TOPOLOGIES IN LOCALLY COMPACT GROUPS I

BY
S. JANAKIRAMAN AND M. RAJAGOPALAN

Introduction

In this paper we study the partially ordered set of locally compact group
topologies on a given abelian group. Our main interest is the cardinality of a
given interval [a, b] in this set. We prove that | [a, b] | > ¢ or is finite. This
generalises the results obtained in [4] and [5] and also answers a question raised
in [5]. Our methods involve delicate ways of embedding R" in a compact
group. These embedding theorems are given in Section 1. We have to study
a relation ~ in the set of subgroups of a given torsion free abelian group. This
notion resembles that of quasi-isomorphism used by Beaumont and Pierce [1].
This is done in Section 2. We make heavy use of the results proved in [4]
and [5].

Notation. All groups considered in this paper are abelian. All topological
spaces considered are Hausdorff. The notions and terminologies on topological
groups are as in [3] in general. 7' denotes the circle group with usual topology
and multiplication. If G is a topological group, we say G is T-free if T is not
a topological summand of G@.  Similarly G is said to be Z-free if G does not have
Z as an algebraic summand. If G is a group and a1, a2, -+ - - - , Gy are ele-
ments of G then [a;, ---, a,] denotes the sub-group generated by a1, as,

+, 8, in G. Isomorphism (topological) of two groups (topological) G, G
is denoted by ~.

Isomorphic embeddings of R" into a compact abelian group (¢

LeEmMA 1.1. Let H be a subgroup of R"(n > 1). Let H = F @ V where V
is a subspace of R" and F s a free group different from {0}. Then Z is a sum-
mand of H.

Proof. Follows from standard arguments and the structure of closed sub-
groups of R".

LemMma 1.2.  Let G be a torsion free group of rankn (n > 1). Then G can be
embedded as a dense subgroup of R by a group isomorphism if and only if G s
Z-free. When G 1s Z-free, we can obtain such an embedding as follows: Choose
o maximal independent set (ar, - -+ , a,) wn G over the integers. Define a map

¢o:far, -, an} > R
arbitrarily except that the set {¢o(a1), - - - , do(a@n)} generates R™ over R. Using
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divisibility of R™ extend ¢, to a group isomorphism ¢ of G into R™. Then $ is
one such tsomorphism.

_Proof. Follows from Lemma 1.1 and suitable choice of independent sets in

G.
CoroLLARY 1.3. Let G be a connected compact group such that
rank G = n (>1).

Then there exists a continuous dense isomorphism ¢ of R" into G if and only if
G is T-free.

Proof. Now there exists a continuous dense isomorphism ¢ : B* — @ of
R" into @ if and only if there exists a dense group isomorphism ¢ from @ into
R™. 8o the result follows from Lemma 1.2.

LemMA 1.4. Let n be an integer >1. Then a free group G of rank n + 1
can be densely embedded in B"™ by a group isomorphism. Consequently a torsion
free group of countably infinite rank or of rank k > n 4 1 can be embedded densely
n R" by a group isomorphism.

Proof. Let {a1, a2, ---, a4} be a set of generators of G. Let {e1, e,
-, e,} be a basis for R” over R. Let ¢(a;) = e;for¢ = 1,2, --- n, and
(@ni1) = V21 + V3 + -+ + VPatlas + VDaen, where p; is the i
prime. Then an application of Theorem 5.1.3 of [6] gives the required result.

Lemma 1.5. Let G be a compact group. Let H be a closed subgroup of G.
Let 6: R® — G/H be a continuous isomorphism from R" into G/H. Let
¢ : G — G/H be the natural map. Then there exists a conltinuous isomorphism
Y from R" into G such that 6 = ¢ o .

Proof. By duality, there is an algebraic homomorphism 8 from (G/H)"
into R™ which is the adjoint of . Now (G/H)" isa subgroup of G and R" is
divisible. So there exists an extension 8 of § which is a homomorphism of G
into R". Then the adjoint ¢ of this map from R" into @ is the required map.

LemMma 1.6. Let G be a compact connected group. Let @ be its dual. Let
@ be of rank n + 1. Let @ be Z-free. Let ¢ : R® — G be a continuous iso-
morphism of R™ into G. Then there exists a continuous isomorphism 9 of R"™
into G such that 6(R™™) D ¢(R™). Moreover if Yy is any other continuous
isomorphism of R™* into G then y1(R**") = 6(R™™).

Proof. Let us treat R" as a subspace of R"™'. We take e, e, - -,
es , eny1 10 be the coordinate vectors in R™™ s0 that the first n of them are in
R" and span R" over the reals and e, is a unit vector not lying in B". We
treat ¢ as a map from the subspace R” into G. Consider now the dual of
R"™ which is again R"*. In this dual we take unit vectors fi, fo, - -,
fn s for1 80 that fn41 is orthogonal to e, €2, -+, ex and f1, fo, -+, fu are
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orthogonal t0 e,41 and fi, fa, -+ , fass Span the dual space ™. Then the
vector space spanned by fi, fa, - , fa over R in the dual space R"*" can be
treated as the dual of the vector space B generated by €1,€,  ,en. Then
the adjoint map ¢ of ¢ can be treated as a map from G into the vector space
spanned by fi, - -+ , fa, in the dual R"™ space. Let us call this subspace V.
Let @1, @z, -+ , Gn, Gnp1 be a maximal set of elements in G which are in-
dependent over the integers. Now ¢(G) is dense in V. So ¢(@) generates
V as a vector space over B. So V is generated by some n among the elements
é(ar), «++ , (@ny1). Without loss of generality we assume that ¢(as), -« -,
¢(a,) generate V as a vector space over B. Then by choosing a different
coordinate system in V if necessary and renaming we may as well assume that
) = fr, -+, ¢(an) = fu. Let the coordinates of ¢(a,41) with respect
to fi, o+, faxa be (A, Ae, *+, A, 0). Now we define a map 8 from ¢!
into R™*" as follows:

6(a;) = f; for ¢=1,2,:+-,mn; 0(@ns1) = (M, Ny o0y My @)

where a is a non-zero real number. We complete the definition of 8 on G by
requiring it to be a homomorphism. Then it is clear that the set 8(ay), - - - ,
6(a,) and 0( @nt1) generate R™ ™ over R.  So 6(@) is dense in R™ by Lemma
1.1 since G is Z-free and hence ¢( @) is Z-free and 8 is clearly an 1s0morph1sm
Let 0 be the adjoint map of  from R"*" into G. Then 6 is a continuous iso-
morphism of R"* into G. Moreover, we claim that 6(z) = ¢(x) for all
zeR" TorletxeR"and ge@. Let us write (-,-) to denote the natural
inner product of a group and its dual. Then

(¢(x) — 6(2), 9) = (z,d(g9) — 6(g))-

Now ¢(g) and 4(g) are in the dual R"*" space and their first n-coordinates are
the same with respect to fi, fo, -+, fat1 as coordinate vectors. So the first
n coordinates of $(g) — 6(g) are zeros. Since x is in the space R" generated
by {e1, - , €} and fo41 in the dual R™™ is the annihilator of [e; , - - - , eq] We
have that

(¢(z) — 6(x),9) =1 forall geG.

