A NOTE ON THE STONG-HATTORI THEOREM

BY

LARRY SMITH

Summary. The theorem of Stong and Hattori referred to in the title asserts that the natural mapping

$$sh: \Omega^U_*(X) \to K_*(X \wedge MU)$$

is a split monomorphism whenever X is a finite complex with torsion free integral homology. In the present note we will show that the map sh remains monic (although need no longer be split) for those complexes with $\Omega_*^{U}(X)$ of projective dimension at most one as an Ω_*^{U} -module. Two proofs will be presented—one for K-theory and one for k-theory. We show by example that the result is best possible.

Let us begin by fixing our notations and conventions. We assume that we are working in a suitable category of spectra where the \wedge product is defined, such as that constructed by Boardman [9]. We denote by $\Omega_*^{\nu}(\)$ the complex bordism homology theory which is represented by the Thom spectrum **MU**. We write $K_*(\)$ for the homology theory dual to the usual Kcohomology theory, and $k_*(\)$ for the homology theory represented by the connective **bu** spectrum. The representing spectrum for $K_*(\)$ is denoted by **BU**. There is the natural commutative diagram of spectra

which for any finite complex X yields a commutative diagram

Note that $sh = (1_{bu} \wedge 1)_*$ and similarly for SH.

Received February 25, 1971.

THEOREM 1. Let X be a finite complex with hom $\dim_{\Omega_{\bullet}} \Omega_{\bullet}^{U} \Omega_{\bullet}^{U}(X) \leq 1$. Then the map

$$sh: \Omega^U_*(X) \to k_*(X \wedge MU)$$

is monic.

Proof. Since how $\dim_{\mathfrak{a}_{*}} \Omega^{\mathcal{U}}_{*}(X) \leq 1$ the bordism spectral sequence

$$E^r \Rightarrow \Omega^U_*(X), \qquad E^2 \cong H_*(X; \Omega^U_*)$$

collapses [5; 3.11]. There is a natural transformation [5; §10]

$$\zeta: \Omega^U_*() \to k_*()$$

which on coefficients is the Todd genus and a split epimorphism of abelian groups. Letting $Z[t] = k_*(pt)$ and

$$\bar{E}^r \Rightarrow k_*(X), \qquad \bar{E}^2 \cong H_*(X; Z[t])$$

be the usual k theory spectral sequence we see that ζ induces an epimorphism $\zeta : E_2 \to \overline{E}_2$. Since all the differentials d_r vanish the same must be true for the differentials \overline{d}_r .

Let $\mathbf{E} = \mathbf{bu} \wedge \mathbf{MU}$ and write $E_*(\)$ for the corresponding homology theory. The natural map

$$k_*(-) \otimes_{z[t]} k_*(\mathbf{MU}) \to E_*(-) \cong k_*(- \land \mathbf{MU})$$

is seen to be a natural equivalence. Hence the spectral sequence

 $\hat{E}_r \Rightarrow E_*(X) \cong k_*(X \land \mathbf{MU}), \quad \hat{E}_2 \cong H_*(X; k_*(\mathbf{MU}))$

is seen to be naturally isomorphic to the spectral sequence

 $\{\bar{E}_r \otimes_{z[\iota]} k_*(\mathbf{MU}), \bar{d}_r \otimes 1\}$

and since $\bar{d}_r = 0$ for all $r \ge 2$ we conclude that $\hat{d}_r = 0$ for all $r \ge 2$. Now the map

 $sh: \Omega^U_*(X) \to k_*(X \land \mathbf{MU})$

induces a map of spectral sequences

$$sh: \{E^r, d^r\} \to \{\hat{E}^r, \hat{d}^r\}$$

which on the initial terms is seen to coincide with the map

 $H_*(X; \Omega^U_*) \to H_*(X; k_*(\mathbf{MU}))$

induced by the coefficient map

$$sh: \Omega^{U}_* \to k_*(\mathbf{MU}).$$

The theorem of Stong [8] and Hattori [6] says that this latter map is a split monomorphism of abelian groups, and hence

$$H_*(X; \Omega^U_*) \to H_*(X; k_*(\mathbf{MU}))$$

286

is a split monomorphism of abelian groups. Since the spectral sequences $\{E^r, d^r\}$ and $\{\hat{E}^r, \hat{d}^r\}$ both collapse the preceding discussion shows that

$$sh: \Omega^0_*(X) \to k_*(X \land \mathbf{MU})$$

is a map of filtered abelian groups whose associated graded map is split monic. Simple algebra now shows that sh is monic, although perhaps not split. \Box

