
Collin’s characterization of the completeness of (X', Tp) is carried over to
these (generally not linear) topologies T .

The following theorem can be easily deduced from Theorem 1 of Garling [4].

Tueorem 1. Let X and Y be locally convex spaces, f a linear mapping from
X into Y, N a collection of absolutely convex subsets of X, directed upwards by
inclusion, whose union is absorbent. Let f be continuous on each A e . Then
f is also continuous on the closure A of each A e N.

We wish to give a direct proof for the following special case of Theorem 1
to be applied later.

TueoreM 2. Let X and Y be locally convex spaces, f a linear map from X into
Y, and A an absolutely convex and absorbent subset of X such that f | A s con-
tinuous. Then f| A is also continuous.

Proof. According to a lemma of A. Grothendieck [6, p. 98] it suffices to
show that f| A is continuous at 0. Let V be a neighbourhood of 0 in Y.
Then there is an open neighbourhood U of 0 in X such that

(1) f(UnA)C V.
The theorem will be proved if we show
@) fUand)cV+7V.

If ¢ U n A there exists a real number p, 0 < p < 1, such that pr e 4. Be-
cause of the continuity of f| A at px there exists y e U n A so close to z that

3) flox) — floy) epV.
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(Note U = U®°and pA € A). Therefore, using (1), we obtain

f@) =p"(flee) = floy)) +f@) eV +V

which proves (2).
We mention the following variant of Theorem 2.

TrEOREM 3. Let X and Y be linear topological spaces, f a linear map from
Xinto Y, A C X, 0¢A, and for every x ¢ X let there exist a scalar p #= 0 such
that px — pA C A. Then, if f| A is continuous at 0, | A is also continuous
at 0.

The proof is similar to that of Theorem 2; replace (3) by f(px — py) epV.

Theorems 2 and 3 have analogues for semi-norms instead of linear maps.

If, in Theorem 2, A is a neighbourhood of 0, then f is continuous on all of
X. If A is not a neighbourhood of 0, it may still be true that continuity of
f| A implies continuity of f without a restriction on Y. Namely, the fol-
lowing example shows that a locally convex space X with the Mackey topology
may contain an absolutely convex, closed, compact subset A which is not a
neighbourhood of 0 and such that any linear map from X into any locally
convex space Y is continuous if it is continuous on A.

Let (X, £) be the Mackey dual of a non-reflexive Banach space Z, and let
A be the closed unit ball of X. Then A is absolutely convex, closed, and
weakly compact, but not a neighbourhood of 0. Let now f be a linear map of
X into a locally convex space Y such that f| A is continuous. We show that
f is continuous. By Garling [4, p. 2] the continuity of f| A means that f is
continuous for the finest locally convex topology & on X which agrees on A
with €. (& may also be described as the mixed topology v[R, T] determined
by the strong topology & = B(X, Z) and the Mackey topology $—see A.
Wiweger [11, 2.1-2.2].) It is therefore sufficient to show & = £. The dual
of (X, &) consists of all linear forms on X which are T-continuous on A. It
may therefore be identified with the completion of Z with respect to the
topology of uniform convergence on A (by Grothendieck’s completeness
theorem). Z being already complete in this topology, we obtain (X, &)’ = Z,
ie., @ c T, and therefore © = T which completes the proof of the con-
tinuity of f. —If we take in particular Z = I, then A4, the closed unit ball
of 1”, is not only weakly compact but compact in the Mackey topology (com-
bine Kothe [8, §21, 7.(1)] with §22, 4.(3)) which completes the desired
example.

The next result is an approximation theorem.

TueoreMm 4. Let (X, T) be a locally convex space, A C X absolutely convex,
and v a linear form on X which is continuous on A. Then for every real number
e > 0, there is an element u in X " such that

(4) [o(z) — u(z) | <e forallzed N[A]

where [A] denotes the linear span of A.
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Remarks. 1. After Grothendieck [6, p. 99, Exercise 1, (b)] the T-continuity
of v| A is equivalent to the weak continuity of v|A.

2. In Kelley-Namioka [7, Theorem 16.8] the approximation theorem is
stated under the stronger hypothesis that A be absolutely convex and closed
and & = o (X, X’). The proof given there covers also the case that T is not
equal to ¢ (X, X’).