So ¢(z) = 6(x) for all z e R". So 8(R"™) D ¢(R™). So this proves the
first part of Lemma 1.6. Now let ¢4 : R**' — G be any continuous isomor-
phism of R**" into G. Let ¢4 be its adjoint. Then ¢1(G) is dense in R"™,

So nh(al), -+, ¥1(@ns1) generate R™* over R. Then there is an invertible
matrix M that acts on the dual space R"™ such that M (0(a D) = y1(a;) for
alls = 1,2, ---,n + 1. Then it is clear that §; = M o d. Let M be the

transpose matrix of M that acts on the vector space R"* generated by e; , - - - ,
én+1- Then it is clear that ¢ = §o M. Since M is non-singular it follows
that (R"™) = 0(R"™). Hence the lemma.

LeMma 1.7.  The real line B can be embedded into the two-dimensional torus
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T by a continuous isomorphism in a continuum many ways so that the images
are all different.

Proof. Choose a Hamel base @ of B with 1 ¢ €. Then the map
Vo i R — T where o(z) = (7, ™) forall aee

are continuous isomorphisms of R into 7" and Ya(R) # Ys(R) if o, BeC
and « # 8.

Levma 1.8. Let G be a compact connected group. Lelt ¢ : R* — G be a
continuous isomorphism of R" into G. Let A = ¢(R"). Let G/A have rank
> 2. Then there exists a sel J of cardinality ¢ and continuous isomorphisms
Yo of R" ™ into G for each a e J such that the following hold.:

(1) Yu(R™™) D ¢(R™) forall aeJ

(i) Ya(R™™) # Y(R"™) if o, B e J and a # B.

Proof. Let A* be the annihilator of A in G, where G is the dual of G.
Then A* is of rank at least two. So there exists a closed subgroup H in G
so that H O A and G/H is the torus 7°. Let \ be the canonical map from G
onto G/H. Let J be a set of cardinality ¢ and let (¢a)aer be a collection of
continuous isomorphisms of R into G/H so that ¢.(R) # ¢s(R) if @, BeJ
and a ¥ B. This is possible in view of Lemma 1.7. Now by Lemma 1.5,
given « e J, there is a continuous isomorphism 6, from R into G so that
¢a = Mo 0,. Now treat R” as a subspace of R"™. Letei,es, -, €n, a1
be a coordinate system for R**', where e;, es, -- -, e, generate the subspace
R". Given a ¢ J define ¢, from R"™ into G by

Yales) = ¢(e) if 1 <7<, Va(rens1) = 0,(r) for reR

and require ¥ to be a homomorphism from R"™ to G. Then it is easily seen
that ¢, is an isomorphism. Thus the collection {{.}qes is easily verified to
satisfy the conditions of the lemma.

LemMa 1.9.  Let F be a free subgroup of rank n + 1 contained in R". Then
there 1s a subgroup S of F and a vector space V 7= {0} in R" such that S is dense
and contained in V.

Proof. We consider the vector space L generated by F over the reals.
Without loss of generality we take L to be R”. Then there are vectors ay,
as, -+, G, in F which can be taken as unit coordinate vectors in B". Let
@41 be in F and be independent of {a; , - - - , @.} over integers. Let @41 have
coordinates (\;, - -+ , \,) with respect toas, a2, ---,a, . By taking suitable
integral linear combinations of a1, @z, * -+ , G,41 We get an element by4q of F
such that a;, as, -+, Gs, bot1 are independent over integers and b,41 has
coordinates (u1, s, - , n) Where the p’s are irrational or 0. By renaming
the coordinates a; , a2, - - - , @, we might as well assume that b, ., has coordi-
nates of the form

(I-‘I)I‘2; “',M,-,O,"',O)
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and 2> 1 and p,’s are irrational. Now consider all the subsets E of {u, - - -
u} which are dependent over integers. If {u;, ---, ms} is such a set it
satisfies an equation of the form

gy Tiy + + 00 + N o = 0
where n;, , - -+ , Ny, are integers. There are only a finite set of such equations.
All these equations along with the system ,4; = #ry2 = -+ = 2, = 0, define

a subspace V of R*. Let S = V n F. Then adopting the argument of
Lemma 1.4 we get that Sis densein V.

LemMA 1.10. Let ¢ : R - T"** be a continuous isomorphism of R™ into
the torus of dimension n + 2. Then there exists a set J of cardinality ¢ and a
continuous isomorphism Yo of R*** into T™** for each a e J such that the follow-
ing hold:

(1) Ya(R"™™) # Y(R™™) for all a, B e J and a # B.

(ii) Ya(R"™™) D Y(R") forall aed.

Proof. TUsing the solutions of simultaneous equations with integer coeffi-
cients, it can be shown that the number of a’s such that ¢(R"™) = ¢s(R"™)
for a fixed real number 8 is countable. So (i) follows. Also ¥.’s can be so
chosen that ¥(R"™) D ¢(R™).

Lemma 1.11. Let G be a connected compact group. Let ¢ : R* — G be a
continuous isomorphism. Let ¢ : G > R" be the adjoint of ¢ where G is the
dual of G. Let the kernel of G be of rank at least 2. Then there exisls an index
set J of cardinalily c and continuous isomorphisms ¥, from R™* into G so that
Yo (R™) # Y(R"™) for all distinct o, 8 ¢ J and Ya(R"™) D ¢(R™) for all
aed.

Proof. We consider R"™ and take a basis 1, - - , enqs for R™*' over R.
We consider that ¢ is defined on that subspace R™ of R"*" which is generated
by e1, e, -+, e,. Put A = ¢(R")” in (. Then our hypothesis implies
that the dual A of A has rank at least two. So there exists a compact sub-
group B of G so that B D ¢(R™)™ and G/B is the torus 7°. Then by Lemma
1.8 we get the result.

LemMA 1.12. Let G be a compact connected group with dual G. Let
¢:R"—> G

be a continuous isomorphism and ¢ : G — R™ its adjoint. Let G have rank at
least n + 2. Let the kernel of ¢ have rank 1. Then there exists at least a con-
tinuwum many isomorphisms of R" ™ into G so that their images contain ¢(R™).

Proof. Follows by an argument using Lemmas 1.5, 1.9, 1.10.
Lemma 1.13.  Let G be a compact connected group with dual G. Let

¢ :R"— G
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be a continuous isomorphism. Let G be of rank at least n + 2. Let ¢ be the
adjoint map of ¢. Let the kernel of & be {O}. Then there exists a set J of cards-
nality ¢ and continuous isomorphisms Yo from R™* into G for each o € J so that
Ya(R™™) 5= Y(R™™) f o, BeJ and a = B and Yo(R™"") D ¢(R™) for all
aed.

