ON THE BEHAVIOUR OF LINEAR MAPPINGS ON ABSOLUTELY CONVEX SETS AND A. GROTHENDIECK'S COMPLETION OF LOCALLY CONVEX SPACES

BY W. Roelcke

The first point of this note is a simple proof of Theorem 2 which states a continuity property of linear maps with respect to absolutely convex sets and is essentially due to D. J. H. Garling [4]. In Theorem 4 the approximation theorem 16.8 of Kelley-Namioka's book [7] is sharpened by dropping the closedness assumption on the absolutely convex set on which the linear forms are to be approximated. This result is used in Theorem 5 to extend Grothendieck's well-known discussion of the completion and the completeness of the dual X' of a locally convex space X by admitting on X' topologies $\mathfrak{T}_{\mathfrak{R}}$ of uniform convergence on classes \mathfrak{N} of absolutely convex subsets of X whose members need not be bounded nor closed. Finally, V. Ptak's and H. S. Collin's characterization of the completeness of $(X', \mathfrak{T}_{\mathfrak{R}})$ is carried over to these (generally not linear) topologies $\mathfrak{T}_{\mathfrak{R}}$.

The following theorem can be easily deduced from Theorem 1 of Garling [4].

THEOREM 1. Let X and Y be locally convex spaces, f a linear mapping from X into Y, \Re a collection of absolutely convex subsets of X, directed upwards by inclusion, whose union is absorbent. Let f be continuous on each $A \in \Re$. Then f is also continuous on the closure \bar{A} of each $A \in \Re$.

We wish to give a direct proof for the following special case of Theorem 1 to be applied later.

Theorem 2. Let X and Y be locally convex spaces, f a linear map from X into Y, and A an absolutely convex and absorbent subset of X such that $f \mid A$ is continuous. Then $f \mid \bar{A}$ is also continuous.

Proof. According to a lemma of A. Grothendieck [6, p. 98] it suffices to show that $f \mid \bar{A}$ is continuous at 0. Let V be a neighbourhood of 0 in Y. Then there is an open neighbourhood U of 0 in X such that

$$(1) f(U \cap A) \subset V.$$

The theorem will be proved if we show

(2)
$$f(U \cap \bar{A}) \subset V + V.$$

If $x \in U \cap \overline{A}$ there exists a real number ρ , $0 < \rho < 1$, such that $\rho x \in A$. Because of the continuity of $f \mid A$ at ρx there exists $y \in U \cap A$ so close to x that

(3)
$$f(\rho x) - f(\rho y) \epsilon \rho V.$$

312 W. ROELCKE

(Note $U = U^{\circ}$ and $\rho A \subset A$). Therefore, using (1), we obtain

$$f(x) = \rho^{-1}(f(\rho x) - f(\rho y)) + f(y) \epsilon V + V$$

which proves (2).

We mention the following variant of Theorem 2.

THEOREM 3. Let X and Y be linear topological spaces, f a linear map from X into Y, $A \subset X$, $0 \in A$, and for every $x \in X$ let there exist a scalar $\rho \neq 0$ such that $\rho x - \rho A \subset A$. Then, if $f \mid A$ is continuous at 0, $f \mid \bar{A}$ is also continuous at 0.

The proof is similar to that of Theorem 2; replace (3) by $f(\rho x - \rho y) \in \rho V$. Theorems 2 and 3 have analogues for semi-norms instead of linear maps. If, in Theorem 2, \bar{A} is a neighbourhood of 0, then f is continuous on all of X. If \bar{A} is not a neighbourhood of 0, it may still be true that continuity of $f \mid \bar{A}$ implies continuity of f without a restriction on Y. Namely, the following example shows that a locally convex space X with the Mackey topology may contain an absolutely convex, closed, compact subset A which is not a neighbourhood of 0 and such that any linear map from X into any locally convex space Y is continuous if it is continuous on A.