3. Theorem 4 implies immediately a sharpened form of the approxima-
tion theorem 5 of J. I. Nieto [9].

Proof of Theorem 4. After Grothendieck (see Remark 1 above) v|A4 is
weakly continuous. Without loss of generality, A may be assumed absorbent.
Then, by Theorem 2, also » | 4 is weakly continuous so that the theorem is
reduced to the version of Kelley-Namioka.

The following proof is more direct, starting with a variation of Kelley-
Namioka’s proof.

By assumption, for every ¢ > 0 there is an absolutely convex open neigh-
bourhood U of 0 in X such that | v | is less than or equal to € on U n 4, i.e.,
£ liesin (U n A)° where the polar, as in the rest of the proof, is to be taken
with respect to the dual pair (X, X*), X* denoting the algebraic dual of X.
As U is open, we have U n A € U n 4, whence

ee(UnAd) = (Und)°c (Und)e.
Since 21U < U it follows that
ee @Un A)° = (2U°u A°)°° < 2U° + 4A°°*"0,

U° being o (X*, X)-compact, 2U° 4+ A° is already closed, and we obtain
ve2eU° 4+ ¢A°. As U was a neighbourhood of 0 in X, we have U° C X'.
Hence there is u ¢ X’ such that v — u € £4° which means

(5) lv@) —ul)| <& forallzed.

Therefore v is the limit in X™ of a Cauchy filter § on X’ with respect to the
uniformity of uniform convergence on A. As each member of { consists of
continuous linear forms, § is a Cauchy filter even with respect to uniform
convergence on A. As § converges on [A] pointwise to v, it follows that v is
continuous on A n [4], so that (5) yields the contention (4).

We now turn to an extension of well-known results by A. Grothendieck
[5], V. Ptak [10], and H. S. Collins [3] on the completion and the completeness
of locally convex spaces as presented in G. Kothe [8, §21,9]. If (X, Y)isa
dual pair and N a collection of absolutely convex subsets of X, it is well
known that on Y the topology Ts of M-convergence (topology of uniform
convergence on the members of 9) is compatible with the group structure of
Y as an additive group, whereas Ty is compatible with the linear-space
structure of Y if and only if the members of N are weakly bounded (N.
Bourbaki [2, §3, 1.]) for which reason this condition is customarily imposed
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on N. We shall see however that an essential part of the results on com-
pleteness referred to above remains true without this condition on MN.

THEOREM 5. Let X be a locally convex space and N a collection of absolutely
convex subsets of X, directed upwards by inclusion. Let Z denote the linear
space of linear forms on X which are continuous') on each A ¢N, and let Z
carry the group topology e of N-convergence. Then

1. Z is complete, and X' is dense in Z.

2. X' is Tp-complete if and only if each v e Z is continuous on the linear
space L = U 44 [A].

Proof. 1. The completeness of Z is obvious. That X’ is dense in Z fol-
lows from Theorem 4, taking into account the directedness of €.

2. If X' is Tp-complete and v e Z there is, by 1, a filter & on X' with
Te-limit . But because of the Tn-completeness of X/, § has also a limit v in
X'. Clearly, u and v agree on L. Hence v is continuous on L. —For the
converse let now each v € Z be continuous on L and let § be a Tx-Cauchy filter
on X’. By 1, § has a limit v in Z. By assumption, » is continuous on L,
and each extension u e X’ of v| L is also a Te-limit of §. Therefore X’ is
complete.

Remarks. 1. The linear space Z of Theorem 5 is the dual of X for the
finest locally convex topology &€ on X agrees on each A ¢ N with the original
topology of X ; for this topology € is the ‘generalized inductive-limit topology’
belonging to the canonical injections of the sets A ¢ ) into X in the sense of
Garling [4], (cf. in particular p. 2).