Proof. Letay,as, -+ , @4z ben + 2 elements of G which are independent
over integers. Then é(ai1), ¢#(az), -+, ¢(ant2) are independent over the
integers. By using Lemma 1.9, we get that the free group generated by
¢(ar), -+ ,é(@n41) contains a subgroup F which is dense in a vector space V.
Again, by renaming if necessary we may assume that V is generated over the
reals by ¢(a1), --- , ¢(ar) and that F is generated by ¢(a), - - -, #(a,) and
r > k + 1. If we have that r > k& + 2, then our construction ends here.
If not we havethat r = k£ + 1and ¢(a;),% = 1, - -+ k + 1, generate F and F is
dense in V and V is generated over the realsby ¢(a1), --- , ¢(a,). Then con-
sider thefreegroup S generatedbyé(ai), ¢(as), - -+ , d(an+2) and apply Lemma
1.9 again. Wegeta subspace V' and a freesubgroup F’ contained in the group
S such that F’ is dense in ¥V’ and rank F/ > dim V' 4+ 1. So by considering
F 4+ F' and V + V', we get a free subgroup L in ¢(G) such that L is dense
in a subspace M of R and rank L > dim M + 2 and L is contained in the
free group generated by é¢(a1) , -+, (a@ns2). So we have that in any case
there is a vector subspace H of R™ and a free subgroup F; of $(G) such that
F1is finitely generated and F; C H and is dense in H and rank Fy > dim H + 2.
From this point on we follow the proof of previous lemma and get the required
result.

2. The equivalence relation ~ among subgroups of an
abelian group

DErFmNition 2.1.  Let (f be a group. Let H and K be subgroups of G. We
say that H is equivalent to K and write H ~ Kif H/(Hn K) and K/(H n K)
are finite.

Remark 2.2. The relation ~ above is an equivalence relation in the set of
all subgroups of a group G.

DernitioN 2.3. Let G be a group. A canonical collection of Z-free sub-
groups of G is a collection D of subgroups of ¢ with the following properties:

(a) If H ¢D, then H is Z-free

(b) If Hyand H, € D, then H; is not equivalent to H, unless H; = H, .

(¢) If A is a subgroup of G and A is Z-free, then there exists a subgroup
H ¢ D such that H ~ A.

Remark 2.4. Let G be a group. Let £ be the set of all Z-free subgroups
of G. Let D be a canonical collection of Z-free subgroups of G. Then ~ is
an equivalence relation in £ and the quotient space of £ by ~ and D have the
same cardinality.
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Remark 2.5. We also note that all canonical collections have the same
cardinality.

LemMA 2.6. Let G be torsion free countable group. Let A C G be a sub-
group and @ the collection of all subgroups of B C G, such that A C B and
A ~ B. Then @ is countable. Suppose in addition to the assumption above,
that A /nA is finite for all integers n > 1. Then the collection © of all subgroups
C C @sothat C < A and C ~ A s countable. So if all the above conditions
hold then the collection of all subgroups F of G, which are equivalent to A s
countable.

Proof. Let S be the collection of all elements z in G such that nx ¢ A for
some integer n > 1. Then @ consists of groups generated by A u X where
X is a finite subset of S. And 8 being countable it follows that | @ | < N, .
We note that if ¢ € @ then there exists an n > 1 such that ¢ D ndA. By an
argument similar to that of @, we again get that | € | is countable. Putting
@ and € together, the last statement in the lemma follows:

LemMa 2.7.  Let G be a torsion free group of finite rank. Suppose that there
exists an uncountable collection ©i of mutually inequivalent subgroups of G.
Then there exists a collection & of mutually inequivalent subgroups of G so that
|®| = | €| and Z is not a summand of any group in ®. In particular if
|@i| = cthen |®| = c.

Proof. Since @G is of finite rank, the collection of all free subgroups of G
is countable. Let the set of all free subgroups of G be written as F1, Fy,

-, F,,---. Let F,denote the identity subgroup of G. Let €, be the set
of all those subgroups in @ which can be written as F,, X X where X is Z-free.
Then U5, €, = ©. Hence there exists ng > 0 such that |€,,| = |e].

Then each group C e @,, can be expressed as F,, X A¢ where A is Z-free.
Let ® be the collection of the groups A¢ where C ¢ @,,. Then ® is easily
seen to be the required collection.

LemMA 2.8. Let G be a group and H a subgroup of G. Let 8(G) (respec-
twely S(G/H)) be the collection of all subgroups of G (respectively of G/H).
Then | $(G) | > |S(G/H) |. If G/H has a collection © of mutually inequiva-
lent subgroups then G also contains a mutually inequivalent collection @ of sub-
groups so that | €' | > | € |. If G/H contains a direct sum D mey Ay of an
infinite set of non-zero subgroups A, , then it contains ¢ mutually inequivalent
subgroups.

Proof. We need prove only the last statement. To show this, we note
that there exists a collection & of subsets of the set Z¥ of strictly positive
integers so that | F | = ¢ and such that

A®B=(AuB) — (AnB)
is infinite for all distinet subsets A, B ¢F. For each S C &, let Fs be the
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Sroup D mes An. Then the collection @ of all such Fy is the required collec-
tion.

TaEorREM 2.9. Let G be a torsion free group of finite rank n. Let M be a
free subgroup of G of maximal rank. Then either G has at least ¢ subgroups or
G/ M is of the form D i— C(p7) @ F where {py, - , pa} 18 a finite set of distinct
primes and F is a finite group. In the latter case, the set {p1, - -+ , pa} 1s inde-
pendent of the choice of M.

Proof. Now G/M is a torsion group. So G/M = _,.¢G(p) where @ is
a set of primes and G(p) is a p-primary group; for each p e ®. If @ is infinite,
then the previous lemma applies. Suppose @ is finite. Let p e ®. The G(p)
can be expressed as A(p) + B(p) where A(p) is a direct sum of a number of
copies of C(p”) and B(p) is reduced. If there are two copies of C(p~)
in A(p), then there are ¢ subgroups for A(p) and so for G/M and @G too. If
some B(p) is infinite and bounded then it is a direct sum of an infinite collec-
tion of finite non-zero cyclic groups and we again get that |8(G) | > c.
If B(p) is unbounded then it has a basic subgroup and hence |8(G) | > c.
So if some B(p) is infinite then | $(G) | > ¢. So we get that either | £(G) |
> ¢ or G/M is of the form stated in the theorem. Now suppose G/M is of
the form stated in the theorem and M’ is another maximal free subgroup of
G. Then M n M’ is of finite index in M and G/M is a quotient of G/(M n M’)
with the kernel M/M n M’. So it follows that G/(M n M’) is of the same
form as G/M. As M n M’ is of finite index in M’ and

G/M = (G/(MnaM))/(M'/(MnM)),
the last assertion follows.

Note 2.10. The above theorem remains valid even if G is not assumed to
be torsion free but the torsion free rank of @ is finite. We also get in view of
the preceding lemmas and theorem that either |D| > ¢ or G/M is as in
Theorem 2.9.

Dermnrrion 2.11.  Let G be a group. Let M be any maximal free subgroup.
Then G is said to have a type if G/M is of the form D7, C(p7) ® F where
{p1, -+, Pa} is a finite set of distinet primes and F is finite and the
set {p1, -+ , P} does not depend on M. In this case we denote by 3(G), the
type set {p1, -+, pa} of G.

Note 2.12. If G is a group of finite torsion free rank and does not admit at
least ¢ subgroups then @ has a type and so does every one of its subgroups and
everyone of its quotient groups.

TuroreM 2.13. Let G be a torsion free group of finile rank and let G not have
at least ¢ subgroups. Then the following hold:
(1) For every subgroup H of G we have that

3(H) n3(G/H) =@ and 3(G) = 3(H) v3(G/H).
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(ii)) For every subset S of 3(@), there exists a subgroup Hs of G so that
Hg is Z-free and 3(Hg) = S.