Let (X, \mathfrak{T}) be the Mackey dual of a non-reflexive Banach space Z, and let A be the closed unit ball of X. Then A is absolutely convex, closed, and weakly compact, but not a neighbourhood of 0. Let now f be a linear map of X into a locally convex space Y such that $f \mid A$ is continuous. We show that f is continuous. By Garling [4, p. 2] the continuity of $f \mid A$ means that f is continuous for the finest locally convex topology \mathfrak{S} on X which agrees on A (\mathfrak{S} may also be described as the mixed topology $\gamma[\mathfrak{R},\mathfrak{T}]$ determined by the strong topology $\Re = \beta(X, Z)$ and the Mackey topology \mathfrak{T} —see A. Wiweger [11, 2.1–2.2].) It is therefore sufficient to show $\mathfrak{S} = \mathfrak{T}$. The dual of (X, \mathfrak{S}) consists of all linear forms on X which are \mathfrak{T} -continuous on A. may therefore be identified with the completion of Z with respect to the topology of uniform convergence on A (by Grothendieck's completeness theorem). Z being already complete in this topology, we obtain $(X, \mathfrak{S})' = Z$, i.e., $\mathfrak{S} \subset \mathfrak{T}$, and therefore $\mathfrak{S} = \mathfrak{T}$ which completes the proof of the continuity of f. —If we take in particular $Z = l^1$, then A, the closed unit ball of l^{∞} , is not only weakly compact but compact in the Mackey topology (combine Köthe [8, §21, 7.(1)] with §22, 4.(3)) which completes the desired example.

The next result is an approximation theorem.

THEOREM 4. Let (X, \mathfrak{T}) be a locally convex space, $A \subset X$ absolutely convex, and v a linear form on X which is continuous on A. Then for every real number $\varepsilon > 0$, there is an element u in X' such that

$$(4) |v(x) - u(x)| \le \epsilon \text{for all } x \in \bar{A} \cap [A]$$

where [A] denotes the linear span of A.

Remarks. 1. After Grothendieck [6, p. 99, Exercise 1, (b)] the \mathfrak{T} -continuity of $v \mid A$ is equivalent to the weak continuity of $v \mid A$.

- 2. In Kelley-Namioka [7, Theorem 16.8] the approximation theorem is stated under the stronger hypothesis that A be absolutely convex and closed and $\mathfrak{T} = \sigma(X, X')$. The proof given there covers also the case that \mathfrak{T} is not equal to $\sigma(X, X')$.
- 3. Theorem 4 implies immediately a sharpened form of the approximation theorem 5 of J. I. Nieto [9].

Proof of Theorem 4. After Grothendieck (see Remark 1 above) $v \mid A$ is weakly continuous. Without loss of generality, A may be assumed absorbent. Then, by Theorem 2, also $v \mid \bar{A}$ is weakly continuous so that the theorem is reduced to the version of Kelley-Namioka.

The following proof is more direct, starting with a variation of Kelley-Namioka's proof.

By assumption, for every $\varepsilon > 0$ there is an absolutely convex open neighbourhood U of 0 in X such that |v| is less than or equal to ε on $U \cap A$, i.e., $\varepsilon^{-1}v$ lies in $(U \cap A)^{\circ}$ where the polar, as in the rest of the proof, is to be taken with respect to the dual pair $\langle X, X^* \rangle$, X^* denoting the algebraic dual of X. As U is open, we have $U \cap \overline{A} \subset \overline{U \cap A}$, whence

$$\varepsilon^{-1}v \in (U \cap A)^{\circ} = (\overline{U \cap A})^{\circ} \subset (U \cap \overline{A})^{\circ}.$$

Since $\frac{1}{2}\bar{U} \subset U$ it follows that

$$\varepsilon^{-1}v \in (\frac{1}{2}\bar{U} \cap \bar{A})^{\circ} = (2U^{\circ} \cup A^{\circ})^{\circ \circ} \subset \overline{2U^{\circ} + A^{\circ \sigma(X^{\bullet},X)}}.$$