Clearly one can make exactly the same argument as above with $K_*()$ in place of $k_*()$. However a more interesting proof of the $K_*()$ result may be obtained by using the formalisms of [1] and [2]. Recall from [1; §3] that for any finite complex $X, K_*(X)$ is a comodule over the Hopf algebra $K_*(\mathbf{BU})$. An element $x \in K_*(X)$ is called primitive iff $\psi(x) = 1 \otimes x$ where

$$\psi: K_*(X) \to K_*(\mathbf{BU}) \otimes_{K_*(S^0)} K_*(X)$$

is the coaction map. Write $PK_*(X)$ for the set of primitive elements in $K_*(X)$.

THEOREM 2. Let X be a finite complex with hom $\dim_{\Omega_*}^{U}U\Omega_*^{U}(X) \leq 1$. Then the map

$$SH: \Omega^U_*(X) \to K_*(X \wedge MU)$$

is monic. (Note this implies Theorem 1)

Proof. Choose a partial U-bordism resolution [5; §2]

$$\Sigma^s X \to A \to Y.$$

Thus

$$0 \leftarrow \tilde{\Omega}^{\scriptscriptstyle U}_*(\Sigma^*X) \leftarrow \tilde{\Omega}^{\scriptscriptstyle U}_*(A) \leftarrow \tilde{\Omega}^{\scriptscriptstyle U}_*(Y) \leftarrow 0$$

is exact and $H_*(A; Z)$ is a free Z-module. From [4; VI.2.3] and the fact that

hom
$$\dim_{\Omega^U_*} \Omega^U_*(\Sigma^* X) \leq 1$$

we conclude $\tilde{\Omega}_{*}^{U}(Y)$ is a projective Ω_{*}^{U} -module and hence by [5; 3.31], $H_{*}(Y; Z)$ is a free Z-module. From the commutative diagram

$$0 \leftarrow \Omega_*^{\nu}(\Sigma^*X) \leftarrow \Omega_*^{\nu}(A) \leftarrow \Omega_*^{\nu}(Y) \leftarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$-K_*(\Sigma^*X) \leftarrow K_*(A) \leftarrow K_*(Y) \leftarrow$$

we find as in [5; \$9] that

$$0 \leftarrow K_*(\Sigma^S X) \leftarrow K_*(A) \leftarrow K_*(Y) \leftarrow 0$$

is exact, and since $K_*(\mathbf{MU})$ is a free $K_*(S^\circ)$ -module

$$K_*(-) \otimes_{K_*(S^\circ)} K_*(\mathbf{MU}) \to K_*(-\mathbf{MU})$$

is an equivalence of functors. Thus the sequence

$$0 \leftarrow K_*(\Sigma^*X \land \mathbf{MU}) \leftarrow K_*(A \land \mathbf{MU}) \leftarrow K_*(Y \land \mathbf{MU}) \leftarrow 0$$

is also exact. Routine verification shows that the functor P(-) is left exact and thus we obtain the diagram

The formulation of [2; 14.1] for the Stong-Hattori theorem says that SH_A and SH_r are isomorphisms since $H_*(A; Z)$ and $H_*(Y; Z)$ are free Z-modules. Routine diagram chasing therefore shows that

$$SH: \Omega^U_*(\Sigma^s X) \to PK_*(\Sigma^s X \land \mathbf{MU})$$

is monic, and the result follows from stability. \Box

We close by discussing an example to show that the preceding results are best possible in a certain sense.