(i) Two Z-free subgroups H, , H, of G are equivalent if and only if 3(H,) =
3(Hy).

(iv) The collection {Hs| S < 3(G)} is a canonical collection of Z-free sub-
groups of G.  So | D | is finite and s of the form 2" for some integer n.

Proof. Let H be a subgroup of G. Let M, and M, be maximal free sub-
groups of H and G/H respectively. Then H/Mj is of the form 5 C(p7)
@ F; where Fi is finite. We can adjust M, and M, so that F; = {0} and
(G/H)/M; = 2 iczam C(p7). Now there exists a free subgroup M; in G
which maps onto M, in a 1-1 way by the canonical map from G onto G/H.
Then M, @ M; is a maximal free group in G and

G/(My @ M) = 2z C(97) + 2 jescarm C(p5).

Now (i) follows using Theorem 2.9. Now let S be a given subset of 3(G).
Let M be a maximal free subgroup of G so that G/M = Y . C(p?). Let
¢ ' 1 G — G/M be the canonical map. Put F = D ;s C(p?). Then ¢ (@)
can be written as A @ Hg where 4 is free and Hs is Z-free. Using (i), we
note that Hy satisfies (ii). If H, and H, are two subgroups of G so that
H;, ~ H,, using (i) we get that 3(Hy) = 3(Hyn H,) = 3(H,). Conversely
let H,, H; be subgroups of G for which Z is not a direct summand. Let
3(H,) = 3(H;). Consider Hyn H,. Then

3(H,) = 3(Hyn H,) u 3(Hy/(Hyn Hy)),
3(Hs) = 3(Hin Hy) u3(Hy/(Hyn Hy)).
Since 3(H,) = 3(H,), from (i) we get
3(Hy/(Hin H,)) = 3(H, /(Hyn H,)).
But
(Hy/(Hin Hy)) n (Hy /(HinH,)) = {0} in G/HynH,

and since G does not have ¢ subgroups we have that G/Hy n H, does not have
¢ subgroups. So we get that

3(Hy/(Hin Hy)) = 3(Hy /(Hin Hy)) = §.

But Z is not a summand of Hy /(Hy n Hy) or Hy /(H, n H;) since it is not a
summand of either Hyor H,. So Hy /(H;n H,) and H, /(H, n H,) are finite.
So Hy ~ H,. This proves (iii). Now (iv) follows from (i), (ii) and (iii).
As we shall see subsequently, we will be interested in groups G which are
subgroups of R". Then we will be interested in subgroups of G, which are
dense in vector spaces. So we can ask the relation between two groups 4,
and A, which are equivalent and which are dense in some vector subspaces.

LemMmaA 2.14. Let F be a free group of rank n + 1 which is a subgroup of R".
Let F generate R" over the reals and be dense in R". Then a non-zero subgroup A
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of F can be dense in a veclor subspace (i.e. A 1s a vector subspace) if and only if
A ~F. Inthiscase A = R".

Proof. Follows from standard structure theorems on closed subgroups of
R".

LeMMma 2.15. Let G be a subgroup of R” and of rank n + 1. Let G generate
R" over R. Let H C @ be a subgroup, which is dense in a subspace V of R"
(t.e. H = V and V s a veclor space). Then rank H s either equal {o dim V or
dim V + 1. If Z is a summand of H and H s dense in V then rank H =
dim V 4 1. If S 4s a Z-free subgroup of G, then S is a vector subspace of R".

Proof. 'This follows easily from Lemma 1.1 and the fact that G generates
R" over R.

LemMA 2.16. Let F be a free subgroup of R™ and of rank n + 1. Let F
generate R over R. Then there exists one and only one non-zero vector sub-
space V of R™ so that V n F is dense in V. If two subgroups A and A, of F are
dense in some non-zero vector subspaces of R then they are equivalent.

Proof. Now {0} % F C R". So R" 5 {0}. So the existence of V follows
from Lemma 1.9. The uniqueness of V follows easily from Lemmas 2.14 and
2.15. The last statement follows easily from the first and Lemma 2.14.

Lemma 2.17.  Let G be a subgroup of R™ with rank n + 1 and generating R
over R. Let H C G be a Z-free subgroup. Let H = V. Let V1 be any fived
complementary subspace of V in R". Let A be a free subgroup of G so that
AnH ={0}. Then A ® H 1s dense in a vector subspace of R™ if and only if
one of the following s true.

(a) A = {0}.

(b) A C V and A is infinite cyclic.

(¢) AnV = {0} and the projection w(A) of A on Vi along V is dense in
some vector subspace.

Proof. Let (H @ A)™ be a vector space. Now G generates R" over R
and G is of rank n + 1. So G n V can be at most of rank ((dim V) + 1).
Since A n H = {0} and rank H = dim V we get that A n V can be at most
of rank 1. Soif A C V, then 4 = {0} or infinite cyclic. Suppose now that
A ¢ V. Now

(He® A)" =V ox(d).

Since (H @ A)™ is a vector space, it follows that w(A4)™ is a vector space.
The converse is obvious.

Lemma 2.18.  Let H be a subgroup of a group G of R".  Let G be of rankn + 1
and generaie R” over R. Let H be Z-free. Let Ay and A, be non-zero free sub-
groups of G such that Hn Ay = Hn A, = {0}. Let H® Airand H @ A, be
dense in vector subspaces of R". Then (H @ A;) ~ (H @ A,).
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Proof. Let H = V. Then V is a vector space. Let V; be a complemen-
tary vector subspace of R". If A3 C V, then rank (Gn V) = dim V + 1.
Since @ has to generate B” over R, and G has rank n + 1, it follows from
Lemmas 2.15 and 2.17 that 4, € V. Since G n V cannot be of
rank (dim V 4+ 2) by Lemma 2.15, we get that H @ Ay, ~ H @ A,. If
Ay, ¢ V then 4, ¢ V and #(4;) ~ 7(A,) where 7 is the projection on Vi
along V. (This follows from Lemmas 2.17 and 2.16.) Soif by, by, --- , b is
a maximal set of integrally independent elements of A, then there exists an
element x; ¢ Ay and integer n; 3 0 such that

’I’I,1b1 ot $1€VﬂG.
Then there exists x» ¢ H and integer ny 5 0 so that ne(n1 b1 — 1) = 22 because
rank (Gn V) = dim V = rank H.

Putting 1, ne = ki, we get a non-zero integer kyso that ki by e H @ Ay . Simi-
larly for by, -+, b,. So we get that

(H® 4:)/((H® A1) n (H @ 4,))
is finite. Similarly we get that

(H® A)/((H@® A1) n (H ® Ay))
is finite. So H ® Ay, ~H @ A..

DermvitioN 2.19. Let C be a subgroup of R" and of rank n or (n + 1).
A collection £' of subgroups of G is called a canonically dense collection if the
following hold:

(i) A e&£'= A is dense in a vector subspace.
(i) A,Bef£'and A > B = A is not equivalent to B.

(iii) If D < G is a subgroup of @ which is dense in some vector subspace
then D ~ C for some C ¢ £".