 U° being $\sigma(X^{*}, X)$ -compact, $2U^{\circ} + A^{\circ}$ is already closed, and we obtain $v \in 2\varepsilon U^{\circ} + \varepsilon A^{\circ}$. As U was a neighbourhood of 0 in X, we have $U^{\circ} \subset X'$. Hence there is $u \in X'$ such that $v - u \in \varepsilon A^{\circ}$ which means

(5)
$$|v(x) - u(x)| \le \varepsilon \text{ for all } x \in A.$$

Therefore v is the limit in X^* of a Cauchy filter \mathfrak{F} on X' with respect to the uniformity of uniform convergence on A. As each member of \mathfrak{F} consists of continuous linear forms, \mathfrak{F} is a Cauchy filter even with respect to uniform convergence on \bar{A} . As \mathfrak{F} converges on [A] pointwise to v, it follows that v is continuous on $\bar{A} \cap [A]$, so that (5) yields the contention (4).

We now turn to an extension of well-known results by A. Grothendieck [5], V. Ptak [10], and H. S. Collins [3] on the completion and the completeness of locally convex spaces as presented in G. Köthe [8, §21, 9]. If $\langle X, Y \rangle$ is a dual pair and \mathfrak{N} a collection of absolutely convex subsets of X, it is well known that on Y the topology $\mathfrak{T}_{\mathfrak{N}}$ of \mathfrak{N} -convergence (topology of uniform convergence on the members of \mathfrak{N}) is compatible with the group structure of Y as an additive group, whereas $\mathfrak{T}_{\mathfrak{N}}$ is compatible with the linear-space structure of Y if and only if the members of \mathfrak{N} are weakly bounded (N. Bourbaki [2, §3, 1.]) for which reason this condition is customarily imposed

314 w. roelcke

on \mathfrak{N} . We shall see however that an essential part of the results on completeness referred to above remains true without this condition on \mathfrak{N} .

Theorem 5. Let X be a locally convex space and \mathfrak{N} a collection of absolutely convex subsets of X, directed upwards by inclusion. Let Z denote the linear space of linear forms on X which are continuous¹) on each $A \in \mathfrak{N}$, and let Z carry the group topology $\mathfrak{T}_{\mathfrak{N}}$ of \mathfrak{N} -convergence. Then

- 1. Z is complete, and X' is dense in Z.
- 2. X' is $\mathfrak{T}_{\mathfrak{R}}$ -complete if and only if each $v \in Z$ is continuous on the linear space $L = \bigcup_{A \in \mathfrak{R}} [A]$.
- *Proof.* 1. The completeness of Z is obvious. That X' is dense in Z follows from Theorem 4, taking into account the directedness of \mathfrak{R} .
- 2. If X' is $\mathfrak{T}_{\mathfrak{R}}$ -complete and $v \in Z$ there is, by 1, a filter \mathfrak{F} on X' with $\mathfrak{T}_{\mathfrak{R}}$ -limit v. But because of the $\mathfrak{T}_{\mathfrak{R}}$ -completeness of X', \mathfrak{F} has also a limit u in X'. Clearly, u and v agree on L. Hence v is continuous on L. —For the converse let now each $v \in Z$ be continuous on L and let \mathfrak{F} be a $\mathfrak{T}_{\mathfrak{R}}$ -Cauchy filter on X'. By 1, \mathfrak{F} has a limit v in Z. By assumption, v is continuous on L, and each extension $u \in X'$ of $v \mid L$ is also a $\mathfrak{T}_{\mathfrak{R}}$ -limit of \mathfrak{F} . Therefore X' is complete.
- Remarks. 1. The linear space Z of Theorem 5 is the dual of X for the finest locally convex topology \mathfrak{S} on X agrees on each $A \in \mathfrak{N}$ with the original topology of X; for this topology \mathfrak{S} is the 'generalized inductive-limit topology' belonging to the canonical injections of the sets $A \in \mathfrak{N}$ into X in the sense of Garling [4], (cf. in particular p. 2).
- 2. In general, Z with its topology $\mathfrak{T}_{\mathfrak{N}}$, is no linear topological space. However, not only the addition $(z_1, z_2) \to z_1 + z_2$ is continuous, but also, for each scalar λ , the multiplication $z \to \lambda z$. \mathfrak{N} being directed, the sets of the form