Let p denote an odd prime and V(1) the space constructed in [7]. Then

$$\Omega^{U}_{*}(V(1)) \cong \Omega^{U}_{*}/(p, [\mathbb{C}P(p-1)])$$

and by [5; 11.2],

 $k_*(V(1)) \cong Z[t]/(p, t^{p-1})$

and by the theorem of Conner and Floyd [5; 9.1],

$$\tilde{K}_*(V(1)) = 0.$$

From the isomorphism

$$\widetilde{K}_*(V(1) \wedge \mathbf{MU}) \cong \widetilde{K}_*(V(1)) \otimes_{K_*(pt)} \widetilde{K}_*(\mathbf{MU})$$

we therefore conclude

$$\widetilde{K}_*(V(1) \wedge \mathbf{MU}) = \mathbf{0}.$$

Hence the map

$$SH: \tilde{\Omega}^{U}_{*}(V(1)) \to \tilde{K}_{*}(V(1) \land \mathbf{MU})$$

is certainly not monic. It is however still conceivable that the map

$$sh: \Omega^U_*(V(1)) \to k_*(V(1) \land \mathbf{MU})$$

is monic. To see that this is not the case we shall require the following useful formula (implicit in the work of Stong [8] and explicit in the proof of [3]):

$$sh[V^{2p^r-2}] = pb_{p^r-1} + t^{p-1}b_{p^r-1-1}^p + other terms divisible by p$$

where we have suitably chosen $b_i \epsilon k_{2i}(\mathbf{MU})$ so that

$$k_*(MU) \cong Z[t][b_1, b_2, \cdots]$$

and $[V^{2p^{r-2}}] \in \Omega^{U}_{2p^{r-2}}$ is a suitably chosen Milnor manifold for the prime p.

288

From the commutative diagram

we find that

$$sh([V^{2p^{r-2}}]\gamma) = pa + pb_{p^{r-1}} + t^{p-1}b_{p^{r-1}-1}^{p} \epsilon k_{*}(V(1) \land \mathbf{MU})$$

where $\gamma \in \Omega_0(V(1))$ is the canonical class. However

$$k_*(V(1) \wedge \mathbf{MU}) \cong \frac{Z[t]}{(p, t^{p-1})} [b_1, b_2, \cdots]$$

as Z[t]-modules and hence

$$pa + p_{pr-1}^{b} + t^{p-1}b_{pr-1-1}^{p} = 0 \ \epsilon \ k_{*}(V(1) \land \mathbf{MU})$$

and hence

$$[V^{2p^{r-2}}]\gamma \neq 0 \ \epsilon \ker\{sh: \Omega^U_*(V(1)) \to k_*(V(1) \land \mathbf{MU})\}$$

for all r > 1. As how $\dim_{\Omega^{U}} \Omega^{U}_{*}(V(1)) = 2$ this example shows that in a certain sense Theorems 1, 2 are best possible. However, note that

$$sh: \Omega^U_*(X) \to k_*(X \wedge \mathbf{MU}), \qquad SH: \Omega^U_*(X) \to K_*(X \wedge \mathbf{MU})$$

are always monic mod torsion and from [5; §5] that there exist complexes with hom $\dim_{\Omega_{\bullet}^{U}} \Omega_{*}^{U}(X)$ as large as we please and $\Omega_{*}^{U}(X)$ torsion free.

References

- 1. J. F. ADAMS, Lectures on generalized homology theories, Lecture Notes in Mathematics, vol. 99, Springer, New York, 1969.
- 2. ———, Quillens work on formal group laws and complex cobordism, Univ. of Chicago Lecture Notes, 1970.
- 3. J. F. ADAMS AND A. LIULEVICIUS, On the Hattori-Stong theorem, Preprint, 1970.
- 4. H. CARTAN AND S. EILENBERG, *Homological algebra*, Princeton University Press, Princeton, New Jersey, 1952.
- 5. P. E. CONNER AND L. SMITH, On the complex bordism of finite complexes, Inst. Hautes Études, Sci. Publ. Math., vol. 37 (1970), pp. 117-221.
- A. HATTORI, Integral characteristic numbers for weakly almost complex manifolds, Topology, vol. 5 (1966), pp. 259–280.
- 7. L. SMITH, On realizing complex bordism modules, Amer. J. Math., vol. 92 (1970), pp. 793-856.
- R. E. STONG, Relations among characteristic numbers I, Topology, vol. 4 (1965), pp. 267-281.
- R. VOGT, Lectures on Boardman's category of spectra, Aarhus University Lecture Notes, Aarhus, Denmark, 1969.

UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA AARHUS UNIVERSITY AARHUS, DENMARK