This class is important for our subsequent investigations and so we discuss
them below:

THEOREM 2.20. Let G be a subgroup of R" so that rank G is either n or n + 1
and G generates R™ over R. Let Hy and H, be subgroups of G so that Z is not a
summand of either Hy or Hy and let Hy ~ H,. Let A; and A, be non-zero free
subgroups of G so that Hy n Ay = {0} and Hy n A, = {0} and H; ® A, and
H, ® A, are dense in vector spaces. Then Hi @ Ay ~ H, @ A,. So £
18 @ fintle sel or has c elements.

Proof. Consider Hy n H;. It follows from Lemma 1.2 and H; ~ H, that
(HinHy))" = Hy = H,. So(HynH,) ® A, and (H;n H,) ® A, are dense
in vector spaces. So

(H1 @ Al) ~ (Hz ® Az) and (H1 n Hg) @ Al ~ (H1 n Hz) @ Az
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by Lemma 2.18. Now let D be a canonical collection of Z-free subgroups of
G. Then | D| < | £ which follows from Lemma 1.1. If | D] = ¢, we get
the last statement. If not | D | is finite by Theorem 2.13. Let {H:, H,,
.-+, Hy} be such a finite canonical collection. Then foreach s = 1,2, --- | k,
there can be at most one non-zero free subgroup A; of G up to equivalence so
that H; ® A;is dense in a vector space, using Lemma 2.18. If we choose one
such A4, foreachi = 1,2, - - - , k, we get that £' is a subset of the set

{H17 7Hk) (H1+ Al)) R} (Hk+ Ak)}
by Lemma 2.18. So £ is finite in this case.

DzeFiNtTioN 2.21.  Let G be a group and ¢ : G — R" be a homomorphism.
A canonical y-dense collection of subgroups of G is a collection € of subgroups
of G such that the following hold:

(a) If H € @, then ¢(H) is dense in a vector subspace of R".

(b) If Hyand H, are distinet elements of @, then they are not equivalent.

(e) If A is a subgroup of G so that ¢(A) is dense in a vector space of R”,
then there exists M € @ so that A ~ M.

Lrmma 2.22.  Let G be a group of torsion free rank n + 1 and ¥ a homo-
morphism of G into R™ with kernel K 5 {0}. Lel (@) be dense in R™ and let G
have at least c-subgroups. Then a canonical collection of Y-dense subgroups of G
has cardinality at least c.

Proof. By Note 2.10 there are at least ¢ subgroups of G which do not have
Z as a summand. Then a collection D of canonical Z-free subgroups of G
has cardinality at least ¢. If H ¢ D then it is clear that Z is not a summand of
Y(H) since otherwise H is not Z-free. Then from Lemma 1.1, it follows that
Y(H) is dense in some vector space in R". So if € is a canonical collection of
y-dense subgroups of G, then | € | > | D | > ¢ as required.

TuroreM 2.23. Let G be a group of torsion free rank n + 1 and ¢ a homo-
morphism of G into R". Let K be the kernel of ¢. Let K be of rank 1 and ¢(@G)
dense in R". Then | €| is finite or >c for any canonical collection © of Y-dense
subgroups of G.

Proof. If G has at least ¢ subgroups then | € | > ¢ by the previous lemma.
So we can assume that G has a type and a finite canonical collection D of
Z-free subgroups of G say H,, ---, Hr. Now we will show that if L is a
subgroup of G so that ¢ (L) is dense in some vector subspace of R” and L =
A ® B where A is a free group and B is a subgroup for which Z is not a sum-
mand, then there is a free subgroup S € K and a subgroup T C G so that
L~S®TandT ~H;forsome?=1,2,3,---,k If A= {0} thisis
clear. Solet A 5 {0}. By Lemma 1.1 and the fact that ¢ (L) is of rank n
and dense in R", we have that ¢(L) is Z-free. SoLn K # Bn K. So there
exists @ e A and b ¢ B such that @ + b e L and a % 0. So we must have that
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B n L = {0}. Otherwise using the fact that K is of rank 1, we will get that
there exists a non-zero integer m so that ma ¢ B which contradicts the assump-
tion that A n B = {0}. Let {a, a2, ---, a;} be a maximal integrally inde-
pendent set in 4. Let F be the free group generated by {a, @z, -+, a4.
Then F ® B~ A ® B. So¢(F + B) ~y¢(A + B) and hence is dense in
a vector subspace of R". So ¢(F + B) is Z-free. But we see easily that

F ® B = F, ® B where F\ is the free group generated by {a + b, a,, - - - , a4}.
Moreover the cyclic subgroup C generated by a + b is precisely (F @ B) n K
since K is of rank 1. So if N is the free group generated by {a., as, - - - , a4},

then we get that ¢(F, 4 B) is isomorphic to N + B. So N = {0}. So Iy
is eyclic and we get that L ~ 8 @ B where S is the free group contained in K
and generated by @ 4+ b. Thus we have established our claim that if a sub-
group L of G has Z as a summand and (L) is dense in a vector subspace that
L is equivalent to a subgroup of the form S & H : where S C K is an infinite
cyelic group and H; ~ H; for some i = 1,2, - - - , k. Since D is finite, we get
that € is finite and we get the theorem.

3. In between topologies in a group

Notation 3.1. A group topology on G means a locally compact Hausdorff
topology on G, making G a topological group.

Notation 3.2. (X, ) denotes a set X with a topology 7. If 71, 7 are two
topologies on a set X, we write 71 < 73 or 72 2 71 to mean that r; is stronger
or finer than 7, (i.e. 7, has more open sets than 7).

Notation 3.3. Let G be a group with group topologies 1 and 7,. Let

7 < 72. [71, 2] denotes the set of all group topologies = on G such that 7, <
T 1.

Nolation 3.4. If X is a set | X | denotes the cardinality of X.

Notation 3.5. If (X, 7) is a topological spaceand A C X, then 7| A denotes
the topology  restricted to A.

DermiTION 3.6. Let G be a group with a group topology 7. Let H be a
closed subgroup of G. Then the group topology ' on @ such that +' | H =
7| H and such that H is open in 7’ is called the group topology induced by H
in G. This is denoted by 74 . The collection {75 | H is a closed subgroup of
G} is denoted by 7s. (@G, 7) is used to denote the locally compact group G.

Note 3.7. If (@, 7) is a locally compact group, then each member of 74
gives a finer group topology than r.

DeriNiTioN 3.8. Let (G, 7) be a locally compact group with an open
subgroup of the form H X A, where (H, 7) is a compact group and (4, 7)
is topologically isomorphic to some R". A quintet (L, ¢, t, k, C) consists
of a closed subgroup L. C H, a continuous isomorphism ¢ of a vector group
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R' into H, an integer & and a closed subgroup C of G satisfying the following
conditions:
(i) ¢(R) nL = {0}.
(i) 0<Lk<Ln.
(iii)  C is topologically isomorphic to R*.