$$W_{A,\varepsilon} = \{ v \in \mathbb{Z}; |v(x)| \le \varepsilon \text{ for all } x \in A \}$$

with $A \in \mathbb{N}$ and $\varepsilon > 0$ constitute a $\mathfrak{T}_{\mathfrak{N}}$ -neighbourhood base of 0 in Z. These sets are absolutely convex and $\sigma(Z, L)$ -closed. Also we note

(6)
$$(\operatorname{cl} \{0\})^{\mathfrak{T}_{\mathfrak{R}}} = \operatorname{cl} \{0\})^{\sigma(Z,L)} = \{v \in X^*; v \mid L = 0\}.$$

- 3. Because of Theorem 5, part 1, the separated completion of the additive group X' with respect to $\mathfrak{T}_{\mathfrak{N}}$ (Bourbaki [1, chap. III, §3, 4.]) may be identified with Z/L^{\perp} , L^{\perp} denoting the set in (6). If L is equal to X (which means that X is spanned by the union of the members of \mathfrak{N}) then Z is separated and Z itself may be considered as the $\mathfrak{T}_{\mathfrak{N}}$ -completion of X'.
- 4. In the situation of Theorem 5, let \mathfrak{N}_1 be another collection of absolutely convex subsets of X, directed upwards, and suppose $L_1 = \bigcup_{A \in \mathfrak{N}_1} [A]$ equal to L. Then the topology $\mathfrak{T}_{\mathfrak{N}_1} | X'$ induced by $\mathfrak{T}_{\mathfrak{N}_1}$ on X' has a neighbourhood base of 0 which is $\sigma(X', L)$ -closed and therefore $\mathfrak{T}_{\mathfrak{N}}$ -closed. Consequently

¹ Cf. Remark 1 to Theorem 4.

there are similarly related neighbourhood bases of 0 for the associated separated spaces (quotients mod $L^{\perp} \cap X'$). If $\mathfrak{T}_{\mathfrak{R}_1} | X'$ is finer than $\mathfrak{T}_{\mathfrak{R}} | X'$, the last remark implies certain completeness properties²) of which we mention only that the separated $\mathfrak{T}_{\mathfrak{R}_1}$ -completion of X' may be imbedded in the $\mathfrak{T}_{\mathfrak{R}}$ -completion of X'. This can be made more precise as follows. The condition that $\mathfrak{T}_{\mathfrak{R}_1} | X'$ is finer than $\mathfrak{T}_{\mathfrak{R}} | X'$ implies $Z_1 \subset Z$, as can easily be seen, and this implies the relation $Z_1/L^{\perp} \subset Z/L^{\perp}$ between the separated $\mathfrak{T}_{\mathfrak{R}_1}$ - and $\mathfrak{T}_{\mathfrak{R}}$ -completions.

5. On X' the topology $\mathfrak{T}_{\mathfrak{N}}$ of \mathfrak{N} -convergence is equal to the topology of \mathfrak{N} -convergence where $\mathfrak{N} = \{\bar{A}; A \in \mathfrak{N}\}$. Therefore the corresponding separated completions of X' are also the same, so that for their discussion it is no essential restriction to assume that the sets $A \in \mathfrak{N}$ are closed.

From Theorem 5 we obtain the following generalization of results of Ptak [10] and Collins [3] as presented in Köthe [8, §21, 9].