2. In general, Z with its topology Tg, is no linear topological space.
However, not only the addition (21, 22) — 21 + 2. is continuous, but also,
for each scalar \, the multiplication z — Nz. N being directed, the sets of the
form

Waie=1iveZ;|v()| < eforallzed}

with 4 ¢ 0N and ¢ > 0 constitute a Tx-neighbourhood base of 0 in Z. These
sets are absolutely convex and ¢(Z, L)-closed. Also we note

(6) (cl {0})™® = ¢l {0})"“® = {veX*;v|L = 0}.

3. Because of Theorem 5, part 1, the separated completion of the additive
group X’ with respect to Te (Bourbaki [1, chap. III, §3, 4.]) may be iden-
tified with Z/L*, L* denoting the set in (6). If L is equal to X (which means
that X is spanned by the union of the members of i) then Z is separated and
Z itself may be considered as the Tg-completion of X’.

4. In the situation of Theorem 5, let M, be another collection of absolutely
convex subsets of X, directed upwards, and suppose Ly = U, [4] equal to
L. Then the topology Tx, | X  induced by T, on X’ has a neighbourhood
base of 0 which is ¢ (X’, L)-closed and therefore Tx-closed. Consequently

1 Cf. Remark 1 to Theorem 4.
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there are similarly related neighbourhood bases of 0 for the associated
separated spaces (quotients mod L* n X’). If Ty, | X’ is finer than Ty | X/,
the last remark implies certain completeness properties’) of which we men-
tion only that the separated Tq,-completion of X’ may be imbedded in the Tn-
completion of X’. This can be made more precise as follows. The condition
that Tp, | X’ is finer than Tp | X’ implies Z; C Z, as can easily be seen, and
this implies the relation Z;/L* C Z/L* between the separated Tx,- and Tn-
completions.

5. On X’ the topology Ty of N-convergence is equal to the topology of
Jt-convergence where f# = {A; A eMN}. Therefore the corresponding sepa-
rated completions of X’ are also the same, so that for their discussion it is no
essential restriction to assume that the sets A ¢ N are closed.

From Theorem 5 we obtain the following generalization of results of Ptak
[10] and Collins [3] as presented in Kéthe [8, §21, 9].

TaEOREM 6. Let (X, T) be a locally convex space and N a collection of ab-
solutely convex subsets of X, directed upwards by inclusion, and such that U A
spans X. Let R (respectively ©) denole the finest general (respectively the finest
locally convex) topology on X that agrees with T on the sets A e M. Then the
following are true.

1. X’ is complete in the topology e of N-convergence, if and only if every
R-closed linear hyperplane H in X is T-closed, i.e.), if and only if the fact that
that H n A is T-closed in A for each A ¢ N implies that H is T-closed.

2. A lnear hyperplane H in X 1s R-closed if and only if it is S-closed.

Proof. By Remark 3 after Theorem 5 we may identify the Tp-completion
of X’ with Z of Theorem 5. Completeness of X’ then means X’ = Z, A
hyperplane H = v~ (0) in X, where v ¢ X*, is T-closed if and only if v € X".
Furthermore, H is R-closed if and only if H n A is T-closed in A for each
A eN, i.e. (by Kelley-Namioka [7, Theorem 13.5 (III)]) if and only if v is
T-continuous on each A ¢ N, which means » ¢ Z. From this follows conten-
tion 1 of the theorem. Part 2 follows from 1.

If in Theorem 6, N is not only directed upwards, but if for every two sets
A, B ¢ Nt there is C ¢ N such that A 4+ B < C, then Theorem 6 may also be
proved on the lines of Ké6the [8, §21, 9.(6)], and “linear hyperplane’” may be
replaced by ‘‘affine hyperplane” in that theorem. For this, the following
three auxiliary statements have to be proved (in analogy to Kéthe [8, §21,
9. (1.

1. R isinvariant under translations and multiplication by nongzero scalars.
2. R has a basis of circled absorbing neighbourhoods of 0.

2 See Bourbaki [1, Chapter II1, 3, 5., Proposition 9 and corollaries], as well as Grothen-
dieck [5, Corollary 2] (where the assumption E¢(S) = Eo(T) is missing).

3 Since it can readily be seen that the R-closed sets are exactly the sets whose inter-
sections with the sets A ¢ N are T-closed.
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3. The absolutely convex JR-neighbourhoods of 0 form an &-neighbour-
hood base of 0.
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