DEerintTioN 3.9. Let (@G, 7) be a locally compact group with an open sub-
group H X A where H is a compact group and (A, 7) is topologically iso-
morphie to a vector group R". Let (L, ¢, t, k, C) be a quintet. Let 71 be the
topology on ¢(R*) which makes the map ¢ : R® — ¢(R") a homeomorphism.
Let 7, be the restriction of 71 to L @ C. Let 7y be the group topology on G
in which L @ ¢(R*) ® Cisopen and 7o /L ® ¢(R’) @ C is the same as

(L, 1) X ($(R), 71) X (C, 7).
We say that 7 is the topology on G induced by the quintet (L, ¢, t, k, C).

Note 3.10. It was proved in Theorem 1 of [4] that the topology 7, induced
by the quintet (L, ¢, ¢, k, C) on (G, 7) is stronger than 7 and every group
topology 71 on G which is stronger than 7 is obtained in this way by a quintet.

LemmA 3.11.  Let G be a group with group topologies ryand ro. Let 11 < 5.
Let H be an open subgroup in v, . Let 71 and 5 be the resirictions of 7 and
respectively to H.  Then | [r1, 7] | = | [11 , 7] |.

Proof. 1If 73 € [r1, 7] then H is also open in 73 . Moreover 73 is induced in
G' by H as in Definition 3.6. So the result follows.

Note 3.12. Let G be a group with group topologies 7, and 7. and such that
nn < 72. Let H+ A be an open subgroup of (G, m1) where (H, ) is a com-
pact group and (4, 71) is topologically isomorphic to a vector group. Then to
discuss | [r1, 7] | it is enough to discuss | [+1 , 751 | as in Lemma 3.11. So we
can and also do assume hereafter that (G, m1) is of the form H ® 4, as above.

Lemma 3.13.  Let G be a group with group topologies ryand 2. Let 1 < 7.
Let (G, 1) be of the form H ® A where H is compact and A is a vector group.
Let 7o be induced by the quintet (L, ¢, t, k, C). Then there exists a subgroup B
of (G, 11) such that the following hold:

(i) B>oC.
(i) Bn H = {0}.
(i) B®@H=A4A®H-=@G.

Proof. Since 7, is induced by the quintet, we have that (C, 1) is a closed
subgroup of (G, 1), topologically isomorphic to a vector group. Hence Cis a
direct summand of (G, ). So (G, 1) = C @ M, where M is closed in (G,
7). Since (H, 1) is compact (M, =) will split as H @ B, where (B:, 1)
is a vector group. Writing B; ® C = B, we get the required result.

Remark 3.14. Let (G, 1) = H @ A asin Note 3.12. Let = > 71 be a
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group topology on (@, 71) induced by the quintet (L, ¢, ¢, k, C). In view of
the Lemma 3.13, we can assume that C C A, when discussing the | [71, 7] |.

LeEmMA 3.15. Let 71 and 15 be two group topologies on a group G. Let
o> 11. Lel (Q,7) = H® Aasin Note 3.12. Let 12 be induced by a quintet
(L, ¢, t, k, C), where C C A. Let dimension of A > k + 2. Then | [r1, 73] |
> ¢.

Proof. There exist at least ¢ distinet closed subgroups V. of 4 in the 7,
topology so that each ¥V, D C. Then each closed subgroup H @ V, induces
a group topology 7. on @ as in Definition 3.6. It is easily verified that all
these 7, ’s are distinct and each 7, € [71, 7). Hence the lemma.

Remark 3.16. In view of Lemmas 3.15, 3.13 and 3.11, it is enough to con-
sider the following: (G, 1) is of the form H @ A4 as in 3.12 and (G, 72) is
induced by the quintet (L, ¢, ¢, k, C) where C C A and dim C < dim 4 <
dim C + 1.

LEMMA 3.17. Let 71 and 12 and G be as in Lemma 3.13. Let (G, 11) be of
the form H @ A and (G, 72) be induced by (L, ¢, t, k, C) with C C A and

dim C < dim A4 < dim C + 1.
Lel 1 and 75 be the restrictions of 1 and . respectively to H. Then
[lr, | = e, w1 or 2][, w]].

Proof. Suppose dim C = dim A. Then C = A. So every topology
73 € [11, 712} is induced by the quintet (L, ¢, ¢, k, 4), where k = dim A. So
it follows, from Definition 3.6 and Note 3.10, that | [r1, 7] | = |[ri , 73] ]
in this case. Suppose that dim A = dim C + 1. Let 73 €[r1, 7). Then
73 18 induced by (L, ¢, i, k', B) where k' = dim C or 1 4+ dim C and B D C.
If ¥ = dim C then B = C. If k' = dim C 4 1 then 73 is the same as that
induced by (L, ¢, t, k, A). So by an argument as above, it follows that
[[r1, )| = 2] [r1 , 72] | in this case. Now the assertion follows.

Remark 3.18. Let (G, 71) be a compact group. Let 7, be a stronger group
topology on G than 7;. Then the quintet (L, ¢, ¢, k, C) that induces 7, on
@ as in Note 3.12 has to be of the form (L, ¢, t,0,0). So we write, (L, ¢, 1)
instead of (L, ¢, t, 0, 0) in this situation and say that 7, is induced by the
triple (L, ¢, t) instead of (L, ¢,¢,0,0, ).

LeMMA 3.19. Let (G, 1) bea compact group. Let 1o, 75 be group topologies
on G, which are stronger than 1. Let 7, be induced by the triple (L, ¢, t) and
73 be induced by (K, ¢,s). Then 2 = 73 if and only if the following hold:

(i) K n L 1is open in both K and L or equivalently K/(K n L)
and L/(K n L) are finite.
(i) ¥(R) € (KnL) ® ¢(R")
(i) ¢(R") € (KnL) ® ¢(R")
(iv) s =1.
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Proof. Let conditions (i), (ii) and (iii), (iv) hold. Then
(KnL) @ ¢(R") = (KnL) ® y(R’)
from (ii) and (iii). So from (i) we get that
(KnL) @ ¢(R*) = (KnL) ® ¢(R*)

is open in 7, and also 73 . Now from the structure theorem of locally compact
abelian groups, we get 7. and 73 coincide on this open subgroup. So 72 = 73 .
Conversely let 7o = 73. Then K and L are both compact in 7.
So K n (L + ¢(R?)) is compact in 75 and hence C L. So

Kn (L+ ¢(R)) = KnlL.

SoKnLisopenin Kin .. So K/(K n L) is finite. Similarly L/(K n L)
is finite. Then (K n L) @ ¢(R?) is open in 7, and hence in 73 . Since ¢(R")
is a connected subgroup in 73 , we get

Y(R) € (KnL) ® ¢(RY.
Similarly
#(R) € (KnL) ® ¢(R).

Then clearly from the structure theorem for LCA groups, we get s = t.

TuaroreM 3.20. Let (G, 11) be a compact group and = a group topology on G
stronger than 1. Let 5 be induced by (L, ¢, n). Let v and 5 be the respec-
tive quotient topologies on G/L from 11 and 7, by the natural map \ : G — G/L.
Then |[r1, ml| = |[r1, 72]|. Moreover (G/L, 1) is a compact group and
and 75 a group topology on G/L stronger than 71 and 7 is induced by ({0},
Nog, n). So to prove the main theorem when (G, 1) 1s compact, it is enough to
do so with the extra assumption that L = {0} where (L, ¢, n) induces 7 .