- THEOREM 6. Let (X, \mathfrak{T}) be a locally convex space and \mathfrak{N} a collection of absolutely convex subsets of X, directed upwards by inclusion, and such that $\bigcup_{A\in\mathfrak{N}}A$ spans X. Let \mathfrak{N} (respectively \mathfrak{S}) denote the finest general (respectively the finest locally convex) topology on X that agrees with \mathfrak{T} on the sets $A \in \mathfrak{N}$. Then the following are true.
- 1. X' is complete in the topology $\mathfrak{T}_{\mathfrak{N}}$ of \mathfrak{N} -convergence, if and only if every \mathfrak{R} -closed linear hyperplane H in X is \mathfrak{T} -closed, i.e.³), if and only if the fact that that $H \cap A$ is \mathfrak{T} -closed in A for each $A \in \mathfrak{N}$ implies that H is \mathfrak{T} -closed.
 - 2. A linear hyperplane H in X is \Re -closed if and only if it is \Im -closed.

Proof. By Remark 3 after Theorem 5 we may identify the $\mathfrak{T}_{\mathfrak{R}}$ -completion of X' with Z of Theorem 5. Completeness of X' then means X' = Z. A hyperplane $H = v^{-1}(0)$ in X, where $v \in X^*$, is \mathfrak{T} -closed if and only if $v \in X'$. Furthermore, H is \mathfrak{R} -closed if and only if $H \cap A$ is \mathfrak{T} -closed in A for each $A \in \mathfrak{N}$, i.e. (by Kelley-Namioka [7, Theorem 13.5 (III)]) if and only if v is \mathfrak{T} -continuous on each $A \in \mathfrak{N}$, which means $v \in Z$. From this follows contention 1 of the theorem. Part 2 follows from 1.

If in Theorem 6, \Re is not only directed upwards, but if for every two sets A, $B \in \Re$ there is $C \in \Re$ such that $A + B \subset C$, then Theorem 6 may also be proved on the lines of Köthe [8, §21, 9.(6)], and "linear hyperplane" may be replaced by "affine hyperplane" in that theorem. For this, the following three auxiliary statements have to be proved (in analogy to Köthe [8, §21, 9.(1)]).

- 1. R is invariant under translations and multiplication by nonzero scalars.
- 2. R has a basis of circled absorbing neighbourhoods of 0.

² See Bourbaki [1, Chapter III, 3, 5., Proposition 9 and corollaries], as well as Grothendieck [5, Corollary 2] (where the assumption $E_0(S) = E_0(T)$ is missing).

³ Since it can readily be seen that the R-closed sets are exactly the sets whose intersections with the sets $A \in N$ are T-closed.

3. The absolutely convex \Re -neighbourhoods of 0 form an \Im -neighbourhood base of 0.

BIBLIOGRAPHY

- 1. N. Bourbaki, General topology, Hermann, Paris, 1966.
- 2. ——, Espaces vectoriels topologiques, chap. III-V, 1° éd., Hermann, Paris, 1955.
- 3. H. S. Collins, Completeness and compactness in linear topological spaces, Trans. Amer. Math. Soc., vol. 79 (1955), pp. 256-280.
- 4. D. J. H. Garling, A generalized form of inductive-limit topology for vector spaces, Proc. London Math. Soc. (3), vol. 14 (1964), pp. 1-28.
- A. GROTHENDIECK, Sur la complétion du dual d'un espace vectoriel localement convex, C.R. Acad. Sci. Paris, vol. 230 (1950), pp. 605-606.
- Espaces vectoriels topologiques, Dep. de Mat., Universidade de São Paulo, 3° ed., 1964.
- J. L. Kelley, and I. Namioka, Linear topological spaces, Van Nostrand, New York, 1963.
- 8. G. Köthe, Topological vector spaces I, Springer, Berlin, 1969.
- 9. J. I. Nieto, Sur une inégalité en analyse fonctionnelle, Math. Ann., vol. 189 (1970), pp. 77-86.
- V. Ptak, On complete topological linear spaces, Čehosl. Mat. Ž., vol. 4 (79) (1954), pp. 175-186.
- A. Wiweger, Linear spaces with mixed topology, Studia Math., vol. 20 (1961), pp. 47-68.

Universität München Munich, Germany