Proof. Now r|L = r1|L since 7, is induced by (L, ¢, n). So if
r3€lri, 7] then 75|L = 71|L and hence L is compact in 73. So if
\ : G — G/L is natural map from G onto G/L and 73 is the quotient topology
on G/L obtained from (@, 73), we get that (G/L, r3) is a locally compact
group. Clearly (G/L, i) is a compact group and (G/L, 3) is a locally

* * % * * .
compact group and 71 < 72 and 75 €[71 , 72). So there is a map

*:[7'1,72]—+[T;k,7';]

namely 73 — 73 for all 75 € [71, 72). Now we observe that if =5 € [r1, 2] and
is induced by (H, ¢1, n1), then H O L and 73 is induced by (A(H), N o ¢, n1).
From this and using Lemma 3.19 we get the 1-1 nature of the map, *. Now
let 7 be an element of [r1 , 7] induced by (K, ¥, t). Then an application of
Lemma 1.5 shows the existence of a continuous isomorphism

6:R'— G

such that 8(R") n H = {0} and M(8(R")) = ¥(R') where H = \™(K). Then
it can be verified that H @ (0(R")) D ¢(R"™). So the triple (H, 6, t) gives
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an element 73 e [r1, 72]. It is also easy to see that 73 = 7. So # is onto.
So|[mn, ml| = [[r1, 72]|. Now the last remark is obvious when we look at
(G/ L ) Tf) .

CoroLLARY 3.21. Let (G, 71) be a compact group and r, a stronger group
topology induced by (0, ¢, n). Let H C G be a closed subgroup in . and hence
i 7, such that H n ¢(R"™) = {0}. Let A : @ — G/H be the canonical map and
r and T3 the quotient topologies of 1 and T, respectively in G/H by \. For every
75 € [11, o), let 73 De ils quotient topology in G/H.

Then 75 €[rr , 73] and the map * : [r1, 1] — [r1 , 7] which takes =5 to 73
18 onto.

Proof. To prove this, we have to only imitate the last part of the proof of
Theorem 3.20.

LeMMma 3.22. Let (G, 11) be a compact group with a stronger group topology
72 tnduced by (0, ¢, n). If there exists a closed subgroup H in (@G, 1) such that
| 71, 21| = ¢ where 1 , T2 are the respective quotient topologies of 1 and 7, in
G/H, then | [r1, ]| = c. So to prove the main theorem it is enough to do so
under the assumptions (G, 71) is compact, 7o is induced by (0, ¢, n)

and | [T;k , Py 11 < ¢ for all closed subgroups H of (G, 1).

Proof. This is an easy consequence of Corollary 3.21, Theorem 3.20 and
Lemma 3.17.

DeriniTion 3.23. Let (G, 1) be a compact group and 7, a stronger group
topology in G induced by ({0}, ¢, n). We say that G satisfies condition (*)
if |[[71, ]| < ¢ for all closed subgroups H of (G, 1) where 71 and r; are
as in Lemma 3.22.

Notation 3.24. Let (G, 1) be a compact group and 7, a stronger group
topology on @ induced by ({0}, ¢, n). Then we sometimes say that 7, is
induced by ¢(R") instead of by ({0}, ¢, n).

LemMma 3.25. Let (G, 71) be a compact group. Let 1, be a stronger group
topology in G induced by ¢(R"). Let G satisfy condition (x). Let Gy be the
connected component of 0 in (G, 7). Then there exists a closed subgroup A of
(G, 1) sothat An Gy = {0} and A @ Gy is openin 1 .

Proof. Let 71 , 75 respectively be the quotient topologies of 7 and 7, in
G/Gy. Then 75 is discrete since (R") < Gy. So [r1, 73] is just the set of
all stronger group topologies on G/Gy, stronger than 73 . Since @ satisfies
condition (%), (and Gy is closed) the set of stronger group topologies on G/Gy
is finite. So (G/Gy, 71) contains an open subgroup S which is topologically
isomorphic to I%, , X -+ X T % where py, - - - , pi are distinet primes [5].

By taking the full inverse in G, we get an open subgroup H of (@, 1) con-
taining Gy and such that H/G, is a finite product of p-adic integers. Now the
p-adic integers is projective in the category of compact groups. So H =
A @ Gywhere A is asin the lemma. Hence the result.
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Note 3.26. In view of 3.25 and 3.11 to prove the main theorem, it is enough
to assume the following conditions:
(1) (@, 71) is of the form A ® G, where A is a finite product of distinct
p-adic integers and (Gy, 71) is a connected compact group.
(ii) misinduced by ¢(R") and hence ¢(R") C Gy .
(iii) @ satisfies (*).

Lemma 3.27. Let (G, 11) be a compact group of the form A @ G, where A,
Gy are as in Note 3.26. Let 1, be a stronger group topology on G induced by
o(R™). Let Gy be the dual of Go. Let Gy have rank > n + 2. Then
[[r, mal| > c.

Proof. Now ¢(R") is connected in (@, 71) and hence is contained in G.
So by Lemmas 1.11, 1.12, 1.13 there exists at least continuum many iso-
morphisms ¢¥. of R** into (G, ) so that ¥.(R"™) D ¢(R") for all a and
Ya(R™™) # Y(R™™) if & # B. For each such ¢, we get a group topology
induced by [{0}, Yo, n + 1]in[r1, 7). So|[r, ]| > c.

Lemma 3.28.  Lel (G, 1) be a compact group and = a stronger group topology
on G induced by ¢(R™). Let r3e[r1, m]. Then v s induced by a triple
(L, ¥, k) such that L n ¢(R"™) = ¢(V1) for some vector subspace Vi C R" and
L @ ¢(R") D ¢(V,) where Vs is a complementary vector subspace of Vy in R".
If further (G, 71) s of the form A ® G, where A s a finite product of distinct
p-adic integers and Gy is connected and rank Gy = n, then 75 s induced by
(L, ¢3 , k) where ¢ is the restriction of ¢ to Vs above and dim V, = k.

Proof. Now
¢ : Rn i (G’ T2)

is a homeomorphism of R" into G. So if 73 € [1, 72, then ¢ : R" — (G, 73)
is continuous. So if 73 is induced by (L, ¢, k), then ¢(R") < L & ¢(R").
Let = be the projection from L ® ¢(R*) onto ¢(R*). Let K C R" be the
kernel of ro¢. Then K is a vector subspace of R", otherwise (¢(R"), ),
which is isomorphic to R*, would contain a closed subgroup isomorphic to 7'.
Clearly L n¢(R") = ¢(K). Hence the first part of the lemma follows. Let
now (@G, 1) be of the form A ® G, as in the second part of the lemma. Let
rank of Gy = n. Then R™™ cannot be embedded into (Gy, 1) by a continu-
ous isomorphism. But 73 is induced by (L, ¢, k) where

Ln¢(R") = ¢(Vy) and L @ ¢(R") D ¢(V2)

and Vi, V, are complementary subspaces of B". Sodim V, < k by structure
theorem of locally compact abelian groups. But dim V, cannot be <k.
Otherwise by looking at ¢(Vy) @ ¢(R"), we get that R**' can be embedded
into (Gy, 7)) by continuous isomorphism, which is not possible. So
k=dimV,. SoL® ¢(R") =L ® ¢(V,). Hence the second part follows.
Hereafter we shall follow the following:
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Convention 3.29. Let (G, 71) be a compact group. Let = be a stronger
group topology induced by ¢(R"). Let A be a vector subspace of B" and L
a compact subgroup of (G, 1) such that Ln¢(A4) = {0}. Letdim A = k
and y the restriction of ¢ to A. Then (L, ¢, k) gives a topology 73 in [r1, 72];
we say 73 is induced by L @ ¢(4). Similarly let S be a closed subgroup of
(@G, 1) and M a subgroup of G so that M n 8 = {0} and M is the range of a
continuous isomorphism 6 of a vector group R! into G. We say that S @ M
induces the topology given by (S, 6, ¢) in G.

Lemma 3.30. Lel (G, 11) be a compact group of the form A @ G, where A
s a finite product of distinct p-adic integers, and Gy is a connected group. Let
the rank of Goben + 1. Let 7, be a stronger group topology induced by ¢(R").
Let there be a conlinuous isomorphism 0 from R™*" into G. Then every group
topology 73 € [t1, 7o) is induced by L @ M where L s a closed subgroup of
(G, 1) and M is a subgroup of G so that M n L = {0} and one of the following
holds:

(1) La¢(R") = &(Vy) and M = ¢(V,) where Vi and Vi are comple-
mentary subspaces of R".

(2) Ln8(R"™) = La¢(R") = 6(Vy) and M = 6(Vs) where Vs and V;
are complementary subspaces of R"*.

Proof. If 75 € [11, 7o), then 73 is induced by (L, ¢, k). Then
Ln¢(R") = ¢(Vy)

for some vector subspace of R", as in Lemma 3.28. Suppose V3 is a comple-
mentary vector subspace of Vi in R" and k = dim V,. Then following the
proof of Lemma 3.28, we get that L + ¢(Vy) = L + ¢(R*). Tak-
ing M = ¢(V,) we see that case (i) occurs this time. Suppose k £ dim V,.
Then we have that

o(V2) Co(R") C L @ ¢(R")

since 3 < 73. But Ln¢(Vs:) = {0}. Hence dim ¥ > dim V.. Since
rank Go = n + 1, we have that R"** cannot be continuously embedded in
(@, 7). Bute(Vi) ® ¢(R") is clearly the image of a continuous isomorphism
of R "™ where l = dim V,. Son — 1+ k<n=x1. Sok<dimV,+ 1.
Since k& = dim Vs, , we must have that k = dim Vo, + 1. Then¢(V:) @ ¢(R")
is a continuous isomorphic image of R***. So by Lemma 1.5 and 1.2, we have
that

o(R*™) = ¢(V1) @ Y(R").

Following the proof of Lemma 3.28, we sce that the second case arises this
time.

Lemma 3.31.  Let (G, m1)be a compact group of the form A + G, and 72 @
stronger group topology induced by q&(R"), as in the previous lemma. Let the
dual Gy of Gy have rank nor n + 1. Let G be the dual of (G, 1) and $ : G — R"
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be the adjoint of ¢. Let L bea compact subgroup of (G, 1) and L* itsannihilator.
Then Ln¢(R™) = ¢(V) for some vector subspace V of R" if and only if $(L*)
18 dense in a vector subspace. If (Ly, Y1, k1) induces a group topology 3 in
[r1, 7o) and (Lz, Yo , ko) induces 74 € [11, 2] then 73 = 4 9f and only if Lin Ly
18 of finite index in both Ly and Ly, and k1 = ky. Let L be a compact subgroup
of (G, 7). Then there exists a topology 7 €[r1, 73] induced by a iriple of the
form (L, 6, t) if and only if Ln¢(R™) = ¢(V), for some vector subspace V of
R™. In this case there can be at most two such topologies.

Proof. The first statement is an easy consequence of Pontrjagin’s duality
theorems. The second follows easily from Lemmas 3.30 and 3.19. The last
statement follows again by the same lemmas.

LemMa 3.32. Let (G, 1) be a compact group of the form A @ Gy and 72 a
stronger group topology induced by ¢(R") as in Lemma 3.31. Let 73 and 7, be
topologies in 11, 2] tnduced respectively by (Ly, ¢1, ) and (La, ¢2, &). Let
Li and Ly be the annihilalors of Ly and L, respectively in G. Thenm = if
and only if Ly ~ L3 in the sense of Definition 2.1 and t; = 1, .

Proof. From Lemmas 3.19 and 3.31, we have that 73 = 74 if and only if
L1n Ly is of finite index in Iy and Ly and & = ;. Then by duality theorems
it follows that Ly n L is of finite index in both L, and L, ; if and only if Ly n Ly
is of finite index in both Li and Ly . Hence the lemma.

LeEmMmA 3.33. Let (G, 1) be a compact group of the form A ® Gy and 72 a
stronger group topology on G induced by ¢(R"™). Let the rank of G, be n or
n + 1. Let @ be a canonical collection of ¢ dense subgroups of @ as in Definition
221. Then|C| < |[n,m]]| <2]|€].

Proof. This follows easily from Lemmas 3.30 and 3.31 and 3.32.

TuroreM 3.34. Let G be an abelian group with group topologies 71 and v,
suchthat v < 7. Then | [y, 5] | is either finite or >c.

Proof. From Note 3.26 it is enough to prove our theorem when
(G’ 71) =4 GO;

where A is a finite product of distinet p-adic 1ntegers, and Gy is a connected
compact group and 7, is induced by ¢(R") as in Lemma 3.30. Let A and G,
be the dualsof 4 andGy. From Lemma 3.27, we getif rank Gy > n + 2 then
| [1, 7] | > c. Suppose that rank Gy = nor n + 1. Now the dual @ of
GisA ® Gyand A = > C(p?); where p1, ps, - -+ , pa are distinet primes.
For every subset S of {p1, ps, -+, pa} Put Hs = D pies C(p7) if S 5= 0
and = {0} if S = @. Let €; be the canonical collection of ¢ dense subgroups
of Gy. Then from Theorems 2.23 and 2.20 we have that | €| is finite or
>c. If | @ | > ¢ then Lemma 3.33 gives that|[ 71, ]| > ¢. Solet | €|
be finite. Let {F1, ---, Fi} be such a collection € . Then G, has a type.
If

5(GO))n{P1;P2; "',pn} ?ég
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then there are ¢ subgroups for G and following the proof of Lemma 2.22, we
get that a canonical collection of ¢ dense subgroups of G has at least ¢ ele-
ments. So we will get that | [r1, 72] | > ¢ by Lemma 3.33 if

3(00)n{p1,p2, s ,pn} ;éﬂ.

Suppose now that 3(Go) n{ps, p2, - -+, pa} = 0. Then by standard struc-
ture theorems in abelian groups we get that if M < @ is a subgroup then M
is equivalent in the sense of Definition 2.1 to a subgroup Hs @ M, where
S C{p1, ---, pa} and My is a subgroup of G,. So if we put

e={Hs+ F:;|SC{py, - ,ps} and 2=1,2,--- Fk}

then € is a canonical collection of ¢ dense subgroups of G. So | €| = 2" | ¢ |
and hence is finite. So | [r1, 2] | is finite by Lemma 3.33. Thus we get the
theorem.
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